
■ Sketch maps are an important spatial represen-
tation used in many geospatial-reasoning tasks.
This article describes techniques we have devel-
oped that enable software to perform human-
like reasoning about sketch maps. We illustrate
the utility of these techniques in the context of
nuSketch Battlespace, a research system that has
been successfully used in a variety of experi-
ments. After an overview of the nuSketch ap-
proach and nuSketch Battlespace, we outline
the representations of glyphs and sketches and
the nuSketch spatial reasoning architecture. We
describe the use of qualitative topology and
Voronoi diagrams to construct spatial represen-
tations, and explain how these facilities are
combined with analogical reasoning to provide
a simple form of enemy intent hypothesis gen-
eration. 

Maps are a ubiquitous tool for human
geospatial reasoning. Computer sup-
port for geospatial reasoning often

takes the form of geographic information systems
(GIS)—sophisticated systems that combine
computational geometry with database tech-
niques to provide powerful abilities to manip-
ulate and visualize vast quantities of digital ter-
rain data. GISs are the computer-aided design
(CAD) software of geospatial tasks. However, it
is well known that in engineering, CAD soft-
ware is not terribly useful for the early stages of
design (conceptual design) where basic design
choices are made and principles of operation
are laid out before detailed design decisions are
made. There appears to be a similar stage of
thinking in geospatial tasks, where sketch
maps are used to reason through a problem. By
sketch maps, we mean compact spatial repre-

sentations that express the key spatial features
of a situation for the task at hand, abstracting
away the mass of details that would otherwise
obscure the relevant aspects. Sketch maps to-
day are typically drawn by hand on paper. 

For computers to become useful partners in
geospatial problem solving, they need to be
able to work with sketch maps just as people
do. Just as qualitative reasoning has proven
valuable in software supporting conceptual de-
sign in engineering, we claim that qualitative
spatial reasoning (Forbus, Nielsen, and Faltings
1991; Glasgow, Chandrasekaran, and Naray-
anan 1995) is essential for working with sketch
maps. This article describes the progress we
have made in a specific geospatial domain—
battlespace reasoning—towards this goal. War-
fare, while a regrettable aspect of human exis-
tence, remains one of the most complex and
most important kinds of task that people do.
Planning a battle requires coordinating a com-
plex array of people and equipment to achieve
sometimes subtle goals, in situations where
there is great uncertainty and danger. Terrain
plays a crucial role in military reasoning, be-
cause it affects movement, it can provide cover
and concealment, and it affects the operation
of sensors. Thus geospatial reasoning must
play a major role in generating and reasoning
about battle plans, called courses of action. Fig-
ure 1 is a screen shot of a COA drawn with nuS-
ketch Battlespace. 

The introduction of digital media into mili-
tary operations has been slow for several rea-
sons. One major problem is that commanders
are adamant about not wanting to use mice
and menus; they sketch, and they want to in-
teract with software via sketching, just as they
interact with their people. Dealing with sketch
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The nuSketch Approach to
Sketch Understanding

Sketching is a form of multimodal interaction,
where participants use a combination of inter-
active drawing and language to provide high
bandwidth communication. Sketching is espe-
cially effective in tasks that involve space, such
as geospatial reasoning. While today’s software
is far from being as fluent as sketching with a
person, progress in multimodal interfaces has
produced interfaces that are significantly more
natural than standard mice or menu systems
(cf. Cohen et al. 1997). 

The typical approach in multimodal inter-
faces is to provide a more natural interface to
legacy software systems by focusing on recogni-
tion (Alvarado and Davis 2001; Cohen et al.
1997). While this approach has led to useful sys-
tems, it has three serious limitations. First, to-
day’s statistical recognizers are not very good.
Indeed, much of the multimodal literature fo-
cuses on using multiple modalities to overcome
recognition problems in speech and ink. Our
military users, based on their experience with
previous multimodal interfaces, generally flatly
refuse to use any system that requires speech
recognition. Military operations are often con-
ducted in noisy environments, under stress
(which causes changes in vocal characteristics,
which in turn requires retraining of recogniz-
ers), and there are potentially high costs associ-
ated with recognition errors. This is especially
true in conceptual reasoning tasks, where
achieving creative solutions requires focusing
on the problem, not the interface.

The second limitation is that today’s recog-
nition technologies work best with in small,
tightly controlled domains. The kinds of
glyphs to be drawn and the vocabulary and
grammar for speech or natural language (NL)
systems must be known in advance, along
with data for training statistical recognizers.
Experiments with multimodal interfaces in
military tasks generally require unnatural re-
strictions on vocabulary (for example, the ex-
perimenters provide a list of legal names that
can be used, or derive such a list by working in
advance with the experimental subjects for
each set of experiments). These restrictions
sharply limit the potential utility of such sys-
tems. The situation with ink recognition is
worse. Today’s statistical recognizers are
“which of N” systems. They often work rea-
sonably well for tightly restricted sets of visual
symbols (such as handwriting recognition)
where there is a lot of training data available
and the variability of symbols is not high.
Some visual symbols in military tasks have

maps is a necessity for creating performance
support tools for military operations. Although
most of our experience has been in military
tasks, the situation seems similar in other hu-
man geospatial reasoning tasks (Egenhofer
1997). 

This article describes the techniques we have
developed for qualitative spatial reasoning
about sketch maps. We start by reviewing our
approach to sketching and nuSketch Battle-
space, our battlespace sketching software that
has been used in several successful experi-
ments. Next we provide an overview of the
spatial representations of sketches and glyphs
and the processing architecture that handles
spatial computations. Then we describe the
computation of spatial relationships, including
qualitative topology and Voronoi diagrams.
Path finding and position finding, two key
tasks, are discussed next. We describe how
these techniques are combined with analogical
processing to provide a simple form of enemy
intent hypothesis generation. Finally, we dis-
cuss plans for future work.
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Figure 1. A COA Drawn with nuSketch Battlespace.



this character (such as the symbols for military
units). However, many do not. Rivers and
roads are drawn similarly to each other, as are
hills and mountain ranges. Their spatial loca-
tion, extent, and shape matter. These proper-
ties are not dimensions of variation that can
be ignored in order to achieve recognition. In
general, sketch understanding requires visual
understanding, not recognition. 

The third limitation is the assumption that
sketching is a more natural interface to legacy
software. There are a wide variety of potential
applications for sketching that require signifi-
cant understanding of the domain that the
sketch is about. These will be new types of AI
systems, relying heavily on combinations of
conceptual and visual reasoning. (We believe
such systems will also heavily rely on qualita-
tive representations and reasoning, because
they bridge the visual and conceptual.) Even if
recognition improves to human level or be-
yond, it is essential to address the problem of
enabling software to construct a visual and
conceptual understanding of what is being
sketched

Our approach in the nuSketch architecture
(Forbus, Ferguson, and Usher 2001; Forbus
and Usher 2002; Forbus, Usher, and Chapman
2003) is quite different and complements tra-
ditional multimodal research. We avoid recog-
nition issues by using clever interface design.
We focus instead on providing richer visual
and conceptual understanding of what is
sketched. We have created two systems based
on the nuSketch architecture: nuSketch Battle-
space (nSB) (Forbus, Usher, and Chapman
2003) specialized for battlespace reasoning,
and the sketching Knowledge Entry Associate
(sKEA) (Forbus and Usher 2002), a general-pur-
pose knowledge capture system. While sKEA
also does geospatial reasoning when appropri-
ate—the two systems share a common code
base—we focus in this article on nuSketch Bat-
tlespace for brevity. 

The key insight in the nuSketch approach is
that, in human-to-human sketching, recogni-
tion facilitates communication, but recogni-
tion is not essential to it. Most people sketch,
but few are artists. Typically, people verbally
label what they are sketching, to ensure that
those they are working with make correct
identifications. To be sure, there are broadly
used visual symbols within specific cultures
and professions (such as stick figures, electron-
ic circuit components, and map symbols).
However, the conceptual range of entities that
can be used in sketching is far larger than any
visual symbology. Consequently, some form of
conceptual labeling is essential for robust

sketching. Speech and written language are
two ways to provide such labeling, but impor-
tantly, they aren’t the only ways, as we will
soon describe.

We work around the limitations of today’s
recognition technologies in two ways. First, we
use manual segmentation of ink into glyphs.
Many multimodal systems use timeouts or lift
the pen to automatically segment ink. These
techniques only work if (1) users do not have
to think hard about the problem they are solv-
ing, and hence exceed the timeout period, and
(2) they are only drawing very simple shapes,
so that they do not have to lift their pen to cre-
ate a reasonable depiction. In our experience,
both timeouts and pen-up methods cause users
serious problems. Consequently, in nuSketch
systems, users indicate when they have started
to draw a glyph and when they are finished
drawing a glyph by pressing buttons.

Conceptual labeling in nuSketch systems is
accomplished by explicitly identifying the
concept that is being depicted. For example, in
nuSketch Battlespace, users click on a glyph bar
to indicate the kind of concept that they are
about to sketch, based on the visual language
used by the U.S. military (U.S. Army 1997).
There are hundreds of concepts that users rou-
tinely draw, requiring careful interface design.
We use two interface techniques to keep glyph
bars manageable in size. First, users construct
many symbols compositionally, and our glyph
bar interface supports this approach. Second,
the interface uses layers that are functionally
organized, providing contexts that restrict
what concepts make sense. In sKEA, where
users can express any concept in the subset of
the Cyc KB that we are using, there are tens of
thousands of concepts that users can draw up-
on, and there is no well-defined visual symbol-
ogy for most of them. Consequently, conceptu-
al labeling in sKEA is achieved by text
completion on the names of concepts. 

Manual segmentation and explicit concep-
tual labeling slightly reduce the naturalness of
sketching. However, our users find that a small
price to pay for complete elimination of recog-
nition errors. To be sure, as recognition tech-
nologies improve, we would like to extend the
nuSketch architecture to employ them. How-
ever, some tasks seem like they will always be
out of reach for recognition-oriented systems.
Consider knowledge capture in a new domain.
The concepts that the users might introduce
are not known in advance, so the data needed
to train vocabulary, speech grammars, and ink
recognizers simply isn’t available. In such cir-
cumstances the nuSketch approach seems to
be the only viable method.

The key
insight in the
nuSketch
approach is
that, in
human-to-
human
sketching,
recognition
facilitates
communi-
cation, but
recognition is
not essential
to it.
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an independent contractor in the fall of 2002,
both teams were able to demonstrate that mil-
itary subject-matter experts were able to author
knowledge using these systems. Specifically,
they were able to create knowledge useful for
critiquing COAs without training in formal
knowledge representation. In DARPA’s Com-
mand Post of the Future program, we have re-
ceived long-term, valuable formative feedback
from a variety of retired military officers. Their
feedback has helped us improve the system to
the point where we can have generals doing
analogies between battlespace states within an
hour of sitting down with the software for the
first time. 

Representing 
Glyphs and Sketches 

This section describes the underlying ontology
of sketches that we use. The basic unit in a
sketch is the glyph. Every glyph has ink and
content. The ink consists of one or more poly-
lines, representing what the user drew when
specifying that glyph. (Each polyline includes
width and color information in addition to its
points.) The content is a conceptual entity—the
kind of thing that the glyph is representing.
For example, if a user drew a mountain range,
there would be an entity created to represent
the glyph itself and an entity to represent the
mountain range. While each subsketch depict-
ing the mountain range would have a distinct
glyph, the contents of those glyphs would all
be the same entity.

The type of a glyph’s contents affects the in-
terpretation of its spatial properties. For exam-
ple, the spatial extent of glyphs representing
mountains and lakes is taken to be the spatial
extent of that terrain feature. On the other
hand, the spatial extent of a military unit is ig-
nored because the size of such glyphs by con-
vention has nothing to do with its footprint on
the ground, so only its centroid is used in spa-
tial reasoning. Pathlike terrain features such as
roads and rivers have a one-dimensional ex-
tent, but their width is not tied to the width of
the line depicting them, since that would un-
duly burden our users’ drawing abilities. In
contrast, paths introduced in planning actions
do have widths that are specified by special ges-
tures during sketching, because they provide
spatial constraints on the movements of units.
(Regions just outside the path might be targets
of artillery, for example, and avoiding friendly
fire is an important task constraint.) 

While some basic spatial properties of glyphs
are computed (described later), we do not per-
form any detailed shape reasoning on the ink

Overview of 
nuSketch Battlespace

nuSketch Battlespace is designed to help users
develop courses of action (COAs) for land
forces. It uses a large knowledge base concern-
ing specialized military concepts as well as gen-
eral common sense. We use a subset of Cy-
corp’s Cyc knowledge base contents, with
extensions developed by our group for qualita-
tive and analogical reasoning and by the De-
fense Advanced Research Projects Agency
(DARPA) community for military concepts and
reasoning. We use our own knowledge base
and reasoning system (FIRE) instead of Cyc be-
cause it is optimized for our needs. FIRE is a
federated architecture, with analogical match-
ing and retrieval tightly integrated with other
kinds of reasoning. The interface uses special-
purpose interface techniques to enable users to
specify conceptual information (including the
types of entities being sketched, timing infor-
mation, and intent of actions), organized into
layers to control complexity. Users can sketch
terrain, specialized areas and paths (such as en-
gagement areas and axes of advance), position
units, and assign tasks and the reasons for do-
ing them. Since planning in uncertain situa-
tions often involves exploring multiple hy-
potheses, and plans can involve complex
sequential behavior and conditionals, nSB en-
ables users to describe and link multiple states
into a comic graph, a visualization based on ac-
tion-augmented envisionments (Forbus 1989).
The interface techniques that enable us to
avoid recognition are described by Forbus,
Usher and Chapman (2003); here our focus is
on the qualitative spatial reasoning the system
performs.

nuSketch Battlespace has been successfully
used in several experiments. First, an early ver-
sion was combined with a natural language in-
put system (by AlphaTech and Teknowledge)
and BBN Technologies’ CADET system that
generates synchronization matrices in an ex-
periment to see if active-duty military person-
nel could successfully create COAs. As de-
scribed by Rasch, Kott, and Forbus (2002),
commanders were able to generate COAs three
to five times faster, without any degradation in
plan quality. In DARPA’s Rapid Knowledge For-
mation program, nSB was adopted by both
teams to provide sketching and spatial reason-
ing services for their integrated knowledge cap-
ture systems. The KRAKEN system from the Cy-
corp team combined nSB with their natural
language facilities, and the SHAKEN system
from the SRI team combined nSB with their
concept map facilities. In an evaluation run by
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comprising a glyph, nor do we attempt to visu-
ally decompose it. We call this blob semantics
because it focuses on spatial relationships be-
tween glyphs rather than detailed reasoning
about the visual structure of glyphs them-
selves. While inappropriate for recognition
based on detailed visual similarity of specific
features, it is an excellent approximation for
most geospatial reasoning, where the focus is
on configural relationships between glyphs.
Given the crude nature of sketch maps, people
are unlikely to be extremely accurate at repro-
ducing shapes.

A sketch consists of one or more subsketches.
Subsketches represent a coherent aspect of what
is being sketched, such as a state of a plan, or a
more detailed depiction or distinct perspective
on something. Logically, subsketches are Cyc-
style microtheories, local descriptions that
must be internally consistent. In nSB, every
subsketch represents a battlespace state. States
can be partial, and are hypothetical, observed,
or planned. Visually, the user sees either a sin-
gle subsketch at a time, or the metalayer, a spe-
cial view where each subsketch is viewed as a
glyph. The comic graph consists of these
glyphs and relationships between them, ex-
pressed by drawing arrows between state
glyphs. 

Subsketches are composed of layers. In nSB,
each layer represents a particular subset of in-
formation about a battlespace state. Examples
include terrain features, friendly COA, and
SITEMP (that is, enemy COA). Every glyph ex-
ists on some layer. The layers of a subsketch are
spatially registered, that is, they share the same
coordinate system. Distinct subsketches need
not be spatially registered, although in nSB
they tend to be. Logically, each layer in a subs-
ketch is a microtheory. Visually, layers are de-
picted as overlays on a common workspace for
that subsketch. The user can control whether
or not a layer is visible, grayed out (which
keeps layouts in focus without being distract-
ing), or invisible, to control detail while
sketching. nuSketch systems can also intro-
duce new layers to display the results of their
reasoning. 

Spatial Processing of Glyphs
Spatial reasoning is carried out when a glyph is
added or changed, and in response to queries
from nSB reasoning facilities. nSB has two visu-
al processors, which are threaded to enable
computation while the user is thinking or
sketching. We describe each in turn, as a pre-
lude to the detailed discussion of the spatial
operations.

The ink processor is responsible for comput-
ing basic spatial properties of glyphs and re-
sponding to queries concerning spatial rela-
tionships. Whenever a glyph is added or
changed, basic spatial properties are computed
for it, including a bounding box, area, overall
orientation, and roundness. Qualitative topo-
logical relationships are automatically comput-
ed between the new glyph and other glyphs on
its layer. 

The vector processor is responsible for main-
taining a set of Voronoi diagrams describing
spatial relationships between types of entities,
and for the polygon operations used in posi-
tion-finding and path-finding. Any time a
glyph is added or changed, once the ink
processor has updated its properties, the
Voronoi diagram(s) it is associated with are up-
dated appropriately. When spatial constraints
involving position-finding or path-finding
need solving, the vector processor carries out
the construction of obstacle and cost diagrams
and the polygon operations needed to com-
bine them.

Conclusions reached by these processors are
added to the LTMS-based (Forbus and de Kleer
1993) working memory of the reasoner for that
sketch. Time-stamped assertions are used as as-
sumptions in visual conclusions drawn by the
system, so that when glyphs are moved, re-
sized, or deleted the appropriate conclusions
are automatically retracted. 

Spatial Relationships 
between Glyphs

Spatial relationships are the threads from
which configural information is woven. There-
fore computing them appropriately is a crucial
problem for qualitative reasoning about
sketches. We discuss four kinds of spatial rela-
tionships in turn: (1) Qualitative topological
relationships, (2) Voronoi relationships, (3) po-
sitional relationships, and (4) relationships
based on local frames of reference. 

Qualitative Topological Relationships
We use the RCC8 algebra (Cohn 1996) to pro-
vide a basic set of qualitative relationships be-
tween glyphs. RCC8 is appropriate because it
captures basic distinctions such as whether or
not two glyphs are disjoint, touching, or inside
one another. These distinctions are used in sev-
eral ways. First, they are used in controlling
when to compute other relationships: comput-
ing whether or not one entity is east of another
is moot unless they are disjoint, for example.
Second, they suggest conceptual interpreta-
tions of relationships between the contents of
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sample site on each glyph that is connected by
an edge in the sample-level Delauney triangu-
lation. 

A key design feature in any system using
Voronoi computations is what diagrams should
be computed. We use several diagrams to cap-
ture different notions of proximity: A terrain-
only diagram is useful for characterizing free
space, and a units-only diagram is useful for
grouping units, for example.

Positional Relationships
Positional relationships provide qualitative posi-
tion and orientation information with respect
to a global coordinate frame. Positional rela-
tionships between contents are expressed in
terms of compass directions. For example, a
tank brigade can be south of a mountain and
east of a bridge. Not all glyphs can participate
in such relationships. The task of securing a
bridge, while represented by a glyph in the
sketch, is not itself something that participates
in positional relations, although the location
at which it occurs can. 

A key design choice is what positional rela-
tionships should be computed. It might seem
at first that, like RCC8 relationships, it could be
worth computing positional relationships be-
tween every pair of RCC8-DC glyphs. This
turns out to be a terrible strategy, both in terms
of computational effort and in terms of the
usefulness of the results. Computationally, po-
sitional relationships are used to provide con-
cise summaries (if communicating a situation)
and to provide a framework for describing the
layout of a situation (for instance when com-
puting spatial analogies). Consequently, we
limit the automatic computation of them to
pairs of geographic features and compute posi-
tional relations for other appropriate entities
on demand. 

Other Frames of Reference
Another type of positional relationship links
two entities based on a local coordinate sys-
tem. For example, if two entities are related to
an oriented path, it is useful to talk about one
entity being ahead, behind, or at the same lo-
cation along that path. nuSketch computes
such relationships on demand, using projec-
tion of the centroids of the entities to the clos-
est point on the path to determine their rela-
tive position. 

Some entities have a distinct orientation,
even without having a pathlike extent. Mili-
tary units, for example, have fronts, flanks, and
rears. Again, we compute such relationships on
demand, based on orientation information as-
sociated with the entities.

the glyphs that they relate. For instance, a
touching relationship between two glyphs,
which represent physical objects, suggests that
their contents might be touching. Finally, do-
main-specific inference rules can use these re-
lationships when needed, such as inferring
containment of physical objects depicted
based on one glyph being inside another.

Much of the work on RCC8 and other qual-
itative topological algebras has focused on us-
ing transitivity for efficient inference. For
sketches the use of such tables is unnecessary,
because we can simply calculate for each pair
of glyphs what RCC8 relationship holds be-
tween them, based on the visual properties of
their ink. By default, we compute RCC8 rela-
tionships between a glyph and everything else
on its layer when it is created and whenever it
changes. RCC8 relationships with glyphs
across layers in the same subsketch can be
computed on demand during domain-specific
reasoning. 

Voronoi Relationships
Following Edwards and Moulin (1998), we use
Voronoi diagrams to compute a variety of spa-
tial relationships. Recall that given a set of spa-
tial entities (called sites, typically points), a
Voronoi diagram consists of edges that are
equidistant from a pair of points. The De-
launey triangulation is the dual of the Voronoi,
consisting of a set of arcs between sites that
have an edge between them in the Voronoi di-
agram. As Edwards and Moulin (1998) de-
scribe, the Delauney triangulation provides a
reasonable approximation to visual proximity,
in that two sites are proximal exactly when
there is an edge connecting them in the De-
launey triangulation. Moreover, a number of
approximations to spatial prepositions can be
computed, including between and near. Again,
these are approximations: It is known that,
psychologically, spatial prepositions depend
on functional and conceptual information as
well as spatial information (Coventry 1998,
Feist and Gentner 1998). However, so far we
have found them adequate for sketch maps.

Voronoi computations are defined in terms
of sites being points, but glyphs have signifi-
cant spatial extent. Consequently, adding a
glyph to a Voronoi diagram involves adding
sample points along the outer contour of the
glyph’s ink, each of which is treated as a site.
These sites are marked with the glyph they de-
rived from, so that while the Voronoi compu-
tations are done on the sampled sites, the re-
sults are expressed in terms of relationships
between the glyphs. For example, two glyphs
are siteAdjacent exactly when there exists a
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Position Finding
Some of the most interesting implications of
sketch maps involve constructing places: The
good sites for a park, in an urban planning
task, or a good site for an ambush, in a military
setting. We use conceptual knowledge of the
contents of glyphs, combined with spatial rea-
soning on their ink, to automatically construct
regions that satisfy spatial and functional crite-
ria.

Two important constraints in military spa-
tial reasoning are (1) fields of fire, that is, what
can someone’s weapons hit? and (2) visibility,
that is, what can someone see? 

Some kinds of terrain features, such as
mountains, block weapons and thus provide
cover. Other kinds of terrain features, such as
forests, block visibility and thus provide con-
cealment. Cover and concealment are impor-
tant concepts in military reasoning, because
they provide protection from the enemy and
deny them information. Finding regions of the
sketch that satisfy these properties is a critical
spatial operation. For example, finding posi-
tions that provide concealment is an impor-
tant subtask in planning (or detecting) a poten-
tial ambush. 

Our position-finding technique relies on
polygon operations over relevant subsets of
glyphs. Depending on the constraint(s) to be
satisfied, some glyphs are treated as obstacles.
New regions are constructed by projections
from seed locations, subject to obstacle con-
straints. Regions that must satisfy multiple
constraints are computed by combining the re-
gions constructed for each constraint. The
polygon operations of union, intersection and
subtraction thus enable the conjunction, dis-
junction, and complement of constraints, re-
spectively. 

For each task, domain knowledge indicates
what kinds of terrain entities should be treated
as obstacles. Table 1 indicates for example
whether or not particular types of terrain pro-
vide cover and/or concealment, derived from
conversations with military experts. These dis-
tinctions are very coarse. They do not consider
the footprint of a unit on the ground relative
to the size of the terrain feature, nor do they
consider specific kinds of weapons or sensors,
for instance. Nevertheless, this information is
the kind of default categorization that is useful
in early-stage conceptual reasoning. Of course,
for later-stage planning more detailed informa-
tion, as might be obtained via a GIS, would be
appropriate. As with engineering domains,
conceptual reasoning with sketch maps frames
the problems, and indicates where more de-
tailed information is needed. 

Let us consider concealment to see how po-
sition-finding works. Suppose we are trying to
find all regions where someone could hide
from us. For each unit on our side, a new poly-
gon is constructed by ray casting to represent
the region that is visible from that unit. (If
there is numerical information as to limits of
visibility, the polygon is also clipped using that
information.) Let V be the union of these poly-
gons, representing all of the areas that we can
see. Let W be the polygons that results from
subtracting out places where units cannot be
(for example, in lakes) from the entire sketch.
(Notice that we allow polygons to have holes.)
Then the set of polygons W – V constitutes the
places where an enemy could hide. Fields of
fire and cover are computed similarly, using
cover constraints and weapon ranges.

Path Finding
Planning and following routes is one of the
major purposes of maps, and so path finding is
an important capability for sketch maps. As
with position finding, domain constraints are
used to define what are obstacles, and hence by
implication what is free space. What is an
obstacle can depend on the type of unit mov-
ing: Forests are considered untrafficable for ve-
hicles, for example, but trafficable by infantry.
The costs of movement depend on the type of
terrain. For example, it takes longer for in-
fantry to move through a swamp than through
a desert. In military planning, estimates of traf-
ficability are often computed based on com-
plex formulae involving specific details of vehi-
cles and properties of soil and vegetation (for
example, rod cone index and stem spacing)
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Terrain Type Concealed? Cover?

Mountains Yes Yes

Hills Yes Yes

Open/rolling hills No Yes

Forest Yes Partial

Scrub Yes Partial

Jungle Yes Partial

Swamp No No

Desert No No

Lake No No

River No No

Bridge No No

City Yes Yes

Road No No

Table 1. Concealment and Cover Provided 
by Different Terrain Types.



In path finding, SR regions are treated as ob-
stacles, and R regions are treated as higher-cost
for travel than UR regions. We use A* search
over the terrain Voronoi diagram to find paths.
That is, junctions and edge midpoints of
Voronoi cells in free space are the nodes of the
graph, with the cost of each path segment be-
ing determined by the product of the path seg-
ment length and its intersection with the cost
diagram. Once a path is found, it is smoothed
in a post-processing step, to reduce its depen-
dence on the details of the tessellation and
thus improve its appearance.

Our Voronoi-based path planner is the third
approach we tried. Originally we had used a
bitmap-based approach (Forbus, Mahoney, and
Dill 2001), but we were unable to make those
techniques fast enough for interactive-time op-
eration. Following Davis (2000) we also tried
A* search over a quad tree representation for
path planning. In the game Star Trek: Arma-
da™ used as an example in Davis (2000), obsta-
cles were few in number and the details of their
shapes were not terribly important, so quad
trees were satisfactory. In sketch maps of ter-
rain, we found that quad trees were not as use-
ful, since they are based on a tessellation that
is not particularly aligned with the shapes of
the constraining obstacles. On the other hand,
the Voronoi diagram tracks the shape of the
obstacles by definition, and provides reason-
able resolution where it is needed.

Example: Hypothesizing 
Enemy Intent by Analogy

To illustrate the utility of these ideas, we
demonstrate how they are used in the nSB sub-
system that hypothesizes possible enemy ac-
tions. The inputs are a sketch of a precedent
and a sketch representing the current situation.
The output consists of a new layer, which illus-
trates how, in the current situation, the enemy
might attempt something similar to what they
did in the precedent. We have simplified the
general problem in several ways. First, we only
generate hypotheses about a single enemy task,
for constraint solving tractability. Second, we
only consider precedents and situations con-
sisting of single battlespace states. Third, we
are providing the precedent as part of the in-
put, rather than retrieving it automatically
from a memory of experiences. However, even
with these simplifications, this task represents
a significant advance in the state of the art in
combining analogical and spatial reasoning. 

Figure 2 shows an example precedent. In it,
a small enemy unit (Bait) is trying to escape Al-
pha Battalion, which is planning to destroy it

(U.S. Army 1997). This level of analysis can be
automated using AI techniques, but it requires
GIS data and a wealth of detail to do so (Don-
lon and Forbus 1999). For sketch maps, we
have developed a simpler technique, for two
reasons. First, sketch maps are often used in the
early stages of planning, when many details
have not yet been decided. Second, sketch
maps are lower resolution than GIS systems,
and hence are better suited for rough estimates
than detailed calculations. Consequently, we
use a simplified qualitative theory of trafficabil-
ity, closer to the heuristic guidelines that we
have seen used by commanders. 

There is a standard qualitative representa-
tion for trafficability in military terrain analysis
that divides space into regions that are unre-
stricted terrain (abbreviated UR or “go”), re-
stricted terrain (abbreviated R or “slow go”),
and severely restricted terrain (abbreviated SR
or “no go”). Instead of demanding detailed de-
scriptions of terrain, we assign trafficability cat-
egories based on the overall type of terrain.
Since moving on foot is fundamentally more
flexible than vehicles, our qualitative traffica-
bility theory simplifies the vast array of units
into two distinctions: armor versus infantry.
Table 2 shows the trafficability implications of
the terrain types in nSB. 

Terrain regions can intersect, which slightly
complicates these assignments. For example, a
road over a mountain range or through a
swamp is still UR, while a lake in mountains re-
mains SR. Given a sketch, we compute a single
obstacle and cost diagram by finding the max-
imal partition under intersection of these re-
gions, and assigning costs to regions with two
terrain types based on rules like those above. 
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Terrain Type Armor Infantry

Mountains SR R

Hills R UR

Open/rolling hills UR UR

Forest SR R

Scrub UR UR

Jungle R R

Swamp R R

Desert UR UR

Lake SR SR

River SR SR

Bridge UR UR

City R UR

Road UR UR

Table 2. Trafficability Constraints.



at EA Killzone. Unbeknownst to Alpha, this is
a trap. Berserker Division, hiding behind the
mountain range, attacks Alpha from the rear as
Alpha goes after Bait, causing considerable
damage. This precedent was created with nSB
in the usual way, using a template-based inter-
face to describe why the task was successful. In
this case, the ambush is successful because the
attacker was concealed and could travel to an
engagement area on Alpha’s path. 

Figure 3 shows an example current situation,
from another sketch. Your unit (Bravo) sees an
enemy unit (Bait) trying to escape, and you are
tempted to go after it. But, having heard about
what happened to Alpha, you are worried. Us-
ing nSB, you can ask for hypothesized enemy
tasks about the current situation based on the
precedent sketched state. Its answer is shown
in figure 4. There are two places that an enemy
unit might be hiding to carry out an ambush
similar to what happened before. The rest of
this section describes how results like this one
are computed. 

A key aspect of our approach is the use of
humanlike analogical processing for compar-
isons. Our goal is to ensure that, within the
limitations of our representations, things that
look alike to human users will look alike to the
software. This shared similarity constraint en-
ables the software’s conclusions to be more
trusted by the user. We achieve a shared sense
of similarity by using cognitive simulations of
human analogical processing, over representa-
tions that approximate human visual represen-
tations. The cognitive simulation of analogical
matching we use is the Structure-Mapping En-
gine (SME) (Falkenhainer, Forbus, and Gentner
1989). SME is backed by considerable psycho-
logical evidence (Gentner and Markman 1997).
Of most direct relevance here is evidence that
the structural alignment processes it models
are operating in human visual processing (Fer-
guson 2000), which makes using SME a reason-
able choice for mixed visual and conceptual
analogies. The shared similarity constraint has
proven to be a valuable constraint on represen-
tation and reasoning choices, and has guided
many of the representation and processing
choices described in this article.

When intent hypotheses are requested, nSB
runs SME on the two descriptions, which are
states from sketches. The descriptions include
both visual and conceptual information. SME
derives a set of candidate inferences about the
current situation based on the comparison. So
far, this is simply SME doing what it normally
does. Next, the set of candidate inferences is
searched to see if there is a hypothesized task
that acts on a blue unit. Such a task represents

something the enemy might be doing, if it can
actually be made to work in the current situa-
tion. Specifically, a candidate inference like

(objectActedOn
(:skolem Object-50) Object-64)

which means “there is a task that is like Object-
50 (the destroy task in the precedent) that is
acting on Object-64 (Bravo) in your situation”
The expression (:skolem Object-50) is an anal-
ogy skolem (Falkenhainer, Forbus, and Gentner
1989), an entity whose existence is postulated
based on the correspondences found via the
comparison. A destroy task aimed at one of
your units is a kind of thing that one wants to
know about, so nSB attempts to construct an
entity (or entities) that satisfy the constraints
suggested by the analogy. This is an example of
the skolem resolution problem in analogical
reasoning. 

If such a task is found, a new entity is created
to represent that task. Such new entities are
called analogy plunks, in honor of the notion of
plunks in constraint solving (Stallman and
Sussman 1977). Once a plunk has been made,
SME is reinvoked to mine the analogy further
by extending the mapping with the new infor-
mation (Forbus, Ferguson, and Gentner 1994),
which leads to new candidate inferences con-
cerning the task. This additional information
often involves new skolems (for example, the
attacker, the location, and the path in this
case) and their properties. These new skolems
are plunked in turn, and the mapping extend-
ed further, until a complete set of constraints is
obtained. A critical component of this new in-
formation is the explanation about why the
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Figure 2. An Ambush.



task succeeded. This explanation is used to de-
termine whether the hypothesized task is ap-
plicable in the current situation. 

Once all of the information about the hypo-
thetical task is mined from the analogy, the
system must determine if the task is plausible.
In the current system, we only take into ac-
count spatial constraints, ignoring factors such
as relative combat power. Specifically, we solve
for the locations and paths involved in the
task, to see if we can find positions and a path
that satisfy the task’s constraints. Each combi-
nation of locations and path defines a way for
that task to be executed in the current situa-
tion. For example, the engagement area for the
hypothesized destroy task can be anywhere
along the axis of advance for blue, the starting
point for red is a region that cannot be seen by
blue, and the path must start at red’s location
and end at the engagement area. 

We use the spatial reasoning techniques de-
scribed previously to solve these constraints
and construct the appropriate positions and
path. All consistent solutions found are pre-
sented to the user via a new layer depicting the
solution, as shown in figure 4.

Note that path finding is defined with re-
spect to start and end points, whereas the start
and end locations were only constrained by re-
gions. Since sketch maps are by nature coarse,
we simply use the centroid of a region when
necessary, and display both the concrete loca-
tion and the constraint region. In a perfor-
mance support application this is a reasonable
solution because accurate optimization can de-
pend on more information than the sketch
map has, and once alerted to a general possibil-
ity, in our experience users are quick to see im-
provements. For creating game AIs it will be
useful to optimize automatically, for example,
place the division at the northern edge of the
mountain and attack from behind. 

Other Related Work
Qualitative spatial reasoning has often focused
on mechanical systems (cf. (Forbus, Nielsen,
and Faltings 1991; Stahovich, Davis, and
Shrobe 1996), but some have focused on navi-
gation and locations (cf. Kuipers 2000). None
have focused on supporting the kind of com-
plex reasoning that occurs in the military do-
main. Efforts in the synthetic forces literature
start with GIS data rather than sketch maps.
While terrain analysis is starting to be used in
the computer game industry, the analyses are
often carried out by hand, typically by anno-
tating maps during level design. Winston
(1982) was the first to model the use of prece-
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Figure 3. Current Situation.

Figure 4. Two Possible Ambush Hypotheses. 



dents in supporting reasoning; our system uses
a more sophisticated model of analogical rea-
soning and more complex reasoning to gener-
ate results, making it closer to case-based rea-
soning systems (Leake 1996). 

Discussion and Future Work
We have argued that sketch maps provide an
important arena for qualitative spatial reason-
ing, using battlespace reasoning as a source of
examples. We have described the qualitative
spatial representation and reasoning facilities
in nuSketch Battlespace, a multimodal interface
system that focuses on reasoning rather than
recognition. We have shown that these facili-
ties can be combined with analogical reasoning
to do a sophisticated task, a subset of enemy in-
tent hypothesis generation. While this article
has focused exclusively on the military domain,
we believe these ideas are applicable to a num-
ber of domains, such as architecture and urban
planning. Planning for drainage, scenic views,
and assessing environmental impacts, for in-
stance, seem to involve similar computations
and reasoning. 

While these capabilities are a significant ad-
vance in the state of the art, much research re-
mains before human-quality spatial reasoning
facilities will be achieved. We see three key
problems to address: (1) Optimization within
constraint solutions, such as picking optimal
combinations of starting and ending positions
and paths. This will be very important for sup-
porting war-gaming, where one wants to see
how a plan survives the best that an opponent
might throw at it. (2) Sketch retrieval, that is,
automatically finding precedents (cf. Gross and
Do 1995) to be used in generating enemy in-
tent hypotheses and COAs. We plan to use our
MAC/FAC model of similarity-based remind-
ing (Forbus, Gentner, and Law 1995) for this.
(3) Moving beyond blob semantics, that is, us-
ing more information about glyph shapes in
matching and retrieval. Our shared similarity
constraint suggests that shape descriptions
need to be guided by results in visual psychol-
ogy to the extent possible (Ferguson 2000;
Saund and Moran 1995). 

As these techniques advance, we intend to
apply them in three ways. First, we plan on
adding more performance support tools to
nSB, such as trafficability calculators and COA
critiquers, to help users generate better plans.
Second, we plan on using it in intelligent tutor-
ing systems for military training. Finally, we
plan on providing interfaces to war game en-
gines, both as a way of providing war-gaming
for performance support, and as an interface to

commercial computer games. Discussions are
already underway with several computer game
design studios concerning the use of our spa-
tial reasoning techniques in their upcoming
games. We are also currently constructing a
two-player war-game, nuWar, based on nSB, to
provide an experimental platform for building
systems that can learn strategies and tactics by
watching capable human players and for fu-
ture intelligent tutoring systems.
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