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M This article describes requirements for synthetic
adversaries for urban combat training and a proto-
type application, MOUTBots. MOUTBots use a
commercial computer game to define, implement,
and test basic behavior representation require-
ments and the Soar architecture as the engine for
knowledge representation and execution. The arti-
cle describes how these components aided the de-
velopment of the prototype and presents an initial
evaluation against competence, taskability, fidelity,
variability, transparency, and efficiency require-
ments.

tfensive urban combat is one of the
Omost difficult tasks soldiers perform.

Urban combat is characterized by build-
ing-to-building, room-to-room fighting. Fre-
quent training is an essential element in reduc-
ing casualties. However, training in urban
environments is costly and restricted to physi-
cal mockups of buildings and small towns. The
Office of Naval Research’s Virtual Training and
Environments (VIRTE) program is developing
immersive virtual trainers for military opera-
tions on urbanized terrain (MOUT). In this
trainer, four-person fire teams of U.S. Marines
are situated in a virtual urban environment and
tasked to clear a building that possibly contains
simulated enemy soldiers. Virtual opponents
are required to populate the environment and
challenge the trainees.

This article describes the general require-
ments for virtual MOUT opponents and our de-
velopment of synthetic adversaries to meet
these requirements. The agents use the Soar

cognitive architecture for reasoning and execu-
tion, and they interface to Unreal Tournament,
a commercial game engine that provided an
initial development environment. In order to
simplify the behaviors for the prototype, we fo-
cused initially on MOUT behaviors within a
building.

Requirements for
Synthetic Adversaries

Six high-level requirements drive the imple-
mentation of intelligent synthetic adversaries
for training: (1) competence, (2) taskability, (3)
observational fidelity, (4) behavior variability,
(5) transparency, and (6) minimal computa-
tional footprint.

Competence: The adversaries must perform
the tactics and missions humans perform in
this domain. For this application, the adver-
saries’ goal is to defend a small multistoried
building in teams of two to five using assault
weapons and grenades. The agents must move
through the environment, identify tactically
relevant features (such as escape routes), and
communicate and coordinate with other
agents.

Taskability: The agents must be able to be as-
signed new missions for different training sce-
narios, and they must change their objectives
during an exercise. Behavior is not scripted or
specific to a particular mission, terrain, or oper-
ational setting, providing flexibility for opera-
tional use.

Observational fidelity: The agents do not have
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to model accurately all aspects of human be-
havior. Instead, they must model those aspects
of human behavior that are observable and rel-
evant to training. It also may not be necessary
to create realistic models of, for example, startle
responses, as long as the observed behavior to
a startling event is congruent with human be-
havior.

Behavior variability: Trainees should be ex-
posed to many diverse experiences. By experi-
encing many different situations and opponent
behaviors, the likelihood of encountering un-
expected situations in actual performance is
minimized. For example, a player in a first-per-
son perspective computer game may learn that
enemies always appear in similar places within
rooms and can target those locations before
new enemies arrive. This behavior improves
game play but does not transfer to the real
world; it does not reflect the unpredictability
that actual human opponents would present.
Diversity in actual human behavior arises from
many sources, and attempts to model the op-
ponents should account for the sources of that
diversity systematically. Randomization or
“noise” parameters are an insufficient solution
to this problem.

Transparency: To allow “after action review,”
opponents should be able to explain why they
went into a particular room or retreated at
some juncture in the scenario. Explanations are
much easier to generate in systems that use
transparent representations that map directly
to domain terms.

Minimal computational footprint: Realistic be-
havior requires performance in real time. A ma-
jority of the computational processing is re-
served for graphics and physics modeling.
Thus, the synthetic adversaries are allocated
only a small portion of the computational re-
sources. There is a difficult trade-off between
minimizing the computational footprint and
other requirements for behavioral realism.

Related Work

Possibly the most advanced examples of em-
bedding synthetic agents in military simula-
tions are TacAir-Soar and RWA-Soar. These sys-
tems emulate the behavior of military per-
sonnel performing missions in fixed-wing and
rotary-wing aircraft and have been used in
large-scale military training exercises (Tambe et
al. 1995, Jones et al. 1999). TacAir-Soar and
RWA-Soar agents are completely autonomous,
making decisions based on their awareness of
the surrounding environment, commands re-
ceived from other entities, and their extensive
knowledge of military doctrine and tactics.

They have the ability to pursue mission objects
alone, or they can participate in larger groups
made up of other synthetic agents or even hu-
man teammates participating through simula-
tors (Laird, Jones, and Nielsen 1998). The re-
search described here builds on that prior
research and extends it to the specific require-
ments of the creating adversaries for MOUT
training. The four most important areas of dif-
ferentiation are: (1) compressed time scale; (2)
loose mission structure, teamwork, and coordi-
nation; (3) indoor spatial reasoning; and (4) be-
havior variability. We explore each of these ar-
eas of differentiation in the following
paragraphs.

Compressed time scale: In TacAir-Soar and
RWA-Soar, the decision cycle could vary from
.25 to .5 seconds without significant degrada-
tion in observable behavior. For MOUT, reac-
tion times must be on the order of .1 seconds to
support realistic behavior (for example, to
avoid running into walls). Missions in TacAir-
Soar and RWA-Soar were on the order of an
hour, while for the MOUT domain, scenarios
transpire in minutes.

Loose mission structure, teamwork, and coordi-
nation: Missions could be very complex in the
air domain with multiple phases to each mis-
sion. In addition, a complex hierarchical com-
mand structure, set by military doctrine, coor-
dinated teamwork. For some missions, more
than 30 aircraft could be flying together. In the
MOUT domain, the missions consist mostly of
defending specific rooms, with some individual
missions. Only small numbers of agents work
together and there is little or no time for com-
plex communication and preplanned coordi-
nation. In fact, one surprise was that the types
of coordination required of the adversaries was
so minimal that using the coordination
schemes developed for the air agents (Tambe
1997) was unnecessary.

Indoor spatial reasoning: In the air domain,
fine-grained spatial reasoning about terrain is
unnecessary to meet the requirements. For in-
door combat, agents must understand room
geometry as well as the total topology of a
building in order to set up attacks, ambushes,
and retreats.

Behavior variability: In the air domain, the
overall complexity of the virtual environment
provided sufficient variability so that the be-
havior of TacAir-Soar agents was not pre-
dictable. However, this application requires a
training environment where the trainees can
be exposed to the same general situation many
times. As a result, variability in behavior is
much more important than in TacAir-Soar.

Another implementation of synthetic adver-
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Figure 1. The MOUTBot System Architecture.

saries has been developed using ACT-R (Best,
Lebiere, and Scarpinnatto 2002). Their empha-
sis was to demonstrate the feasibility of using
ACT-R for controlling synthetic characters and
fine-grained spatial representations; our appli-
cation was directly geared to the requirements
of deployment.

Many commercial computer games simulate
military combat (for example, America’s Army,
Operation Flashpoint, Full Spectrum Warrior).
The adversaries in these games are usually
scripted or based on simple finite-state ma-
chines. Thus, they have limited autonomy,
have little ability to reason on the spatial as-
pects of tactical situations, and can be too pre-
dictable, possibly leading to negative training.
However, more autonomous individual adver-
saries have also been developed for first-person
perspective interactive computer games (Adob-
bati et al. 2001, Laird 2001a). These “bots” play
“deathmatches,” where the rules and weapons
are significantly different than in MOUT en-
gagements. They do not meet the list of re-
quirements listed previously (no individual
missions, limited coordination, behavior not
constrained by real-world military doctrine and
tactics). However, there is significant overlap in
some of the underlying capabilities, enough so
that the system described here was based in
part on an agent developed in Soar to play
Quake (Laird 2001a, 2001b).

Overall System Design

This section introduces MOUTBots, the auto-
nomous, intelligent opponents developed to
meet the requirements introduced previously.
We briefly review supporting technologies and
describe the overall system architecture.

Simulation Environment:
Unreal Tournament

Figure 1 presents the system architecture. The
simulation environment is realized in an ex-
tension of the commercial computer game Un-
real Tournament (UT) called Infiltration.! The
Soar/UT Interface simulates the perception and
motor actions of Soar agents in the environ-
ment and is connected to Soar through Soar
general input/output (SGIO). SGIO is a high-
level interface that provides two low-level in-
terfaces: a socket-based interface (allowing net-
work connection across separate computers or
across separate threads on the same computer)
and a C-language-based interface that connects
all simulation components within a single
process. The user can select the desired low-lev-
el interface at run time. This configurability al-
lows a developer access to development and
run-time tools during the agent development
process while allowing the most efficient, with-
in-process interface to be used in the embedded
application.
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Figure 2. Internal Spatial Representation in the MOUTBots.

Each agent is implemented as an indepen-
dent instance of Soar, the cognitive component
of a MOUTBot, regardless of the interface se-
lected.

Unreal Tournament is an off-the-shelf exten-
sible three-dimensional (3D) game engine that
supports networked play. Infiltration provides
graphics and models of modern weapons (for
example, M-16 rifles), more sophisticated mod-
els of the impact of wounds, and representa-
tions of modern army uniforms and equip-
ment. All game physics and the game interface
are coded in an internal scripting language. Us-
ing UT’s environment editor, we created a syn-
thetic training environment (a three-story
building with a variety of rooms and hallways)
that presented the breadth of training situa-
tions as recommended by subject matter ex-
perts.

Perception and Motor Control Module

We extended Infiltration to include more com-
plete models of perception and motor actions.
Visual perception is challenging because of the
difficulty of sensing walls (and doors) in simu-
lation environments. Processing the internal
Unreal Tournament data structures to detect
walls, doors, and other environmental features
in real time is computationally prohibitive. To
circumvent these challenges, we introduced a

number of simplifications based on an annotat-
ed map.

Figure 2 illustrates an example map. Each
agent receives an annotated map with nodes
that define the boundaries of each room (“cor-
ner nodes”). These nodes allow an agent to de-
termine the room in which it is located. “Con-
nector” nodes connect adjacent areas that do
not have a doorway. The MOUTBots use these
nodes for navigation between rooms. Unlike
many computer game agents, movement is not
restricted to nodes alone; MOUTBots can move
freely within a room. Agents use the nodes to
recognize the location of doors, windows (not
shown in figure 2), connectors, and corners
and can move directly through them when de-
sired (for example, when moving from one
room to another).

Each agent has the ability to comprehend
map nodes and build its own annotated inter-
nal map of the building in which it is located.
We generally provided a complete map to
agents when developing other behaviors, rep-
resenting a situation in which the occupants of
a building already understood its spatial layout.
However, this was simply a convenience;
agents are not dependent on having a com-
plete map when a scenario begins. The com-
piled map is actually generated by an agent
that fully “explores” an Unreal Tournament

FALL 2005 85



Articles

86 AI MAGAZINE

level and records all node and link annotations
in the map. Thus, the image in figure 2 is not
necessarily provided by the simulation, but is
constructed by an agent itself, from its own ex-
ploration of the building environment.

Grounding agents in their environment re-
quires physiological models that can be used to
influence behavior. Physiological variables may
include temperature, fatigue, and hunger, a-
mong many others. Models of agent physiolo-
gy are being developed for a role-playing com-
puter game called Haunt2, also implemented
in this software environment (Laird et al.
2002). As suggested in figure 1, UT has been ex-
tended so that agents have a primitive model of
physiological responses to the environment
and to their internal processing. The physiolog-
ical models are implemented in UT and serve as
input into the intelligent agents. For example,
Haunt agents are aware of internal temperature
and level of fatigue. Changes in the attributes
can affect others, so that a significant drop in
body temperature can increase fatigue. Physio-
logical effects that have been implemented in
Haunt include temperature, exertion, fatigue,
sleepiness, hunger, and thirst (Laird et al.
2002). These physiological factors have not
been included in the implemented MOUTBots,
in part, because it was unclear what physiolog-
ical factors were most important to model for
the MOUT domain. However, the existing in-
frastructure provides the necessary tools for
moderating behavior through physiological
states. The functional role of the physical dri-
ves in MOUTBots is to provide increased real-
ism and contribute to behavior variability.

Opponents move and act using controls sim-
ilar to those used by a human game player
(turn left and right; thrust forward, backward,
left, and right). This style of control is more
challenging for behavior development than di-
rectly moving to nodes or objects, but it pro-
vides more flexibility in controlling the charac-
ter during the scenario. The interface supports
the motor actions required by adversaries, in-
cluding walking, running, shooting (aiming,
firing, reloading), and grenade throwing, as
well as standing, crouching, and kneeling pos-
tures.

Cognitive Architecture: Soar

The cognitive component of the synthetic ad-
versaries is implemented in the Soar cognitive
architecture (Laird, Newell, and Rosenbloom
1987; Newell 1990). All long-term knowledge
(doctrine, tactics) is encoded as production
rules, while the current situation (perception,
situational awareness, mission information,

and goals) is encoded in declarative data struc-
tures comprising its state. The rules in Soar
match against the state and propose operators
to apply to the current situation. Primitive op-
erators send commands to the motor system.
Complex operators are dynamically converted
to subgoals that are then pursued by once again
having rules select and apply operators in the
subgoals, eventually resulting in operators that
execute primitive actions.

Meeting the Requirements

The MOUTBot consists of more than 25 major
data structures and 800 production rules
(which implement 120 operators). This section
outlines some of the knowledge encoded in the
MOUTBots and how this knowledge is applied
to generate behavior, addressing each of the
previously mentioned requirements.

Competence

To create competent adversaries for MOUT
training, we studied available literature (field
manuals and historical accounts) and inter-
viewed experts. There is little written doctrine
for urban combat defense, so we relied heavily
on human subject matter experts (SMEs). We
developed synthetic adversaries that could play
many different roles: defending a room, acting
as a sentry (by watching through a window),
defending a hallway, and acting as the leader of
the group—giving commands to reposition, re-
treat, or attack. As the project progressed, the
training application began to focus on scenar-
ios of only a single fire team of four trainees.
Because attackers prefer at least a three to one
force ratio for urban attack, these scenarios re-
quire only two adversaries working together to
provide an appropriate training experience.
However, our implemented system also sup-
ports larger scenarios with teams of five to eight
adversaries defending a building.

In order to perform the required missions,
the MOUTBots required the capabilities depict-
ed in figure 3.

The knowledge to accomplish the abilities in
figure 3 is represented as elaborated objects in
memory and operators (implemented through
production rules).

Obijects. The agent uses object data structures
to maintain situation awareness during execu-
tion of a scenario. Some of these are represent-
ed in figure 3. For example, the threat data
structure is used to maintain awareness about
enemy (that is, trainee) contacts. The threat
structure includes information about the status
of the threat and the current or last known lo-
cation. Additional situation-specific informa-



tion may also be elaborated. For example, for a
visible threat, the threat’s body position, its di-
rection of movement, whether or not it is fir-
ing, its egocentric location with respect to the
agent (near, far; left, right; and so on) are assert-
ed. In some situations when the agent cannot
directly observe a known threat, it may make
simple predictions about the possible move-
ment of the enemy. These predictions are
stored with the threat information.

The building map is the most complex ob-
ject maintained by the MOUTBot. As described
previously, the MOUTBot can create the com-
plete map by exploring the building before an
engagement. It uses the nodes to build an inter-
nal representation of the location and extent of
rooms, doors, and windows. During explo-
ration, the MOUTBot also analyzes the map to
determine paths between rooms, which are
critical for some of its tactical analysis of
threats and safe retreat paths. The MOUTBot
can engage an enemy without a full map; how-
ever, because many of the tactics are dependent
on map information, its behavior is severely
degraded without it.

Other important objects include mission, a
description of the current mission and the
achievement of objectives; and self, the current
assessment of the agent’s capabilities including
health and available weapons, as well as any
customizations that differentiate this agent
from others.

Operators. Operators are used to take action in
the world, establish goals, and record persistent
facts about the current situation. For example,
the reload operator performs an action in the
environment. The MOUTBots do not count
rounds as they are expended (in contrast to
filmdom’s Dirty Harry, but in agreement with
our experts). Reload is proposed after the agent
attempts to fire and receives an error message
from the simulator. This error message corre-
sponds to the “click” of a trigger to an empty
chamber. When reload is selected, a rule sends
the reload command to the simulator. The sim-
ulator responds by playing an animation repre-
senting the reloading of the weapon and pro-
viding additional rounds to the weapon
(assuming the agent has additional rounds
available). During this time, the agent can do
additional reasoning, but it cannot perform
any other actions in the world. The reload error
message can trigger other actions beside reload.
For example, if a threat is near, other operators
are proposed so that the agent might choose to
seek cover before reloading.

Record-threat is an example of an operator
that maintains situation awareness by internal-
ly recording information, in this case, about
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Figure 3. Examples of Objects in Agent Memory.

other agents it has observed. It is invoked
whenever a threat is encountered that the
agent has not previously encountered, when it
loses contact with an agent (for example, if the
agent passes by a doorway), and when it en-
counters an agent it has encountered previous-
ly. The action of the record-threat operator is to
add to or update the threat object with infor-
mation about the enemy agent. In the current
MOUTBot, the agent discriminates between in-
dividual enemies and makes no mistakes due to
misclassification of a threat (for example fratri-
cide), although introducing human error
would require relatively simple elaborations of
the model.

The retreat operator requires many primitive
actions spread out over time. When retreat is
selected, a subgoal is automatically created (be-
cause there are no rules to directly apply it). In
the subgoal, there are additional operators that
perform the necessary actions, including deter-
mining the location of the greatest known
threat, picking a door to retreat through (away
from the threat), abandoning the current ob-
jective, moving to a new room and then deter-
mining what objective should be pursued in
that room (such as defending the room or fur-
ther retreating). Some of these actions require
subgoals as well (such as moving to a new
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room), and a subgoal stack is dynamically cre-
ated. The dynamic context switching required
by the MOUTBots did not require elaborate
knowledge representations because Soar now
includes mechanisms that dynamically capture
dependencies between goals and performs the
context switching through the use of architec-
tural mechanisms (Wray and Laird 2003a).
These mechanisms improve robustness and
simplify knowledge development, contributing
to our ability to encode a complex behavior
system quickly.

Taskability

All agent knowledge (and consequently behav-
ior) is independent of the specific mission and
scenario; the same set of rules is used for all sce-
narios and all agents. In order to define a spe-
cific scenario with unique roles for different
MOUTBots, a user creates explicit mission task-
ing within a single “mission specification”
production rule. This mission specification al-
lows the user to indicate teammates, fire teams,
and a commander or commanders, the type of
mission (defensive/offensive), each MOUTBot’s
role in the mission (defend area/roam/sentry),
initial areas to defend, places to which to re-
treat, and the type and direction of expected
threats. Moreover, the leader MOUTBot can is-
sue a limited set of commands to change the
missions of other agents. For example, if there
is an agent performing the sentry mission,
once it sights an enemy approaching the build-
ing and informs others of the approaching
threat, it might be instructed to move to anoth-
er area and defend that area, causing it to ter-
minate the sentry objective and initiate a de-
fend objective. Thus, the agents are not only
taskable by human users, they can also be
tasked by other agents in the scenario.

Observational Fidelity

We did not attempt to make the MOUTBots as
realistic as possible. The MOUT environment
has many behavioral elements to consider for
representation, among them doctrine and tac-
tical knowledge, spatial and temporal knowl-
edge, coordination and communication with
other entities, courage and cowardice, indeci-
sion, leadership, startle responses, reaction to
light, noise, smoke, debris, emotion, mood,
physiological moderators, and so on.

The observational fidelity requirement pro-
vided a critical guide for determining what to
represent among this imposing list. We con-
centrated on those elements observable to
trainees as well as fundamental behaviors such
as tactically appropriate movement, weapons
handling, and communication. This focus al-

lowed us to simplify nonobservable behaviors.
For example, trainees should not generally be
able to observe opponents at-ease in a MOUT
situation; thus, MOUTBots “at-ease” simply
stand without moving, fidgeting, and so on.
Observational fidelity also allowed us to avoid
detailed internal models when the behavioral
role of the model is minimal. For example, al-
though we implemented a fairly sophisticated
ray-tracing model of peripheral vision, a plane-
based model of visual perception was indistin-
guishable at the level of behavior from the ray-
tracing model. Although it did not fully
represent the complexities of human peripher-
al vision, the simpler model required signifi-
cantly less computational resources.

Observational fidelity also mandates that
any behavior that is observable should be rep-
resented. Thus, agents must not “cheat” (as is
common in commercial computer games).
Agents are limited by the terrain; they do not
transport to other locations, disappear in fire-
fights, and so on. Additionally, they must coor-
dinate as actual human combatants do, by
shared, common knowledge, observation, and
communication when necessary. For example,
in figure 4, when these agents initially en-
counter the enemy, they are both standing
near the door. Each recognizes the possibility of
fratricide given the angle to the threat, and the
MOUTBot closest to the attacker crouches,
while the agent in the rear shifts slightly to ob-
tain a clearer line of fire. In this case, coordina-
tion occurs with no explicit communication
between the entities; they coordinate out of
shared, common knowledge of the domain. Be-
cause agents do not always explicitly commu-
nicate their actions, agents sometimes make
mistakes. For example, if one member of this
MOUTBot fire team decided to exit after first
observing the attacker, it is possible that his
partner may have not sighted the enemy and
may miss his teammate’s departure unless the
sighting and the decision to retreat are explic-
itly communicated.

Behavior Variability

A difference in observed behavior when enti-
ties are placed in essentially the same situations
is the essence of behavior variability. Capturing
variability in synthetic entities is important be-
cause it prepares the trainee for the variability
inherent in human behavior in the real world.
As project SMEs stressed, it is critical to expose
trainees to the breadth of skill levels in the op-
ponent forces. Untrained forces may behave in
ways that are nonoptimal and even dangerous
for themselves; however, trainees must be pre-
pared to quickly respond to such behavior with



appropriate tactics, even if they would not use
them against a better trained opponent.

We focused on behavior variability in indi-
vidual agents. If a single agent has little or no
variability in its behavior, it becomes pre-
dictable, and a trainee may attempt to “game”
an opponent inappropriately. Rather than
modeling detailed knowledge differences that
lead to different choices or potential sources of
variability, our goal was to create mechanisms
that better support variability in decision mak-
ing within the agent architecture. Our hypoth-
esis is that, long-term, it is less expensive to in-
troduce factors that influence the decision-
making process and that can be generalized
over many applications rather than attempt to
program (or have an agent learn) knowledge
differences. These variability parameters can be
used to generate within-subject and across-sub-
ject variability without having to model the
sources of variability explicitly. This hypothesis
assumes that there are human behavior moder-
ators that lead to variability, even when the
knowledge of human participants is (more or
less) the same.

Normally, we would encode the best or good
choices for a specific situation. For example,
one might use a grenade only at dynamic tacti-
cal junctures or when faced with overwhelm-
ing firepower. Following this approach, multi-
ple agents in the simulation and across mu-
Itiple runs of the simulation all would exhibit
similar behaviors. They would not use grenades
until tactically appropriate situations. In reali-
ty, soldiers make different choices.

We extended Soar’s basic knowledge repre-
sentation and modified the Soar decision
process to support more varied option selec-
tion. Productions that propose and prefer oper-
ators now include a numeric value, indicating
a “probability” of selection when compared to
other, equally preferable choices. When the op-
tions available are all equally preferable, the
values for each option are averaged, and then a
random choice is made from the normalized
probability distribution of the averaged values.

This new selection mechanism requires a
broader knowledge base than is strictly neces-
sary. When variability is desired, the knowl-
edge engineer must identify a range of options
rather than one. For example, the MOUTBots’
target selection algorithm was initially based
on proximity, which is a valid, realistic algo-
rithm for selecting targets. To improve variabil-
ity, we need to encode multiple target selection
strategies and define simple probability distrib-
utions among these different strategies. In the
long term, agent development may focus on
much more comprehensive efforts to describe
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Figure 4. Coordination in the MOUTBots.

and codify behaviors across many classes of
subjects.

We implemented this simple within-subject
approach to greater variation in decision mak-
ing. Figure 5 shows an example of the resulting
variability in the MOUTBots. In this scenario,
two MOUTBots move to corner positions in the
room, which are the most tactically appropri-
ate positions to take within the room. Agents
also choose a body position (standing,
crouched, or prone) appropriate for the posi-
tion. For example, at positions near the covered
doors, agents stand or crouch, but do not go
prone. The figure shows some of the possible
positions that the agents can take, given re-
peated execution of the identical scenario.
Variability also plays a role in more dynamic
decision making. For example, the agents have
knowledge to recognize some tactically appro-
priate situations in which to use a grenade. The
grenade selection knowledge was also encoded
for regular engagements with a low probability.
Thus, the user can be surprised when the
MOUTBots unexpectedly throw a grenade, in-
creasing unpredictability in the user experi-
ence.
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This new mechanism is still being evaluated,
and at this point we cannot claim that this de-
sign for variability in decision making provides
humanlike decision making. This is an empiri-
cal question and requires both data on human
variability as well as experimentation to deter-
mine how it provides or fails to provide hu-
manlike variability. Recent research is also ex-
ploring reinforcement learning as a mechanism
to allow an agent to tune the weights of its ac-
tions with experience (Nason and Laird 2004).

Transparency

Because Soar is a symbolic architecture, its
knowledge can be readily understood by non-
technical users. For example, a MOUTBot goal
might be to defend a room; a user could find a
“defend-room” goal among the Soar agent’s ac-
tive goals. Although this representation facili-
tates transparency, alone it does not achieve it
because knowledge of the run-time architec-
ture is needed to extract this information. For
the MOUTBot development, we used an appli-
cation-specific visualization tool that provides
users the ability to see an agent’s map of its ter-
rain, where it believes other friendly and ene-
my agents are located, its desired movement
and targeting goals, and a fine-grained view of
its near-field environment (for example,
whether it was adjacent to a wall). Figure 2 il-
lustrated a representation of the map portion
of the tool. For a fielded application, we could
couple the Soar agents with a tool specifically
designed to bridge the gap between the trans-

parency of Soar’s representation and the extrac-
tion of this information from the agents them-
selves (Taylor et al. 2002), making it much eas-
ier for nontechnical users to understand the
decisions and behavior of Soar agents.

Minimal Computational Footprint

A significant focus of Soar development over
the past decade has been the improvement of
its performance. Soar has run as many as 20
simple bots in UT while maintaining an accept-
able game frame rate (Laird et al. 2002). For the
MOUTBot application, as mentioned previous-
ly, we used observational fidelity as a criterion
for simplifying the models of perceptions and
actions that would increase computational
overhead. Another significant element of the
MOUTBot’s efficiency is the SGIO interface. Us-
ing the compiled connection, we were able to
run S independent agents while maintaining a
game frame rate of 20 hertz on a 1-gigahertz
Pentium III laptop with .5 gigabytes of random-
access memory. While we did not perform more
specific stress tests, this performance was more
than acceptable for the target application, be-
cause only 1 or 2 MOUTBots were needed.

Limitations and Future Work

The MOUTBot is a prototype, a first approxi-
mation of the tremendous behavior space of
this domain. It has a number of limitations,
four of which are (1) integration with higher-fi-



delity simulations; (2) robust models of spatial
reasoning; (3) fault-tolerant execution; and (4)
requirements for analysis and behavior valida-
tion. These limitations are outlined in greater
detail in the following paragraphs.

Integration with higher-fidelity simulations:
Some behavior simplifications were dictated by
Unreal Tournament’s simulation limitations
rather than fundamental limits in the ap-
proach. For example, UT represents entity bod-
ies as cylinders, rather than as articulating com-
ponents. While there are some animations that
show specific body movements (aiming, re-
loading, walking), it was not feasible to simu-
late realistically ones that were not (such as
turning the head or communicating with ges-
tures). When MOUTBots are integrated with a
simulator that provides more fine-grained rep-
resentations of the body, they will need to be
extended or combined with other, existing
technologies to capture the kinematics of body
movement and to make control decisions over
these features.

Robust models of spatial reasoning: The
MOUTBots are dependent on the nodes em-
bedded in the Unreal Tournament maps. As de-
scribed previously, the agents require better
representations of walls and doors and of space
more generally. In simulators where these rep-
resentations are available, more general models
of space and the ability to comprehend and
predict concealment and cover locations will
be required.

Fault-tolerant execution: Extensions to the
agent are needed so that it can better handle
failures itself. In particular, the current agent
lacks commonsense knowledge that would al-
low it to reflect about its situation when it
found itself unable to execute its desired task.
Models exist that provide this kind of capabili-
ty (for example, Nielsen et al. 2002). In addi-
tion to the basic commonsense reasoning re-
search challenges, we must also develop better
techniques for integrating these models with
existing domain knowledge (such as the
MOUTBots’ knowledge representations cover-
ing doctrine and tactics).

Requirements for analysis and behavior valida-
tion: Even with the behavior variability solu-
tions described previously, competent behavior
covers only a narrow part of the overall behav-
ior space. Fanaticism, “less” competent behav-
iors (possibly representing poorly trained
guerillas or novices), additional errors in judg-
ment and perception, and so on, all could be
modeled. In order to justify their cost, these ex-
tensions require a thorough understanding of
user requirements in specific training applica-
tions. We attempted to obtain some of this in-

formation by presenting the MOUTBots at var-
ious stages during development to subject mat-
ter experts. These demonstrations resulted in
valuable feedback (for example, early demos
led us to concentrate on variability as an essen-
tial overall requirement). However, we recog-
nize the need for more formal validation tech-
niques that would allow knowledge engineers
to evaluate agent behaviors more directly and
quickly. Some recent progress has been made
towards this goal, using the MOUTBot proto-
type as a testbed (Wallace and Laird 2003).

Conclusions

Achieving intelligent opponents that are fully
autonomous, believable, and interactive, while
exhibiting a variety of behaviors in similar cir-
cumstances, will require much additional re-
search and development. However, we made
significant progress towards these goals. Using
computer game technology allowed us to de-
velop the prototype MOUTBot entities without
a high-fidelity simulator. The Soar cognitive ar-
chitecture provided efficient execution, allow-
ing a full complement of opponents to run
within the simulation on standard PC hard-
ware. Soar also facilitated knowledge reuse, re-
sulting in greater breadth, depth, and realism
in behaviors. We also developed a general
framework for supporting behavioral variabili-
ty and implemented portions of this frame-
work in Soar. Thus, the MOUTBots, by combin-
ing the strengths of human behavior
representation and computer game technolo-
gy, demonstrate that realistic, autonomous,
embodied intelligent agents can meet the re-
quirements of interactive, virtual training.
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