
■ From a computer science and artificial intelligence
perspective, robotics often appears as a collection
of disjoint, sometimes antagonistic subfields. The
lack of a coherent and unified presentation of the
field negatively affects teaching, especially to un-
dergraduates. This article presents an alternative
synthesis of the various subfields of AI robotics
and shows how these traditional subfields fit into
the whole. Finally, it presents a curriculum based
on these ideas.

Modern artificial intelligence robotics
education treats the field as a collec-
tion of overlapping subfields. An ex-

amination of the current robotics textbooks
(McKerrow 1991; Arkin 1998; Dudek and
Jenkin 2000; Murphy 2000; Niku 2001; Sieg-
wart and Nourbakhsh 2004; Craig 2005;
Choset et al. 2005) indicates that these sub-
fields are traditional planning-based robotics,
behavior-based robotics, probabilistic robotics,
mobile robotics, and engineering robotics.
Reading these texts gives the impression that
each of these fields is overlapping, yet distinct,
except for engineering robotics, which many
computer science/AI instructors consider to be
an entirely separate field. 

This fragmentation of fields likely derives
from the sometimes fractious relations between
the fields as they competed for primacy. “The
whole idea of plan execution and the run-time
maintenance of something called a ‘plan’ is
misguided” (Brooks 1986). “This development
follows a much broader trend in mobile robot-
ics, where probabilistic techniques are com-
monly the method of choice over more ad hoc
approaches, such as behavior-based tech-
niques” (Thrun 2002). Although such competi-
tion is natural in a research setting, it makes it
difficult to present these multiple fields coher-
ently to an undergraduate. Exacerbating the
situation, many robotics instructors present
topics chronologically according to historical
development. This approach, while interesting
to practitioners, fails to put the areas in their
technical context. 

This article argues for a perspective that uni-
fies all the competing robotics subfields into a
single framework for instruction. By using the
organizing principle that robotic systems are
best understood as layers of abstractions over
input and output channels, it results in a more
natural order of topics and emphasizes their re-
lations rather than differences. I will begin by
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development, or descriptively to make sense of
complicated processes and ease comparison of
apparently conflicting ideas. The classic exam-
ple of the former is the OSI network layer sys-
tem (International Organization for Standard-
ization 1994), which specifies an organization
for computer networking (figure 1, left). On the
other hand, layers of abstraction are used as a
general guideline for the understanding of
complicated systems throughout computer sci-
ence and engineering, such as the organization
of computer hardware, operating systems, or
large pieces of software (figure 1, right). The
claim made here is that the technique of apply-
ing layers of abstraction as a descriptive tool is
useful for understanding robotics systems.

Layers of abstraction are a natural way to
characterize intelligent robotics, in which low-
level perceptions are converted to high-level de-
cisions and actions and then converted back
down to low-level motor movements. Every
system does this by processing multiple sensor
inputs, combining the input into increasingly
higher levels of abstraction until an action de-
cision can be made, and breaking down the de-
cision into increasingly more specific informa-
tion until it can be executed as motor
commands. Intelligent robotics as a field is best
seen as two information channels (input and
output) crossing multiple layers of abstraction
from physical signals to sophisticated symbols
(such as multiple-term logical representations).
All of the major paradigms fit into and can be
interrelated by this paradigm. Figure 2 shows
the framework presented here with two chan-
nels and the layers of abstraction through
which information is processed. The top row is
the input channel, starting with physical sig-
nals on the left, and passing through multiple
abstractions as it moves to the right. The bot-
tom row is the output channel, moving from
high-level symbols on the right to motor signals
on the left. Each input channel can be made up
of multiple pathways along which individual
pieces of information can travel. For instance,
input from multiple sensors would all travel in
the input channel, but until that information is
fused, it would travel along multiple pathways.
All of the common robot architectures can be
seen in this view as variations on how many
layers of abstraction are passed through and at
which layer (or layers) information crosses over
from the input channel to the output channel.

The Layers
Figure 2 describes six distinct layers. Because
this model is descriptive there is considerable
room for adjustment in both the numbers of
layers and where they are divided. These partic-

presenting the layered framework, followed by
an example AI robotics curriculum that empha-
sizes the similarities and encourages a cohesive
big-picture understanding of the field. I will
then compare the curricular themes presented
in other robotics textbooks. Finally I will dis-
cuss the sometimes surprising implications of
this view in how the various robotics subfields
relate to each other.

Layers of Abstraction
The application of layers of abstraction in com-
puter science is a well-known technique used
either prescriptively to coordinate standards
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Figure 1. Two Standard Layered Models of Abstraction. 

On the top (A) is the ISO/OSI network standard, an example of a prescriptive
model describing how a system should be designed. On the bottom (B) is a gen-
eral layered operating system model as a layered architecture (drawn from Tanen-
baum [1992] and Solomon [1998]). It is an example of a layered model describing
how systems are currently designed.



ular layers were identified because they corre-
spond to major robotic architectures in the lit-
erature and have proved useful in teaching.
They are the signal, information, attribute, sim-
ple model, abstract model, and lifetime layers.

The lowest layer is the signal layer. Informa-
tion at this layer takes the form of electrical im-
pulses from sensors and to motors. While all
electronic robots have activity at this layer
(otherwise they would never move), few per-
form any crossover from input to output at this
layer. The classic exceptions to this are the
Braitenberg vehicles (Braitenberg 1984), which
directly connect sensors to motors. Figure 3
shows the information flow in the framework
of a Braitenberg vehicle. 

The next layer up is the information layer,
where analog input and output signals are han-
dled digitally; this layer is the interface
between the world of physics and the world of
information. In the input channel, the electri-
cal signals are converted to bits in memory,
typically with an analog to digital converter. In
the output channel, the information layer per-
forms kinematic analyses to convert positions
in robot geometry into motor positions and
thus motor current outputs. Input to the out-
put channel of this layer is a desired position in
space. The process of inverse kinematics is to
take that position and convert it into a set of
motor positions that would place the robot in
that location. From there, these motor posi-
tions are converted directly to electrical signals
to the motors themselves.

It is at this layer where much of what might
be called engineering robotics takes place (fig-
ure 3). Sensor inputs are used to generate the
desired robot positions that are then converted

to motor movements, such as a camera direct-
ing an articulated arm to grasp an object.1

In the attribute layer the input channel gen-
eralizes the information input by recognizing
simple environmental states such as landmark-
detected or goal-detected. These differ from the
treatment of the raw data in the layer below in
that there is some processing required, often
integrating sensor information over short peri-
ods of time from multiple sensors. In the out-
put channel collections of possible actions (by
action I mean “desired position in the environ-
ment”) are weighed, and an action is selected,
resulting in a suitable specification to pass
down to the information layer. The attribute
layer is where most of the interesting computa-
tion takes place in behavior-based architectures
(figure 3). Collections of independent modules
fuse input to recognize simple environment
properties and make action recommendations,
which are then selected from to result in a new
desired robot position.

In the simple model layer, the input channel
begins to build concrete and explicit models of
the external world. For mobile robots, these
take the form of maps of the navigable space,
while for manipulators, these models take the
form of a configuration space. For example,
probabilistic occupancy grid maps (Moravec
and Elfes 1985; Moravec 1988) are low-level,
simple abstractions, as they make no serious at-
tempt to cluster the occupied cells into objects.
The construction of the simple models is per-
formed by collecting the detected input in the
attribute layer into obstacles and free space.
These can be further processed into more ab-
stract map models, such as generalized Voronoi
diagrams (Aurenhammer 1991, Choset and
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Figure 2. The Layers of Abstraction Framework.

Input flows from left to right in the figure; output flows from right to left. Higher levels of abstraction are to the right.



just navigation. Steps in the plan, such as “go
to the door,” can be converted into lower level
actions by the path-planning systems of the
lower layer. Traditional planning-based systems
also perform most of their computation at the
model layer (figure 3).

In all of the paradigms presented up to this
point, input information is abstracted up to
some layer where it crosses over to the output
channel and converted to motor commands.
There is no reason that information cannot
cross from input channel to output channel at
multiple layers. This is precisely what happens
in the planning/behavior hybrid systems (Pell
et al. 1998, for example). In these systems,
longer-term information is modeled and
planned over, which is used to direct the reac-
tive decisions being made in the attribute layer
(figure 4).

In the top lifetime layer, decisions are made
about the longer-term behavior of the robot. It
is here that other agents are modeled in order
to coordinate collective behavior, and the ro-
bots are able to consider what tasks they will
pursue over their lifetimes. Actual robot sys-
tems that operate at this level are rare, especial-
ly those that perform true goal selection.
Activity in multiple robot coordination has re-
sulted in some modeling of other agents, but
most multirobot systems encode assumptions
about other robot behavior rather than per-
form true modeling (Mataric 1992, 1997).

There are two observations to be made in ex-
amining the layers from left to right. First,
both the amount of state required and the
time window over which that state integrates

Burdick 2000). Note that occupancy grids and
Voronoi diagrams both apply to mobile robots
navigating through real space and to manipu-
lator arms navigating through configuration
space. With the transition to the output chan-
nel at the simple model layer comes path plan-
ning, in which a path is found through free
space to get the robot from one position to an-
other (I refer to this as a path-plan-model archi-
tecture). Again, the techniques are the same in
real space and configuration space. Once a path
is determined, the commands can be passed
down to the action selection mechanism in the
attribute layer. The simple model layer ac-
counts for the rest of engineering robotics and
most of mobile robotics (figure 3).

From the map models, path planning typi-
cally occurs, but sometimes, instead of path
planning, the robot behaves reactively toward
that model, skipping the planning part alto-
gether (Yamauchi, Schultz, and Adams 1998). I
call this the reactive-model architecture.

The abstract model layer takes the representa-
tion of space from the simple model layer, and
generates more sophisticated models, such as
propositions of relations about the world state.
These are usually described with a logic, such as
predicate logic, or an AI planning system (Mc-
Dermott 1992). These logic sentences are built
out of the information in the lower layers by
grouping together data from the maps and oth-
er detected information from the layers below.
In the output channel, a full-fledged task-plan-
ning system can use these representations to
generate good old-fashioned AI-style plans for
achieving goals that may involve more than
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sensor input increases. For instance, when
comparing the input processing at the at-
tribute and the model layers, processing at the
attribute layer is both less intense than at the
model layer and it requires fewer input sam-
ples in order to generate output. The model
layer needs to integrate many input samples
before it can build a model suitable for use in
decision making. The second observation is,
moving from left to right, the number of path-
ways used in the input channel decreases as in-
formation is consolidated into the abstrac-
tions. For example, input from multiple
sensors is typically combined in order to recog-
nize properties and smooth out errors at the at-
tribute layer. These detections are further com-
bined into maps at the simple model layer.
This process reverses as information travels
from right to left down the output channel,
where an action is broken into the multiple
motor commands necessary for completion.

The Curriculum
The two-channel layered model described
above suggests a particular curriculum based on
alternately presenting the workings of each lay-
er, followed by one or two example architec-
tures that focus on that layer. This enables the
students to implement an example of that ar-
chitecture on a robot suited to that layer, thus
experiencing the power of architectures at that
layer while simultaneously seeing the connec-
tions to the layers below. I have developed this
curriculum in a four hour per week robotics
course taken primarily by 12 to 16 senior com-
puter science majors who have not necessarily
taken artificial intelligence. In this course I try

to present an AI robotics perspective while em-
phasizing how each robot architecture relates to
the others in the context of the layered model.

For the signal layer, I present the basic oper-
ation of the sensors and electric motors found
on most robots. As an example robot architec-
ture, I present Braitenberg’s architecture as de-
scribed in Vehicles, chapters one through five
(Braitenberg 1984). The students can experi-
ment directly with these ideas using simple
commercial robots such as the Byo-bot2 or
some of the BEAM robotics kits (Hrynkiw and
Tilden 2002). These robots provide some of the
standard functions of the Braitenberg vehicles
but are not programmed by the student direct-
ly connecting sensors and motors with wires,
and they are limited in the number of ways
they can be programmed. To remedy this, I de-
signed a similar low-cost robot that the stu-
dents can program by connecting wires. The
sensors and motors have pluggable connectors
into which the students can insert wires to at-
tach the sensors to the motors so that they re-
semble the diagrams in the Vehicles book. My
initial design was developed out of a laboratory
assignment in a robot engineering class (Bish-
op and Wick 2005) (figures 5 and 6), but de-
signs in development now also include poten-
tiometer knobs to adjust connection strength.

For the information layer, I present the
mathematical models of engineering robotics,
with emphasis on kinematics in the Denavit-
Hartenberg system (Denavit and Hartenberg
1955) for rigid arms and extend it to the inte-
gral-based system for mobile robots used in
Dudek and Jenkin (Dudek and Jenkin 2000). In
keeping with emphasis on similarities and co-
hesion, I derive the results for mobile robots us-
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tions but not requiring more sophisticated re-
flection and planning to solve the task. De-
pending on the nature of the task, I use Rug
Warrior or Khepera (K-Team S.A.)5 robots.

At the simple model layer, I present the ba-
sics of occupancy grid maps and how they can
be used as a representation of the configuration
space of either a manipulator or a mobile
robot.6 This is followed by topographical maps,
and how they could be built out of occupancy
grids by identifying objects, and constructing
Voronoi diagrams or other roadmaps. As we
shift over to the output channel, I present first
how reactive modules in the attribute layer can
use maps such as occupancy grids, by treating
the input from the map as if it came directly
from the environment (a technique some au-
thors refer to as “virtual sensors” [Asada 1990]).
Then I show how paths can be found by search-
ing either the gridlike spaces of occupancy grid
maps or the graphs of the Voronoi diagrams.
Once paths are calculated, they can be passed
down to the attribute layer, where the first step
in the path is determined (and weighed against
other possible courses of action).

In the abstract model layer, I discuss logical

ing both systems to show their equivalence.
The students perform both forward and inverse
kinematics on both a rigid arm and a mobile
robot. For the rigid arm I use the Robix Rascal
(Advanced Design Inc.),3 a rugged kit suitable
when high accuracy is not required (figure 7).
For the mobile robot I use the aging but still vi-
able Rug Warrior (A. K. Peters, Ltd.)4 (figure 8).

In presenting the attribute layer, I discuss ba-
sic techniques for identifying properties in in-
put streams, sensor fusion, and action selection
mechanisms. For example, I discuss the combi-
nation of multiple sensors such as infrared and
vision to determine the distance and bearing to
obstacles. I also discuss the combination of
multiple sensor readings over time as a separate
form of sensor fusion. From this I present be-
havior-based architectures, how behaviors are
designed and actions are selected, emphasizing
how this leads to robust behavior in chaotic en-
vironments. The corresponding student assign-
ment is to implement a behavior-based system
for a chaotic multirobot task, such as playing a
game of capture the flag. These sorts of tasks
emphasize the benefits of more reactive sys-
tems in the face of real-time unexpected situa-
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Figure 5. Photograph of a Student-Designed Braitenberg Robot Prototype.



representations of the world and how they can
be gathered both from properties in the identi-
fication layer and from the maps built in the
simple model layer. For the output channel, I
discuss task planning and how that can use log-
ical descriptions to solve hard problems in the
world. Because many of the students have not
yet taken AI, I present the AI problems solely as
finding paths in abstract graphs of plan space
and leave the algorithmic details to the AI
course. In my model, steps in the task plan are
actions that require path planning to solve,
such as “go-to-red-door.” Each step in the plan
is passed down to the simple model layer,
where a path for the action is calculated. The
action for manipulator plans, such as “grasp-
hammer,” are passed down to the path-plan-
ning system in the same manner. The student’s
final project assignment is to use a Khepera ro-
bot equipped with a gripper to move blocks
(figure 9).

The balance of the class discussions focus on
the lifetime layer, where the highest level oper-
ations take place. It is at this layer that much of
the cutting edge research is performed and thus
it is difficult to give a clear picture of where

these issues are headed. We typically concen-
trate on multiagent systems, the coordination
of robots to perform a task, and how fully au-
tonomous robots might select which goals they
want to pursue and which they do not. Al-
though these issues apply throughout the lay-
ers, this is a good place to discuss the ethics of
fully autonomous robotics, in terms of worker
displacement, liability, and of course, indepen-
dence (the “Terminator” issue). I also point out
that the logical conclusion of the layers and the
hybrids is a model where information crosses
over all the layers (figure 10). While there may
not be any examples of such an artificial system
today, it does echo some current psychological
models of animals and humans (Gallistel 1980,
1990). Reflex reaction corresponds to the signal
layer, while brain-stem and cerebellum behav-
ior correspond to the information and attribute
layers. Although the physiological mechanisms
are less well understood at higher layers, psy-
chological evidence indicates that there is
pathway crossover at all layers in human be-
havior.

At the conclusion of the class I can reempha-
size that all of the styles of robotics share the
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Figure 6. Photograph of an Alternative Braitenberg Robot Prototype.



er layers are essentially presented twice. By us-
ing a bottom-up approach in the layered model
I advocate here, this duplication is avoided be-
cause the explanation of the behavior-based
layers is the foundation for the task-planning
layers.

Even given the efficiency of this approach,
courses move at different speeds from semester
to semester, depending on both the students
and the instructor. Fortunately, the approach
makes it easy to leave out a module without
further repercussions. Any particular module
can be treated as a black box, and all that needs
to be presented is the specification and inter-
face, what it does rather than how it works. In
this manner, any particular section can be jet-
tisoned when it comes time.

Finally, the projects presented here seem to
add up to a great deal of programming, imple-
menting two inverse kinematics systems, a be-
havior-based system, and a task-planning sys-

same general architecture and vary only on
how many levels of abstraction are applied and
at what levels information crosses from the in-
put to the output channel. I also reemphasize
that, just as with good software engineering
practices, high levels of abstraction reuse im-
plementations of lower levels.

Getting It All to Fit
A curriculum as presented here has more mate-
rial than might be covered in other robotics
courses. I feel that to give an accurate assess-
ment of the whole of AI robotics, it is impor-
tant to look at the whole of robotics and how
these pieces fit together. Fortunately, due to the
nature of the formalism, the material need not
be overwhelming. The modular layered ap-
proach means that there is less repetition of
similar material in different architectures. For
instance, when presenting behavior-based and
task-planning architectures separately, the low-
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Figure 7. Photograph of a Robix Rascal Arm.



tem. My approach to alleviating this is to pro-
vide as many of the program modules as possi-
ble, especially from the lower layers. For exam-
ple, in the planning project, the students are
given all the tools at the lower layers to perform
the sensory processing and take the actions pro-
posed by their planning system. The develop-
ment of this library of tools was done over sever-
al years by the students themselves. As the class
was being built, assignments were made with the
intent that they would contribute to the suite of
libraries for later assignments. This process is not
complete, and for each assignment, one group is
given a different assignment from the others for
addition to the library.

Other Approaches
This section attempts to compare my frame-
work and themes for teaching AI robotics to
undergraduates to those themes and frame-

works presented in current textbooks. When
comparing the approach described here to that
described (or at least adhered to) in the avail-
able textbooks, it is important to note the dif-
ferences in purpose. The motivation of this ap-
proach is to present a principled perspective of
the entirety of robotics, suitable for an
undergraduate survey course with an AI bent.
Most of the existing books explicitly narrow
their focus to a particular area in robotics, as
would be appropriate for a graduate course.
Even so, most of these texts do have perspec-
tives and themes that can be discussed.

Artificial Intelligence: 
A Modern Approach
Russell and Norvig’s influential Artificial Intel-
ligence: A Modern Approach (Russell and Norvig
2003) is of course not actually a robotics text-
book but the second edition does have a chap-
ter on robotics written mostly by Sebastian
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Figure 8. Photograph of a Rug Warrior Performing Dead Reckoning.



abilistic approaches. The section on software
architectures briefly discusses layered architec-
tures as a combination of deliberative and re-
active processes and mentions that most mod-
ern software systems contain a variant of the
architecture, hinting at the formalism we have
presented here.

Interestingly, what a lay person might con-
sider intelligent behavior in a robot is never ac-
tually mentioned. As far as specific robot capa-
bilities are concerned, the chapter ends after
path planning. Of course, high-level issues
such as task planning and natural language are
covered at great length in others areas of the
book, but all these techniques have special con-
cerns when applied to robots and are missing
from this chapter. This disconnect is present in
most of the intelligent robotics books and ap-
pears to reflect the AI robotics community’s
current research emphasis on effective spatial
reasoning over higher-level task composition.

Thrun. The overall theme of the Russell-
Norvig text is that of agents sensing and act-
ing in an environment. That theme is essen-
tially redundant when it comes to robotics, as
all robots are agents by definition and applica-
tion of the theme is not helpful in differenti-
ating between the various architectures. If
there could be said to be a secondary theme, it
could be that “[t]he literature on robotics re-
search can be divided roughly into two parts:
mobile robots and stationary manipulators”
(p. 940). Although accurate, the ontological
position that it takes (there are manipulators,
mobile robots, and hybrids of the two) ap-
pears to emphasize the differences rather than
the similarities between these two types of ro-
bots. Within the chapter, the sequence of the
sections is hardware, perception, motion plan-
ning, motion planning under uncertainty,
moving, software architectures, and applica-
tions. There is a particular emphasis on prob-
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Figure 9. A Khepera Robot Maneuvering to Lift a Block.



Introduction to AI Robotics
Introduction to AI Robotics by Robin Murphy
(Murphy 2000) is, by topic area, the most ap-
propriate text for an intelligent robotics course.
The book itself is organized into two (overlap-
ping) minibooks, the first on software architec-
tures and the second on navigation. Manipula-
tors are not discussed to any depth. Murphy
comes from the behavior-based robotics tradi-
tion, and follows the party line from that per-
spective. “Shakey-style” robotics are presented
and then criticized, leaving behavior-based ro-
botics as the only sane solution (or perhaps if
the problem is especially complex, a hybrid of
the two is what is called for). Notably missing
is a discussion of where high-level representa-
tions might come from. How does a robot take
a mass of noisy sensor data, integrate it over
space and time, and generalize to logical style
descriptions such as those in a planning lan-
guage. This would go a long way toward truly
reconciling the approaches. Much like Russell
and Norvig’s mobile versus manipulator para-
digm, planning versus behaviors emphasizes,
to my mind, too many of the differences, and
too few of the similarities. Further, it doesn’t
leave much room for other sorts of robotics
(such as engineering) that don’t fit neatly into
the dichotomy. The second minibook on navi-
gation is almost entirely stand-alone, making
little direct reference back to the software archi-
tectures. Aside from the lost opportunity to talk
deeply about configuration space, the split has
the effect of leaving the student perplexed
about where the navigation portion fits into
the various architectures explained in book
one.

Mobile Robot Texts
In this section, texts marked with a dagger (†)
are ones that I have not used as texts in my ro-

botics class. I have examined the text, and in
most cases incorporated some material into the
course.

Siegwart and Nourbakhsh’s Introduction to
Autonomous Mobile Robots† (Siegwart and Nour-
bakhsh 2004) and Dudek and Jenkin’s Compu-
tational Principles of Mobile Robotics (Dudek and
Jenkin 2000) are both solely about mobile ro-
bots, and, as such, buy in to the Russell-Norvig
partition. By the authors’ admissions, both
books focus on the problem of getting a robot
to move through space in support of some oth-
er task. This slice of the larger robot problem
calls for a less encompassing framework than
presented in this paper, and so makes direct
comparison difficult. Dudek and Jenkin, how-
ever, do set out a broad-ranging theme that
“[w]hat sets mobile robotics apart from other
research areas such as conventional manipula-
tor robotics, artificial intelligence, and comput-
er vision is the emphasis on problems related to
the understanding of large-scale space” (p. 1).
This position appears to be the antithesis to the
view presented here, though Dudek and Jenkin
may maintain that they are highlighting the
differences in order to differentiate their nar-
row topic from the rest of robotics. 

Siegwart and Nourbakhsh make fewer broad
thematic claims but appear to be in fairly
strong agreement with Dudek and Jenkin on
the scope, breadth, depth, and even order of
topics in a mobile robotics textbook. They do
place more of an emphasis on the layered na-
ture of robotics, even going so far as to present
a diagram (p. 10) nearly identical to figure 11.
They do however, restrict information flow to
just one particular kind of architecture.

Because of the emphasis in these books on
the mobile over the manipulator nature of ro-
bots, their robots rarely do anything besides
navigate, forgoing traditional AI-style tasks
(when they say “planning,” they mean almost
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on robot motion. From this perspective, all ro-
bot movement problems are mapped to config-
uration space, where path planning can be per-
formed. In mobile robots, configuration space
is close (if not identical) to real space, whereas
in fixed-base manipulators, configuration space
is the set of positions (configurations) in which
the manipulator can reside. A collision-free
path in a mobile robot’s configuration space
takes the mobile robot from one location to an-
other, whereas a collision-free path in a manip-
ulator’s configuration space takes the robot
from one position to another. Either way, the
main problem for robot motion is finding
paths through the appropriate configuration
space. In this view, outside of differences in
hardware and the associated kinematic differ-
ences, the primary difference between manipu-
lator robots and mobile robots is the latter’s ad-
ditional problems of localization and mapping.
Thus it is not that surprising that mobile robot
texts and robot motion texts might share many
properties. 

Jean-Claude Latombe’s classic Robot Motion
Planning† (Latombe 1991) is still a definitive
reference when it comes to moving either a
mobile robot or a manipulator. The material is
dense, light on motivation, heavy on the ana-
lytic geometry, thus is unlikely to be appropri-
ate as an undergraduate text. The format is an
introduction of configuration space and how it
is constructed followed by an in-depth survey
of how paths can be found in such spaces. The
later chapters look at complications on the
problem, such as multiple moving obstacles.
The book shows its age in the chapter on “un-
certainty in action,” which approaches the
problem as something to be engineered around
as opposed to embraced with probabilistic
techniques. As with the mobile robot textbooks
above, “planning” means “path planning.”
Unlike the mobile robot texts, it considers the
problem almost entirely in an abstract mathe-
matical space, only occasionally referring to
idealized robots and not at all to real-world
platforms.

The recent Principles of Robot Motion† (Choset
et al. 2005), team written by seven authors,
could easily be viewed as an update of
Latombe’s text. Like Robot Motion Planning, it
focuses on the idea of configuration space as a
representation for mobile robots and articulat-
ed arms alike. It presents many of the same top-
ics as Latombe, such as potential fields,
roadmaps, and cell decompositions. Of course,
each of these areas has been updated with the
new results from the intervening fifteen years.
There is also new material based on some more
recently developed approaches, especially with

exclusively “path planning”). Much like Russell
and Norvig, they address intelligent robotics
only in the sense that navigation can be con-
sidered a task requiring intelligence. Without
coverage elsewhere of higher-level topics such
as task planning, the mobile robots texts im-
plicitly endorse the idea that traditional AI
plays no role in current mobile robotics.

As an aside, Dudek and Jenkin discuss con-
figuration space with respect to mobile robot
pose without recourse to the manipulator mod-
el. I wish they wouldn’t; this has caused confu-
sion with students who end up believing that
configuration space is merely a direct represen-
tation of real space, degrading the term and
causing confusion among not just students,
but also some other textbook authors. Siegwart
and Nourbakhsh get this right.

Robot Motion
A different view on some of the same problems
faced in mobile robotics is offered by the texts

Articles

34 AI MAGAZINE

Path
Execution

Real World
Environment

Localization
Map Building

Cognition
Path Planning

Mission
Commands

Knowledge,
Data Base

Environment Model
Local Map

Position
Global Map

Information
Extraction and
Interpretation

Sensing Acting

P
er

ce
p

ti
o

n

M
o

ti
o

n
 C

o
n

tr
o

l

Raw Data

Path

Actuator Commands

Figure 11. Reference Control Scheme 

(Reproduced with permission from Siegwart and 
Nourbakhsh [2004]; courtesy, The MIT Press.)



respect to probability. Most of this material,
such as sampling approaches to roadmaps for
path planning, fits smoothly into the text. On
the other hand, some of the new material, such
as approaches to simultaneous localization and
mapping (SLAM), is not directly about motion
at all but rather about the problems of sensa-
tion specific to mobile robots.

Due to the mathematical difficulty and lim-
ited scope of both these texts, neither is a good
choice for the course under discussion here,
but the unifying philosophy is aligned with the
spirit of my approach, and the material they
contain is an important piece of the larger pic-
ture.

Introduction to Robotics
Two books with similar names, Introduction to
Robotics: Mechanics and Control† (Craig 2005)
and Introduction to Robotics: Analysis, Systems,
Applications† (Niku 2001) present the standard
view of engineering robotics. In fact, the first
few chapters differ only in explanation style,
covering the same material in pretty much the
same order. Both focus almost exclusively on
manipulator arms, covering kinematics, veloc-
ities, dynamics, manipulator design, and con-
trol. Saeed Niku presents fuzzy logic control
while John Craig focuses on more traditional
linear and nonlinear differential equation-
based control. Neither author pays any atten-
tion to the higher-level issues that would char-
acterize an AI style course, but the books are
good references for instructors who wish to in-
clude coverage of these topics.

Discussion
The idea of abstraction in computing is not
new, nor is the bottom-up approach to teach-
ing. However, by examining the texts currently
available in robotics, it appears that undergrad-
uate robotics is rarely taught in that manner.
Textbooks that focus on one robotics subfield
usually ignore all of the other subfields. Even
books that have broad coverage often fail to re-
late the subfields to each other. For each major
subfield in robotics, examining it from the per-
spective of the layers of abstraction framework
provides additional insight.

At the signal layer, Braitenberg architectures
are often presented as an interesting but unre-
lated thought experiment in robotics. Instead,
they fit naturally into the framework and make
an excellent place to introduce robots.

Behavior-based robots have been traditional-
ly presented as an antidote to and a radical de-
parture from the traditional planning systems.
According to this layered framework they are

neither unrelated nor antithetical to planning
systems; they are a difference of opinion on
how much abstraction is necessary to perform
various tasks. Furthermore, the framework
highlights that hybrids of behavior-based and
planning architectures are a natural combina-
tion of crossing information from the input to
the output channel at multiple layers, thus tak-
ing advantage of the time differences at the
various layers.

Mobile robotics is commonly presented as its
own subfield, with its own kinematics and own
high-level issues, primarily navigation. Some
authors explicitly present them as orthogonal
to manipulators, as if mobility and manipula-
tion is thought of like oil and water: they can
be mixed with vigorous shaking, but on the lo-
cal level, they are distinct. By examining mo-
bile robotics in terms of the layer framework
one can see that the system organizational is-
sues for mobile robotics are identical to those
of other robotics systems. They can been
viewed as requiring slight modifications of de-
tails, such as using a variant on the kinematic
formulations, but otherwise are the same as sta-
tionary articulated arms. In fact, two of the
more elegant and interesting results come from
this fact: the equivalence of the integral kine-
matic method for mobile robots with the De-
navit and Hartenberg methods, and the equiv-
alence of path planning in manipulator
configuration space with path planning in mo-
bile robot physical space.

“Probabilistic robotics” is an imprecise
phrase, at its root meaning that there are some
probabilities in the system somewhere. In prac-
tice, it typically is used to mean probabilities
exist in either sensation in the simple model
layer for localization and mapping or to ac-
count for uncertain movements in the path-
planning problem through the use of partially
observable Markov decision processes (Thrun
2000). If architectures are defined by the num-
ber of layers through which information is
passed and where information crosses chan-
nels, then probabilistic robotics are not a par-
ticular architecture at all. The use of probability
is a specific approach to solving the problem of
a particular layer and channel. For instance,
Bayesian classifiers can be used in the detection
module for behavior-based systems. Further, a
probabilistic robot might use any combination
of probabilistic modules with nonprobabilistic
mechanisms in other areas, such as probabilis-
tic localization with a deterministic path plan-
ner. From the perspective of the layers of ab-
straction, the degree to which probabilities are
involved in a system is orthogonal to the archi-
tecture of the system.
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proceed in both channels; for instance, there
can be little or no autonomy in the input chan-
nel, with hand-build maps provided by a con-
troller, yet the robot is fully autonomous in the
output channel. Similarly, the autonomy could
all be in the input channel, where the result of
the processing is presented to the controller
who then makes decisions and prescribes the
robot’s actions directly. By describing the level
of autonomy in this manner, by showing
where autonomy is added, it provides a more
specific concept than just that of a simple spec-
trum. 

Finally, it is interesting to note that because
this frame of reference encompasses the stan-
dard robotics subfields it can act as an evalua-
tion tool of the claims of novel architectures.
By examining new proposals from the perspec-
tive of this framework, a researcher can deter-
mine relations to existing systems and evaluate
uniqueness claims. For example, the layers of
abstraction model points out that there appears
to be a disconnect between artificial intelli-
gence and mobile robotics as it is currently
practiced by the AI community. AI texts place
the field of AI in the upper layers of this taxon-
omy, abstract models, task planning, with
some path planning. In contrast, most mobile
robotics efforts spend their time building sim-
ple models; there is almost no consideration of
what the robot does when it gets to its destina-
tion. This is not a criticism—after all a robot
has to be at the job site before it can perform a
job—but rather to point where the connection
can be made.

Conclusion
This article presents and argues in favor of a
perspective for teaching AI robotics that looks
at the problem as a two-channel set of layers of
abstraction. This perspective is useful for teach-
ing an undergraduate course that focuses on
the broad spectrum of subfields in robotics. It
covers all of the major issues while providing a
unifying context for what sometimes seem dis-
parate approaches to robotic problems. In addi-
tion, the technical focus of these layers of ab-
straction adds perspective to some of the
historical developments that have led AI and
robotics to the stature that they enjoy today.
When AI robotics is only a small portion of a
much larger AI course, this framework effec-
tively and efficiently connects the topics to the
much broader fields on which it depends.
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Advocates of probabilistic robotics maintain
that it can bestow the fast reaction time and ro-
bustness to noise benefits of behavior-based ro-
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some of the robustness of the path planner is
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layer. When path planning is performed in
these systems, it is not the same sort of prob-
lem being solved as would be by a task-plan-
ning robot. Similarly, a system that uses proba-
bilities in the input channel for map making
but uses modules that are reactive towards the
maps built (what I’ve called reactive-model ar-
chitectures) would owe some of its robustness
to behavior-based architectures. Yet, the proba-
bilistic path-planning system that has no reac-
tive component is just as vulnerable to surprise
occurrences as other planning systems.

Because probability is not an architecture,
but a technique to be used within many archi-
tectures, comparison to individual architec-
tures is not immediately elucidating. On the
other hand, the success of probability does sug-
gest a general principle. While more abstrac-
tion reduces robustness through the discard of
information, the introduction of probabilistic
techniques at a particular layer can ameliorate
the brittleness of abstraction while maintain-
ing its advantages. It will be interesting to see
whether researchers will succeed in applying
probabilistic techniques to the higher layers of
the abstract model and whether this principle
will continue to hold true.

It is common to find discussion of AI plan-
ning robotics without any explanation of
where the logic representation comes from or
of how actions output by the planner end up as
motor movements. It is similarly common to
find discussions of the use of topographical
maps without discussion of their origin. In the
layered model, these connections are empha-
sized at each stage, providing the student with
the context to understand these topics.

Many authors like to describe the level of au-
tonomy in a robot system as a spectrum, from
fully autonomous to teleoperated. While strict-
ly speaking the level of autonomy is orthogo-
nal to the architecture, it is interesting to note
that as autonomy increases, it is nearly always
introduced at the lowest layers of the system
first. As systems become progressively more au-
tonomous, the designers add autonomy layer
by layer from the lower layers on the left to the
higher layers on the right. But this need not
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Notes
1. This characterization is not exactly accu-
rate, as what many researchers might con-
sider “engineering robotics” extends well
into the model layer (Latombe 1991; McK-
errow 1991). There are, however, perspec-
tives that do primarily limit engineering ro-
botics to these lower layers (Craig 2005).
This will be discussed in greater depth later
on.

2. Byo-bot, www. kipr.org/robots/byobot.
html.

3. Robix Rascal, www.robix.com/.

4. Rug Warrior Pro., www.akpeters.com/
book.asp?bID=39. 

5. Khepera II Robot, www.kteam.com/ro-
bots/khepera. 

6. Technically, the configuration space of a
mobile robot would include both its pose
(x, y position plus orientation) and the an-
gular position of the wheels or legs. Since
most often, only the pose is interesting, the
configuration space is defined ignoring the
configuration of the locomotors. This re-
sults in the configuration space being a
nearly direct representation of the physical
space of the surrounding area.
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AAAI invites proposals for the 2007 Spring Symposium Series, to be
held March 26-28, 2007 at Stanford University, California.

The Spring Symposium Series is an annual set of meetings run in
parallel at a common site. It is designed to bring colleagues together in
an intimate forum while at the same time providing a significant gath-
ering point for the AI community. The two and one half day format of
the series allows participants to devote considerably more time to feed-
back and discussion than typical one-day workshops. It is an ideal
venue for bringing together new communities in emerging fields.

The symposia are intended to encourage presentation of specula-
tive work and work in progress, as well as completed work. Ample
time should be scheduled for discussion. Novel programming, in-
cluding the use of target problems, open-format panels, working
groups, or breakout sessions, is encouraged. Working notes will be
prepared, and distributed to the participants. At the discretion of the
individual symposium chairs, these working notes may also be made
available as AAAI technical reports following the meeting. Most par-
ticipants of the symposia will be selected on the basis of statements
of interest or abstracts submitted to the symposia chairs; some open
registration will be allowed. All symposia are limited in size, and par-
ticipants will be expected to attend a single symposium.

Proposals for symposia should be between two and five pages in
length, and should contain:

■ A title for the symposium.
■ A description of the symposium, identifying specific areas of inter-

est, and general symposium format.
■ The names and addresses (physical and electronic) of the organiz-

ing committee: preferably three or more people at different sites,
all of whom have agreed to serve on the committee.

■ A list of potential participants that have been contacted and that
have expressed interest in participating. A common way of gather-
ing potential participants is to send email messages to email lists
related to the topic(s) of the symposium. Note that potential par-
ticipants need not commit to participating, only state that they are
interested.

Ideally, the entire organizing committee should collaborate in pro-
ducing the proposal. If possible, a draft proposal should be sent out
to a few of the potential participants and their comments solicited.

Approximately eight symposia on a broad range of topics within
and around AI will be selected for the 2007 Spring Symposium Series.
All proposals will be reviewed by the AAAI Symposium Committee:
Alan Schultz (Naval Research Lab), chair; Marjorie Skubic (University
of Missouri-Columbia), cochair; and Karen Myers, associate chair.
The criteria for acceptance of proposals include:

Perceived interest to the AAAI community. Although AAAI encourages
symposia that cross disciplinary boundaries, a symposium must be of
interest to some subcommunity of the AAAI membership. Symposia
that are of interest to a broad range of AAAI members are also pre-
ferred.

Appropriate number of potential participants. Although the series sup-
ports a range of symposium sizes, the target size is around 40–60 par-
ticipants.

Lack of a long-term ongoing series of activities on the topic. The Spring
Symposium Series is intended to nurture emerging communities and
topics, so topics that already have yearly conferences or workshops
are inappropriate.

An appropriate organizing committee. The organizing committee
should have (1) good technical knowledge of the topic, (2) good or-
ganizational skills, and (3) connections to the various communities
from which they intend to draw participants. Committees for cross-
disciplinary symposia must adequately represent all the disciplines to
be covered by the symposium.

Accepted proposals will be distributed as widely as possible over
the subfields of AI, and balanced between theoretical and applied
topics. Symposia bridging theory and practice and those combining
AI and related fields are particularly solicited.

Symposium proposals should be submitted as soon as possible,
but no later than April 21, 2006. Proposals that are submitted signif-
icantly before this deadline can be in draft form. Comments on how
to improve and complete the proposal will be returned to the submit-
ter in time for revisions to be made before the deadline. Notifications
of acceptance or rejection will be sent to submitters around May 5,
2006. The submitters of accepted proposals will become the chair of
the symposium, unless alternative arrangements are made. The sym-
posium organizing committees will be responsible for:

■ Producing, in conjunction with the general chair, a call for partic-
ipation and registration brochure for the symposium, which will
be distributed to the AAAI membership

■ Additional publicity of the symposium, especially to potential au-
diences from outside the AAAI community

■ Reviewing requests to participate in the symposium and determin-
ing symposium participants

■ Preparing working notes for the symposium
■ Scheduling the activities of the symposium
■ Preparing a short review of the symposium, to be printed in AI

Magazine

AAAI will provide logistical support, will take care of all local
arrangements, and will arrange for reproducing and distributing the
working notes. Please submit your symposium proposals by electronic
mail (no postal submissions), and inquiries concerning symposia, to:

Alan C. Schultz
Director, Navy Center for Applied Research in 
Artificial Intelligence
Naval Research Laboratory, Washington DC
(202) 767-2684
(202) 767-3172 (fax)
schultz@aic.nrl.navy.mil
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