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The Pyro ToolKit
for AI and
Robotics

Douglas Blank, Deepak Kumar,
Lisa Meeden, and Holly Yanco

B This article introduces Pyro, an open-source
Python robotics toolkit for exploring topics in Al
and robotics. We present key abstractions that al-
low Pyro controllers to run unchanged on a variety
of real and simulated robots. We demonstrate Py-
ro’s use in a set of curricular modules. We then de-
scribe how Pyro can provide a smooth transition
for the student from symbolic agents to real-world
robots, which significantly reduces the cost of
learning to use robots. Finally we show how Pyro
has been successfully integrated into existing Al
and robotics courses.

source, Python-based programming envi-

ronment for exploring robotics and artificial
intelligence. Pyro, which stands for Python ro-
botics, enables users to easily write sophisticat-
ed Al programs in Python to control a variety
of robots and agents. Pyro provides a high-level
interface to robots, relieving the user from low-
level, robot-specific details. Further, robot pro-
grams written in Pyro can be used to control
several different kinds of robots without any
modifications. Pyro has already been success-
fully used in a number of undergraduate and
graduate-level Al courses at several different in-
stitutions. In this article, we will introduce Pyro
as a programming environment for teaching
robotics and Al To find out more about the un-
derlying design principles and evolution of Py-
ro see Blank, Kumar, Meeden, and Yanco
(2003).

One of the main goals of Pyro is to reduce

In this article we present Pyro, an open-

the cost of learning to program robots and Al
agents. The last decade has seen a proliferation
of mobile robot platforms that has led to their
introduction in undergraduate and graduate-
level AI curricula. However, each robot comes
with its own, often proprietary, programming
environment or APIL. Thus, the cost of learning
to program robots includes the overhead of
learning the specific robot’s programming par-
adigm, and, in many cases, the programming
environment. Despite the trend towards low-
cost robot platforms, this overhead serves as a
barrier against the pedagogical aims of learning
to build Al-based robot agents. Pyro solves this
problem by introducing generic robot abstrac-
tions that are uniform across a number of robot
platforms (real and simulated) regardless of
their size or morphology. This significantly re-
duces the cost of learning to program robots
and makes robotics more accessible to students.
Pyro’s abstractions, much like the abstractions
provided in high-level programming lan-
guages, provide a robot-independent program-
ming interface so that programs, once written
in Pyro, can control several different kinds of
robots using the same code. The current ver-
sion of Pyro supports the Khepera robot (Mon-
dada, Franzi, and Ienne 1994), the Pioneer ro-
bot,! the Sony AIBO robot,> and dozens of
other robots in simulation.

All Pyro programs are written in the Python
programming language. Python is a relatively
new programming language that is quite pow-
erful and embodies several modern program-
ming paradigms. Yet it is an easy programming
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Figure 1. A View of Pyro Controlling a Pioneer Robot in the Gazebo Simulator.

language to learn for students and instructors
alike. One of the reasons Pyro was developed in
Python was to take advantage of the support
available in the language for the reuse of exist-
ing code. This enables easy integration of exist-
ing robot APIs, as well as existing libraries of Al
code. For example, any code written in C/C++
can be used from within Python code. We have
taken advantage of this feature to integrate sev-
eral existing robot APIs as well as existing APIs
for Al modeling (such as self-organizing maps
and tools for image processing).

Pyro comes integrated with several existing
robot simulators (including Robocup Soccer,?
Aria,* Player/Stage (Gerkey, Vaughan, and
Howard 2003) and with Gazebo, a newer 3D
simulator (Koenig and Howard 2004). Figure 1
shows Pyro running a wander program on a Pi-

oneer robot in the Gazebo simulator. Schools
that do not currently own robot platforms can
still make use of Pyro by introducing robot pro-
gramming in their courses through the use of
the integrated simulators. Even when an insti-
tution owns robots, simulators can be used by
students to effectively test and debug programs
before they are run on actual robots.

We have developed extensive materials that
can be used by instructors to teach robot pro-
gramming to students. The materials include
beginner’s tutorials, examples of robot pro-
gramming paradigms, and several Al modules
(such as neural networks and evolutionary
computation) that can also be used for doing
advanced research in Al. We are continuously
adding more modules. Plans are already under
way to integrate the AI modules available in



Python from Russell and Norvig's Al text (Rus-
sell and Norvig 2003).

Pyro is an open-source project. We are com-
mitted to the inclusion of contributed materi-
als and code that enhances the functionality of
Pyro. We are also committed to adding support
for more robot platforms as the robots and
their APIs become available. Currently, work is
under way to integrate support for the low-cost
Hemisson robot® and also the ER1 robot® plat-
forms.

In what follows, we provide a quick first look
at writing robot programs in Pyro. This is fol-
lowed by an overview of the curricular materi-
als currently available and a few more exam-
ples. Next we show how Pyro can also be used
to span topics in traditional Al to those in ro-
botics and describe how Pyro has been integrat-
ed into various courses at different institutions.
We conclude by sketching possible future direc-
tions for Pyro.

A Pyro Example

In this section we present a simple wall-follow-
ing program to demonstrate the unified frame-
work that Pyro provides for using the same
control program across many different robot
platforms. This type of basic controller is an ex-
ample of reactive control where the robot
maintains very limited state information and
primarily determines its actions based on its
current sensor readings. This form of control is
normally the first control method introduced
to students learning robotics.

The program shown in figure 2 is written in
an object-oriented style and creates a class
called FollowBrain that inherits from a Pyro
class called Brain (figure 2, line 2). A Pyro brain
is required to have a step method (line 5) that
implements the decision procedure and is exe-
cuted on every control cycle, which occurs
about 10 times a second. A Pyro brain may also
have a setup method (line 3) that is called
when the brain is instantiated and can be used
to initialize class variables.

The brain shown in figure 2 always tries to
follow walls on its left side. On each control
step, it first queries the range sensors on its
front and left side (lines 6-9). If the front sen-
sors indicate that the robot is approaching
something, then the robot turns right so as to
align its left side with the wall. Once it senses
that its left sensors are close enough to the wall,
then it sets its class variable self.follow to be
true and goes straight. When self.follow is true,
the robot makes small adjustments, which are
based on readings from its front-left and back-
left range sensors, to try to stay aligned with
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1 from pyro.brain import Brain

2 class FollowBrain(Brain):

3 def setup(self):

4 self.follow = 0

5 def step(self):

6 f =self.get('/robot/range/front-all/value')
7 fl=self.get('/robot/range/front-left/value')
8 bl=self.get('/robot/range/back-left/value')
9 1 =self.get('/robot/range/left/value')

10 if(min(f) < 0.5):

11 print "wall ahead, turn right"

12 self.robot.move(0, -0.2)

13 elif(self.follow and min(fl) < 0.55):

14 print "following, adjust right"

15 self.robot.move(0.2, -0.05)

16 elif(self.follow and min(bl) < 0.55):

17 print "following, adjust left"

18 self.robot.move(0.2, 0.05)

19 elif(min(l) < 0.9):

20 print "following"

21 self.follow = 1

22, self.robot.move(0.2, 0)

23 else:

24 print "looking for wall"

25 self.follow = 0

26 self.robot.move(0.5, 0.0)

27  def INIT(engine):

28 return FollowBrain('FollowBrain', engine)

Figure 2. A Platform-Independent Wall-Following Program in Pyro.

the wall. Otherwise, if the robot is not sensing
a wall on its left, it sets its class variable to false
and goes straight until it encounters a wall.

It is not crucial to understand all of the de-
tails of this Pyro program; however, it is impor-
tant to recognize how Pyro’s abstractions are
used to create a platform-independent imple-
mentation. One of the key ideas underlying the
design of Pyro is the use of abstractions that
make the writing of basic robot behaviors inde-
pendent of the type, size, weight, and shape of
a robot. Consider writing a robot controller for
wall following that would work on both a 50-
pound, 24-inch diameter Pioneer robot with
sonar sensors and on a 3-ounce, 2-inch diame-
ter Khepera robot with IR sensors. Figure 3 il-
lustrates the vast difference in size between the
Khepera and the Pioneer robots. The following
key abstractions were essential in achieving
this.

Range Sensors: Regardless of the kind of hard-
ware used, IR, sonar, or laser, these sensors are
categorized as range sensors. Sensors that pro-
vide range information can thus be abstracted
and used in a control program.

Robot Units: Distance information provided
by range sensors varies depending on the kind
of sensors used. Some sensors provide specific
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Figure 3. Two Very Different Robot Platforms.

Shown is the tiny Khepera and the much larger Pioneer, for which the same Pyro program from figure 2 can be used for wall following.
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range information, like distance to an obstacle
in meters or millimeters. Others simply provide
a numeric value where larger values correspond
to open space and smaller values imply nearby
obstacles. In our abstractions, in addition to
the default units provided by the sensors, we
have introduced a new measure, a robot unit: 1
robot unit is equivalent to the diameter of the
robot being controlled.

Sensor Groups: Robot morphologies vary from
robot to robot. This also affects the way sen-
sors, especially range sensors, are placed on a
robot’s body. Additionally, the number and po-
sitions of sensors present also varies from plat-
form to platform. For example, a Pioneer3 has
16 sonar range sensors while a Khepera has 8 IR
range sensors. In order to relieve a programmer
from the burden of keeping track of the num-
ber and positions of sensors and their unique
numbering scheme, we have created sensor

groups: front, left, front-left, and so on. Thus, a
programmer can simply query a robot to report
its front-left sensors in robot units. The values
reported will work effectively on any robot, of
any size, with any kind of range sensor given
appropriate coverage, yet will be scaled to the
specific robot being used.

Motion Control: Regardless of the kind of dri-
ve mechanism available on a robot, from a pro-
grammer’s perspective, a robot should be able
to move forward, backward, turn, and/or per-
form a combination of these motions. We have
created the motion control abstraction:
move(translate, rotate), where movements are
given in terms of turning and forward/back-
ward changes. This is designed to work even
when a robot has a different wheel organiza-
tion or four legs (as with the AIBO). As in the
case of range sensor abstractions, the values
given to this command are independent of the



specific values expected by the actual motor
drivers. A programmer only specifies values in
arange [-1.0, 1.0].

The wall-following program in figure 2 illus-
trates the use of all of the above abstractions.
Each case of the if statement (starting on line
10) queries the robot’s range sensors based on a
specific sensor group and checks for range val-
ues in terms of robot units. For example, the ro-
bot will respond to obstacles in the front when
they are within half a robot unit and the robot
is considered to be following a wall when it is
within 0.9 robot units on its left side. In addi-
tion, each case of the if statement uses the ab-
stract move command to control the robot’s
next action.

This first glimpse of Pyro demonstrates how
Pyro’s abstractions allow students to focus on
the robot’s behavior and relieves them from
having to understand the low-level details of the
robot’s morphology and control mechanisms.
Even the very simple wall-following program of
figure 2 offers an immediate opportunity to con-
nect to broader topics in Al, such as using ma-
chine-learning techniques to learn appropriate
parameter settings for the control parameters.
The next section expands on such opportunities
by giving an overview of the curricular modules
available within Pyro and provides several more
examples of Pyro’s capabilities.

Curricular Materials

The Pyro library includes several modules that
enable the exploration of robot control para-
digms, robot learning, robot vision, localization
and mapping, and multiagent robotics. Within
robot control paradigms there are several mod-
ules: sequential control using finite state ma-
chines, subsumption architecture, and fuzzy
logic control. The learning modules provide an
extensive coverage of various kinds of artificial
neural networks: feed-forward networks, recur-
rent networks, self-organizing maps, and so on.
Additionally we also have modules for evolu-
tionary systems, including genetic algorithms,
and genetic programming. The vision modules
provide a library of the most commonly used
filters and vision algorithms enabling students
to concentrate on the uses of vision in robot
control. The entire library is open source and
can be used by students to learn about the im-
plementations of all the modules themselves.
We have also provided tutorial-level education-
al materials for all of the modules. Similar to the
software’s open-source license, these modules
are available under a Creative Commons li-
cense. This enables instructors to tailor the use
of Pyro for many different curricular situations.

In the remainder of this section, we provide two
more examples of Pyro programs written using
the available libraries.

Example of Sequential Control

In order to create more complex robot con-
trollers, it is useful to be able to group low-level
robot commands into logical units, typically
called behaviors. There are a number of robot-
ics textbooks that focus on this style of control,
known as the behavior-based approach (Arkin
1998, Murphy 2000). In this approach, each be-
havior is triggered by a particular condition in
the environment, and responds appropriately.
Once the initiating condition has been ad-
dressed, the current behavior can pass control
off to another behavior. One straightforward
method of implementing this style of behav-
ior-based control is through finite state ma-
chines (FSMs). Each state in the FSM represents
a robot behavior. Using an FSM the designer
can build up a graph of states and designate ap-
propriate sequences of control between states.
In a sense, the FSM represents a “plan” both for
accomplishing higher-level tasks through the
compositions of lower-level primitives and for
reacting to unpredictable situations.

To illustrate this style of robot control, we
can implement a simplified version of a recy-
cling robot. We demonstrate this using a simu-
lated Pioneer robot with a gripper and a “blob”
camera (discussed below). The cans are repre-
sented as randomly positioned red pucks in a
circular environment without obstacles. The ro-
bot’s goal is to collect all of the red cans. Once
the robot has picked up a can, it immediately
stores it and moves on to finding more cans.

Figure 4 shows one way of decomposing this
problem into a set of four behaviors: locateCan,
approachCan, grabCan, and done. The FSM be-
gins in the state locateCan. While in this state
the robot rotates, looking for a blob, which
would indicate that a red can is in sight. As soon
as a can is found, the FSM goes into state ap-
proachCan to move the robot toward the closest
visible can. If for some reason the robot loses
sight of the can, the FSM will go back to the state
locateCan. Once the robot is positioned with its
gripper around a can, the FSM goes to the state
grabCan to cause the robot to pick it up and
store it. Then the FSM will return to the state lo-
cateCan to search again. The state locateCan
keeps track of how long it searches on each acti-
vation of the state. If the robot has done a com-
plete rotation and not seen any cans, the FSM
goes to the state done and stops the robot.

Figure 5 shows the definition of only one of
the four states that make up the complete recy-
cling robot’s FSM brain: the locateCan state.
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Figure 4. A Graph of Behaviors for Implementing a Recycling Robot.

The robot begins in the locateCan state and ends in the done state.

class locateCan(State):
def onActivate(self):

def step(self):

#initializes a class variable to count rotations
self.searches=0

#get a list of all blobs:
blobs=self.robot.camera[0].filterResults[1]
#checks if there are any blobs
if len(blobs)!=0:
#stops robot when a blob is seen
self.robot.move(0, 0)
print "found a can!"
#transfers control to homing behavior:
self.goto(‘approachCan')
#checks if robot has done a complete rotation
elif self.searches > 275:
print "found all cans"
#transfers control to completion behavior:
self.goto('done’)
#otherwise keep rotating and searching
else:
print "searching for a can"
#updates rotation counter:
self.searches+=1
#rotates robot and remains in locate behavior:
self.robot.move(0, 0.2)

Figure 5. The Implementation of the locateCan Behavior in an FSM-Style

Pyro Program.

All of the behaviors of the FSM are represented as instances of the State class. The
filters defining the blobs for identifying the red cans are set in the brain construc-
tor, which isn’t shown here.

Each state in an FSM must implement the step
method, which is called on every control cycle.
States use the goto method to transition to oth-
er states. The optional onActivate method may
be used to initialize class variables.

Figure 6 shows the robot as it passes through
various states during the execution of its FSM
brain. First it begins searching for cans (A), then
it closes in on a particular can (B), grabs it (C),
and starts pursuing a new can (D). This style of

44 Al MAGAZINE

sequential control is a very effective method of
implementing complex robot behaviors.

Example of Vision Processing

To explore topics in computer vision, Pyro also
comes with camera and image-processing mod-
ules. Students can write Python programs to
implement vision algorithms, such as color his-
tograms, motion detection, object tracking,
edge detection, and so on. However, Python is
currently too slow for this code to be used in re-
al time. To alleviate this problem, we have de-
veloped a method such that the low-level vi-
sion code is written in C++ but the students can
interactively use this code to build layers of fil-
ters in Pyro. Thus, students can develop the
computationally expensive code in C++ and
still have the high-level, interactive interface of
Python. For example, in the background of fig-
ure 7, a Sony AIBO robot is looking at a ball.
The foreground of figure 7 shows the raw image
on the left, before the application of any filters,
and an image-processed view on the right, after
having a series of filters applied to it. Pyro ap-
plies all filters to a copy of the current image.

In this example, the filters were color match-
ing, supercolor, and blob segmentation. The
color matching filter marks all pixels in an im-
age that are within a threshold of a given
red/green/blue color triplet. The supercolor fil-
ter magnifies the differences between a given
color and the others. For example, the super-
color red filter makes reddish pixels more red
and the others more black. Finally, the blob
segmentation filter connects adjacent like-col-
ored pixels into regions, computes a box com-
pletely surrounding the matching pixels, and
returns a list of these bounding boxes. All of
these filters can be sequenced and applied
without students having to engage in the im-
plementation details of the low-level image-
processing routines. Figure 7 shows the ball as
the largest matching region by drawing a
bounding box around it (foreground, right).
Once the position of the bounding box is
known, the robot can then be programmed to
look or move toward the ball.

Integrating Pyro into the
Curriculum: From
Agents to Robots

Teaching artificial intelligence as a coherent
subject can be a challenging task. Al is already
filled with a wide spectrum of ideas and
methodologies that run the gamut from logic
to evolution, from information theory to per-
ception. Surely, the idea of incorporating even
a bit of robotics would cause an Al course to ex-
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Figure 6. A Pioneer Robot in the Player/Stage Simulator Controlled by the Finite State Machine Pyro Brain for Recycling.

The small box to the left of the robot represents the blob camera data. Each rectangle in this box represents a red blob. The larger the rec-
tangle, the closer the blob. The four subpictures depict various behaviors within the FSM. A: At the start of locateCan. B: At the moment
when approachCan passes control to grabCan. C: Just after the successful completion of grabCan. D: As the robot homes in on another

can while in state approachCan.

plode, spewing predicates, symbols, and rules
in all directions, right? We think that including
robotics in the standard Al course, if done ap-
propriately, can actually help bridge otherwise
disparate facets of the field. We recognize that
not everyone thinks that robots in the Al class-
room is a good idea. Marvin Minsky recently
was quoted as being appalled at the amount of
time that students were wasting on “soldering
and repairing” such “stupid little robots”
(Wired News, May 13, 2003). Although we feel
his criticisms were largely misguided, we also
can appreciate appropriate efficacy in the class-
room. Here, we suggest the use of prebuilt,
commercial robots and simulators.

In addition to having access to affordable ro-
bots, another trend over the last decade also
helped make robotics a viable topic in Al In
1995, Russell and Norvig published the first edi-
tion of Artificial Intelligence: A Modern Approach,
which used an agent-based perspective for ex-
ploring all of artificial intelligence. This ap-
proach was, to many, a more effective technique
of weaving together the disparate topics of Al
than past attempts. This resulted in a successful
textbook that has been adopted by many col-
leges and universities and that has generated a
second edition (Russell and Norvig 2003).

Approaching Al in the classroom from the
perspective of an agent is a simple but effective
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Figure 7. A Sony AIBO Robot Looking at a Ball.

In the background, the AIBO robot is shown under the control of Pyro over a wireless network connection. In the foreground, the robot’s
raw image (left) is shown next to a processed image (right).
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methodology. A common approach is to intro-
duce the ideas of the agent and its environ-
ment. Agents are in turn composed of sensors
and actuators. The details of the sensors and ac-
tuators are usually downplayed, if not com-
pletely ignored, in an Al class. In robotics, of
course, these are the core concepts. However,
focusing on the sensors and actuators early in
an Al class can bring to light important issues

in AL. What happens if a sensor is not accurate?
What happens if the world changes after a sen-
sor is read? How does the robot know where it
is? What happens if a robot doesn’t move ex-
actly the way it was supposed to?

Having such issues highlighted early in the
semester can make it easier to talk about why
one Al technique might be more appropriate
than another for a given problem. Of course,



having an implementation of an agent-based
algorithm can help students by providing a
concrete example with which to make these is-
sues more salient. It will also allow them to
transition from the symbolic domains of
agents to the real-world domains of robots.

Consider the vacuum world shown in figure
8 and the simple reflex agent controller shown
in figure 9. The algorithm describes a robot vac-
uuming cleaner that can suck up dirt and move
between two locations, A and B. Now consider
the code to implement it on as a robot within
Pyro. Of course, building such a robot for such
a simple example would not be worthwhile.
However, if the students could easily have ac-
cess to such a robot, and the concepts would
carry over into the rest of the course, then it
could be a valuable concrete example from
which one could build more complex concepts.

In this Pyro variation, the perceptions and
actions are represented by symbols. Figure 10
shows that the perceptual value of status is ei-
ther dirty or clean, the value of location is ei-
ther A or B, and movements are suck, left, and
right. However, the methods of accessing the
sensors and affecting the motors are identical
to those used to interact with real robots. Using
Pyro in this manner could be useful for just ex-
ploring Al. However, this agent-based symbolic
use also prepares the student for exploring any
number of other topics in robotics.

Because Pyro allows students to immediately
focus on the most abstract, top-down issues in
autonomous control, we have been able to in-
corporate Pyro into a variety of courses. Specif-
ically, at our institutions, the following courses
have used Pyro: Introduction to Artificial Intel-
ligence, Cognitive Science, Emergence, An-
droids: Design and Practice, Developmental
Robotics, Mobile Robotics, Robotics II, Senior
Theses, and summer research projects for un-
dergraduate students as well as high school stu-
dents. To date, we have recorded that Pyro has
been used in courses in at least two dozen edu-
cational institutions, and out of the classroom
in at least 30 educational institutions.

Based on our own experiences and from
those reported by early adopters of the system,
it is clear that wherever in the curriculum ro-
botics is used, Pyro can provide an accessible
and powerful laboratory environment. In all of
the instances, students are able to successfully
write several robot-control programs for real
and simulated robots. In most instances, stu-
dents learned Pyro and robot programming by
following the tutorial materials we have creat-
ed. The kinds of exercises and the extent to
which Pyro was used varied depending on the
course and its focus. The exercises span the en-
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|- PyrobotSimulator: VacuumCleanerWorld

Figure 8. Simple Vacuum Cleaner World.

This simulation, itself, was written in less than 100 lines of Python code, includ-
ing the graphics, thread, and socket code. Although we have other Al-based sim-
ulations, such as Konane (a Hawaiian checkers game), students can also write
their own simulations and games fairly easily. Reprinted from Russell, Stuart;
Norvig, Peter, Artificial Intelligence: A Modern Approach, 2nd Edition. ©2003, pp.,
34. Reprinted by permission of Pearson Education, Inc. Upper Saddle River, N.J.

returns an action

function Reflex-Vacuum-Agent([location, status))

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 9. Russell and Norvig’s Reflex Vacuum Agent (Figure 2.8).

Reprinted from Russell, Stuart; Norvig, Peter, Artificial Intelligence: A Modern Ap-
proach, 2nd Edition. ©2003, pp., 46. Reprinted by permission of Pearson Educa-

tion, Inc. Upper Saddle River, N.J.

tire spectrum of difficulty, ranging from modi-
fying existing robot brains to research-level
work in robotics. In one instance, three stu-
dents from Bryn Mawr College developed a ro-
bot Tour Guide (Chiu et al. 2005) that gave
tours of the science building. The students ap-
plied for and obtained funding for this project
from the Computing Research Association’s
(CRA’s) Collaborative Research Experiences for
Women (CREW) Program. Next, we present a
couple of sample instantiations of undergradu-
ate Al courses that were modified to include the
use of Pyro.

Pyro in Artificial Intelligence Courses

In this section we present an overview of two
versions of an undergraduate junior- or senior-
level Al course at two similar institutions: Bryn
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from pyro.brain import Brain
class SimpleBrain(Brain):
def ReflexVacuumAgent(self,location,status):
if status == "dirty": return "suck"
elif location == "A": return "right"
elif location == "B": return "left"
def step(self):
# ask the robot for perceptions:
location = self.robot.location
status = self.robot.status
# call the agent program
act=self.ReflexVacuumAgent(location,status)
# make the move:
self.robot.move(act)
def INIT(engine):
return SimpleBrain('VacuumRobotBrain', engine)

Figure 10. A Pyro Program to Clean Up Two Rooms

48 AI MAGAZINE

Using a Simple Reflex Brain.

Mawr College and Swarthmore College.
Demonstrating how Pyro can be integrated in-
to an upper-level Al course is perhaps the best
way to highlight the flexibility available to in-
structors.

At both colleges, the Al course is typically
taught every other year. The Bryn Mawr course
followed a traditional, agent-oriented approach
based on Nilsson’s book (Nilsson 1998), while
the Swarthmore course had a machine-learning
focus based on Mitchell’s book (Mitchell 1997).
At both colleges, the labs were designed to in-
troduce students to the Python programming
language, the tools available within Pyro, and
the topics being covered in class. Most labs
were relatively short in duration, typically last-
ing only a week. Some of the labs were de-
signed to allow students to explore a topic in
much more depth and lasted two to three
weeks. Tables 1 and 2 provide an overview of
the two courses.

At Bryn Mawr College, the Al course includes
both computer science majors and nonmajors.
Typically, anywhere from 30-40 percent of the
students in the class are from outside of com-
puter science, most without much prior knowl-
edge of programming. As final projects in the
Bryn Mawr class, students had robots learn to
do wall following using neural networks, creat-
ed weather prediction systems using neural
nets, wrote game playing programs for Con-
nect Four, Othello, and a Checkers variant that
uses chance, and had systems that learned sta-
tic evaluation functions for Konane. All of
these projects used Pyro and/or Python.

At Swarthmore College, the course is intend-

ed for computer science majors who have com-
pleted both CS1 and CS2. As final projects in
the Swarthmore class, the majority of the stu-
dents chose a task in which the robot would be
controlled by a neural network and the weights
of the network would be evolved by a genetic
algorithm. The most ambitious robot learning
project involved a three-way game of tag in
which each robot had a unique color: the red
robot was chasing the blue robot, the blue ro-
bot was chasing the green robot, and the green
robot was chasing the red robot. The neural
network brain for each robot had the same
structure, but the weights were evolved in a
separate species of the genetic algorithm. The
reason for this was to allow each robot to devel-
op unique strategies. Other robot learning pro-
jects from the class included having a robot
gather colored pucks scattered randomly
throughout the environment, having a robot
navigate a PacMan-inspired maze while avoid-
ing a predator robot, and having a robot trying
to capture a puck from a protector robot.

Pyro’s infrastructure allowed the students to
focus on the most interesting aspects of the
project, such as the environment, task, and
network architecture. The abstractions provid-
ed within Pyro enabled the students to easily
integrate various Al modules (neural networks
and genetic algorithms, for example) and de-
velop quite sophisticated robot learning pro-
jects in a short amount of time (typically two to
three weeks). Pyro’s accessible interface and
comprehensive infrastructure encourages ex-
perimentation with Al and robotics algorithms.
This experience may then motivate the stu-
dents to delve more deeply into the algorithms
to better understand the details that may im-
pact system performance.

Pyro in Robotics Courses

In addition to Al courses, Pyro has been used in
Al-based robotics courses at both the under-
graduate and graduate level. Topics covered at
the University of Massachusetts Lowell include
robot architectures, vision, machine learning
(including neural networks and reinforcement
learning), mapping and localization, and mul-
tiagent robotics. The course uses Pyro modules
for weekly labs, then culminates in a three-
week project at the end of the term. Student
projects included the following.

Laser Tag: Students designed hardware to
send and receive infrared signals, then wrote
software to make the game-playing robots lo-
cate and target each other. Robots were pro-
grammed with different strategies to make the
game more interesting.

Robot Slalom: Students used computer vision



Labs:

Web Page:

ce: A New Synthesis (Nilsson, 1998).
Stimulus-response (S-R) agents, learning in S-R agents, evolutionary computation,

model-based agents, state-spaces, search, game playing, logic and knowledge
representation, natural language understanding, augmented transition networks.

1. S-R agents (Braitenberg vehicles) in Pyro (2 exercises).
2. Search: Uninformed searches on 8-puzzle in Python.
3. Wall-following behavior in a robot in Pyro.

4. Centering a robot in a room in Pyro.

5. Game playing: Konane (Hawaiian Checkers) in Python.
6. Final projects: Independently chosen by students.
cs.brynmawr.edu/Courses/cs372/fall2004

Table 1. Example of an Al Course at Bryn Mawr College

Topics:

Labs:

Web Page:

Machine Learning (Mitchell 1997) and excerpts from Al: Structures and Strategies for
Complex Problem Solving (Luger and Stubblefield 1993), Artificial Intelligence: A

Modern Approach (Russell and Norvig 2003), Understanding Intelligence (Pfeifer and
Scheier 1999), and other selected papers on machine learning.

Game playing, machine learning: neural networks, recurrent neural networks,
decision trees; genetic algorithms, evolving networks with GAs, reinforcement
learning, Braitenberg vehicles, behavior-based control, robot learning.

1. State-space search in Python.

2. Game playing: Konane in Python.

3. Neural networks in Pyro.

4. Evolutionary computation in Pyro.

5. Wall-following robot in Pyro and on Pioneer robot.
6. Learning tasks on robots in Pyro.
web.cs.swarthmore.edu/~meeden/cs63/s04/cs63.html

Table 2. Example of an Al Course at Swarthmore College

to find gates in a slalom course that ran down
a hallway and around corners.

Pick Up the Trash: Students used computer vi-
sion to find trash (Styrofoam cups) and recy-
cling (soda cans), then deliver the found items
to the appropriate bins (trash can or recycling
bin). In two weeks, students were able to com-
plete what had been a competition in the 1994
and 1995 AAAI Robot Competition.

As is evident from the use of Pyro in Al and
robotics courses, Pyro enables students at all
levels to do robotics projects that in the past
were feasible only by research teams. This, we
believe, is one of the biggest payoffs of Pyro. It
brings aspects of current research into the cur-
riculum in an accessible, low-cost manner.

Conclusions and
Future Directions

The Pyro project is the latest incarnation of our
attempts to make the teaching of autonomous
mobile robots accessible to students and in-
structors alike. We have developed a variety of

programs, examples, and tutorials for exploring
robotics in a top-down fashion, and we are
continuing to add new curricular modules.
Some of these modules are created by students
in the classes, others by the authors, and some
by faculty at other institutions who have
adopted Pyro. Modules currently under devel-
opment include multiagent communication,
reinforcement learning, logic, planning, topics
in manipulation (such as inverse kinematics for
the AIBO), and localization.

We believe that the current state of the art in
robot programming is analogous to the era of
early digital computers when each manufactur-
er supported different architectures and pro-
gramming languages. Regardless of whether a
computer is connected to an ink-jet printer or
a laser printer, a computer today is capable of
printing on any printer device because device
drivers are integrated into the system. Similar-
ly, we ought to strive for integrated devices on
robots.

Our attempts at discovering useful abstrac-
tions are a first and promising step in this direc-
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tion. We believe that discoveries of
generic robot abstractions will, in the
long run, lead to a much more wide-
spread use of robots in education and
will provide access to robots to an
even wider range of students. Our goal
is to reduce the cost of learning to pro-
gram robots by creating uniform con-
ceptualizations that are independent
of specific robot platforms and incor-
porate them into an already familiar
programming paradigm. Conceptual-
izing uniform robot capabilities pre-
sents the biggest challenge: How can
the same conceptualization apply to
different robots with different capabil-
ities and different programming APIs?

Our approach, which has been suc-
cessful to date, has been shown to
work on a variety of real and simulat-
ed robots. We are striving for the
write-once/run-anywhere idea: robot
programs, once written, can be used to
drive vastly different robots without
making any changes in the code. This
approach leads the students to con-
centrate more on the modeling of ro-
bot brains by allowing them to ignore
the intricacies of specific robot hard-
ware. More importantly, we hope that
this will allow students to gradually
move to more and more sophisticated
sensors and controllers. In our experi-
ence, this more generalized framework
has resulted in a better integration of
robot-based laboratory exercises in the
Al curriculum. It is not only accessible
to beginners, but is also usable as a re-
search environment for our own ro-
bot-based modeling.
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Notes

1. Information about the Pioneer robot and
Aria simulator can be found at www.ac-
tivrobots.com.

2. Information about the AIBO robot is lo-
cated at www.sony.net/products/aibo.
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3. The RoboCup Soccer Server is located at
sserver.sourceforge.net/.

4. Information about Aria can be found at
www.activrobots.com.

5. Information about the Hemisson robot
can be found at www.hemisson.com.

6. Information about the ER1 robot can be
found at www.evolution.com/er1/.
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