Al Magazine Volume 25 Number 3 (2004) (© AAAI)

Building Agents to
Serve Customers

Mihai Barbuceanu, Mark S. Fox, Lei Hong,
Yannick Lallement, and Zhongdong Zhang

B Al agents combining natural language interaction,
task planning, and business ontologies can help
companies provide better-quality and more cost-
effective customer service. Our customer-service
agents use natural language to interact with cus-
tomers, enabling customers to state their inten-
tions directly instead of searching for the places on
the Web site that may address their concern. We
use planning methods to search systematically for
the solution to the customer’s problem, ensuring
that a resolution satisfactory for both the customer
and the company is found, if one exists. Our
agents converse with customers, guaranteeing that
needed information is acquired from customers
and that relevant information is provided to them
in order for both parties to make the right deci-
sion. The net effect is a more frictionless interac-
tion process that improves the customer experi-
ence and makes businesses more competitive on
the service front.

s companies optimize their production
Aand supply-chain processes, more peo-

ple use the quality of customer service to
differentiate between alternative vendors or
service providers. Customer service is currently
a manual process supported by costly call-cen-
ter infrastructures. Its lack of flexibility in
adapting to fluctuations in demand and prod-
uct change, together with the staffing and
training difficulties caused by massive person-
nel turnovers, often results in long telephone
queues and frustrated customers. This is a ma-
jor cause for concern, as it generally costs five
times more to acquire a new customer than to
keep an existing one.

How can Al help in addressing this problem?
For several years we have built a domain-inde-
pendent Al platform for creating conversation-
al customer-service agents that use a variety of
natural language understanding and reasoning

methods to interact with customers and re-
solve their problems. We have applied this
platform to customer-service applications such
as technical diagnosis of wireless-service deliv-
ery problems, product recommendation, order
management, quality complaint management,
and sales recovery, among others. The result-
ing solutions and the lessons learned in the
process are the subject of this article.

Understanding, Interaction,
and Resolution

Compared to the “newspaper page” model of
Web sites, in which people have to navigate
the site, find the information they need, and
make the ensuing decisions on their own, nat-
ural language interaction combined with Al-
based reasoning can change the interactive ex-
perience profoundly (Allen et al. 2001). The
high bandwidth of natural language allows
users to state their intentions directly, instead
of searching for a place in the site that seems to
address their problem. Having a reasoning sys-
tem that plans (in an Al sense) for achieving
the user goals increases the certainty that a so-
lution that can satisfy both the user and the
company will be found. The ability to converse
guarantees that the relevant information is ac-
quired from the user and provided to the user
if and when needed in order for both parties to
make the right decisions.

Ideally, a conversational customer-interac-
tion agent should be able to understand lan-
guage, converse and resolve problems with
high accuracy within its main area of compe-
tence, and degrade gracefully as we depart
from this area. Human users react with more
displeasure when the agent exhibits complete
failure to understand than when it shows par-
tial understanding or even an effort to under-

Copyright © 2004, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2004 / $2.00

Articles

FALL 2004 47

Articles

48 AI MAGAZINE

stand. They also assume that an agent should
know about issues that are commonsensically
related to its main competence area. Therefore,
graceful degradation must be provided, sup-
ported by a critical minimum of commonsense
knowledge around the main competence area.

The Internet currently reaches a variety of
touch points through which the agent must be
available: Web browsers on high-resolution
desktops and small-screen devices such as cel-
lular telephones and PDAs, e-mail, and the
public telephony network accessible by tele-
phone. Consequently, a user must be able to
achieve the same goals with the same results
through any of these channels. State changes
performed on one channel (for example,
changing an order) must be reflected on the
other channels. As some interactions are easier
on some channels than on others, the agent is
responsible for planning and carrying out con-
versations such that it uses the advantages and
avoids the pitfalls of each channel in part.

To create customer agents of this type, a large
variety of types of knowledge need to be repre-
sented and applied, including linguistics
knowledge, conversation-planning knowledge,
and industry- and company-specific business
knowledge. Last but not least, an engineering
challenge is to represent all these types of
knowledge uniformly in a complete ontology
that is supported by visual editing tools and
that facilitates componentization and reuse.

Overall Architecture

How do we achieve these objectives? An inter-
active customer agent built on our platform
has the architecture shown in figure 1. The ex-
ample illustrated is about games that are sub-
scribed to online and downloaded through the
air for use on Java-enabled cellular telephones.

The user input (from no matter what chan-
nel) is first converted into an internal message
format. From this, the Natural Language Un-
derstanding module produces a set of semantic
frames that represent the user’s intention and
contain relevant information extracted from
the input. These frames are passed to the Con-
versation Management module. This module
identifies whether the issue can be answered
immediately or whether a longer conversation
needs to be initiated. In the latter case, a work-
space is created for the Interaction Planner,
consisting of a goal stack and a database. The
goal stack is initiated with the starting goal.
The planner uses a hierarchical task-planning
method to decompose goals into subgoals and
perform a backtracking search to satisfy them.
If the user complains about not being able to

use a specific game, the planner creates sub-
goals for applying a diagnosis method to deter-
mine the cause. Normally the investigation
would start with obtaining user account infor-
mation from the back end and determining the
conditions under which the incident occurred.
The Business Reasoning module performs do-
main inferences, such as determining that the
user’s device must be J2ME enabled, and ap-
plies business policies, such as verifying con-
tent-rating restrictions on user accounts (in the
process, accessing account information from
the back end). In figure 1, the incident location
was not provided in the input, and thus has to
be asked for. The Ask-incident-location method
used for the Establish-incident-location goal
determines the incident location by requesting
the Natural Language Generation module to
create the question for the user. At this point,
the user can answer the question or diverge
and create another conversation topic by ask-
ing a different question. Dialogue manage-
ment policies in the agent allow such diver-
sions to be handled in various ways.

Understanding
Natural Language

The need for both breadth and depth of inter-
action has led us to integrate two natural lan-
guage-understanding methods. The first, con-
ferring high accuracy in limited domain
segments, is analytic. It relies on a staged ap-
proach involving tokenizing, limited syntax
analysis, semantic analysis, merging, and log-
ical interpretation. The second is a similarity-
based method that computes the degree of
similarity between a question and a set of pos-
sible answers, returning the answers that have
the highest similarity. This is used to provide
general answers from an arbitrary set of preex-
isting documents. The two methods can be
used in combination based on a unique do-
main ontology.

Domain Ontology

An ontology is a conceptualization of an appli-
cation domain shared by a community of in-
terest, in our case including at least the ven-
dors and the customers of the products the
agent is servicing.

We use description logics (Borgida et al.
1989) to represent ontologies. Description log-
ics represent knowledge by means of structured
concepts organized in lattices. A lattice is an
acyclic-directed graph with a top and a bottom
node. See figure 2 for an example. An edge in
the graph represents a subsumption relation
between two concepts. A concept a subsumes a

Agent:

Web E-mail Phone

User:

“Where were you
when you

experienced these
problems?”

J’ “I bought a bunch
of games for my kid,
\ ﬁﬁ:ﬁg&lj / but yesterday he

couldn’t use any

Y
Natural . Natural
Language Conversation Language
Generation | | Management | |Understanding
Goal: Establish- .v Usage-complaint
incident-location Interaction Application: game
Method: Ask- Planner Date: 17 Nov 02
incident-location T
Y
LRI Infer device
Account: 123234 Reasoning e—— =
Activity: J2ME-enabled
Y
Adapter Get account info

Figure 1. Overall Agent Architecture.

concept b, subsumes(a, b), if and only if any in-
stance of b is also an instance of a. Description
logics provide automated concept classifica-
tion (see figure 3, “Classification in Description
Logics”). Figure 2 shows a very small, classified
product lattice. It also illustrates the ability of
the formalism to handle disjoint subconcepts.
These are subconcepts that do not have com-
mon instances, such as those marked with an
“x” in the figure (Vegetable and Meat). Classi-
fication is valuable for ontology construction,
as it enforces and clarifies the semantics of con-
cepts by making explicit the logical conse-
quences of their definitions. (See figure 3.)

Knowledge-Based Language
Understanding

We use linguistic and domain knowledge to
understand natural language expressions by

applying a sequence of steps to the linguistic
input: tokenization, syntax analysis, semantic
analysis, merging, and logical interpretation.
Here’s what each step does.

Tokenization. Words are first tagged with part
of speech information. Main tags indicate
nouns, verbs, adjectives, adverbs, prepositions,
determiners, as well as the tense and the singu-
lar or plural form. Words not found in the dic-
tionary are spelling-checked and corrected. Re-
maining words are tagged as general alpha-digit
or digit strings. Alpha-digit and digit strings are
then recognized as URLs, e-mails, or telephone
numbers. Token sequences are recognized as
dates, addresses, person and institution names,
and a few others. Domain-specific token gram-
mars defined as regular expressions are applied
if defined.

Syntax Analysis. Syntax analysis is limited to

Articles

FALL 2004 49

Articles

Top
Product
X
Meat
Vegetable / \
Beef Pork Fish
Bottom

Figure 2. Classified Concept Lattice.

Given a set of nodes N and the subsumption relations
amongst them as a subset of N*N, classification generates a
lattice containing the nodes N such that any node a in N is
connected to its most specific subsumers (MSS) and most
general subsumees (MGS). The set MSS contains subsumers
ofasuchthatnonodeexiststhatsubsumesaandis
subsumed by a node from MSS. The set MGS contains
subsumees of a such that no node exists that is subsumed
by a and subsumes a node in MGS.

Figure 3. Classification in Description Logics.

the recognition of structures that can be reliably
recognized. Based on the Fastus (Appelt et al.
1993) approach, we recognize only noun groups
and verb groups. The noun group consists of the
head noun of a noun phrase together with its
determiners and modifiers, for example, “the
new game” or “two pounds of brown-spotted
Bonita bananas.” The verb group consists of a
verb together with its auxiliaries and adverbs,
for example, “were delivered late yesterday
evening” in “two pounds of brown-spotted ba-
nanas were delivered late yesterday evening.”
Verb groups are tagged as active, passive, infini-
tive, gerund, and negated. Noun and verb
groups are scored in a manner that increases

50 AI MAGAZINE

with the percentage of the input they account
for. This biases the system toward preferring
longer subsuming phrases to shorter ones. How-
ever, no phrase is discarded.

Semantic Analysis. The next step is to recog-
nize instances of ontology concepts. At the
topmost level (immediately under the top
node), the ontology is divided into Obijects,
Events, Attributes, Roles, and Values. Objects
have single or multiply valued attributes, while
events have single or multiply valued roles. In-
stances of these concepts are recognized by se-
mantic patterns. Semantic patterns rely on the
presence of denoting words as well as on veri-
fying constraints among entities. The denoting
words are sets of words or expressions that, if
encountered in the linguistic input, imply the
possible presence of that concept. The denot-
ing words and expressions are inherited by
subconcepts. An object or event can be implied
directly, by finding any of its denoting words,
or by finding denoting words that imply any of
its subconcepts in the classified ontology.

Figure 4 illustrates a semantic pattern for the
Produce concept and the way the fragment
“the large white spuds” is recognized as denot-
ing an instance of produce. The particular Ob-
jectPattern shown simply requires a noun
group whose head is a word that denotes
(through the inheritance-based denoting-words
mechanism) the concept Produce. Fragments
like “the fatty Atlantic salmon” or “a box of
President’s Choice soy milk” would be recog-
nized as denoting the Produce concept in exact-
ly the same way by this pattern.

Obijects and events recognized by some pat-
terns can be bound in other patterns to recog-
nize further objects and events. For example,
having recognized “the large white spuds” as
an instance of Produce makes it possible to ap-
ply the produce-not-fresh EventPattern in fig-
ure 4 to the full input sentence “the large white
spuds delivered Monday were not fresh.” This
results in recognizing the input as a complaint
of the type “<produce> is <not fresh>.” Note
that a sentence of the type “is <not fresh>
<produce>" would also have been recognized
by the same event pattern, because the se-
quencing constraints in the pattern (the seq
predicates in the test clause) allow both of
these orders.

Merging. After applying the patterns in the se-
mantics stage, the merging stage combines ob-
jects and events into higher-order aggregates.
In figure 4, a Quality-complaint event (not
containing the role date) and a Date object are
merged into a new Quality-complaint event.
The new event contains the union of the roles
and attributes of the merged objects and

Articles

“the large white spuds delivered Monday Top
were not fresh.” |

Obiject

(ObjectPattern |

(name produce-1) Produce
(object produce)

(pattern “(noun-group(head ?n))”) / \

(test “(denotes ?n object produce)”)

(fill-attributes produce “?n”)) Vegetable Meat
(Produce (Potato

(name Produce)

(produce potato”)) (Date (name Potato)

(name Date) (super vegetable)
(date “12 Dec 2002”)) (denoted-by “potato”
l(murphy” ”Spud” lltater”))

(EventPattern(name produce-not-fresh)
(event Quality-complaint)
(pattern “?p <- (Produce)”
“?v <- (verb-group(head be)(negated TRUE))”
“?f <- (adj-group(head n))”)
(test “(denotes ?n attribute state fresh)”
“(or(seq ?p ?v ?f)(seq ?v ?f ?p))”)
(fill-role produce “?p”)

(certainty 0.8)).
N ¥

(MergePattern(name complaint-and-date)
(resulting-event Quality-complaint)
(pattern “?ev <- (Quality-complaint)”

“?date <- (Date)”
(test “(not(contains-role ?ev date))”)
(merge “?ev”)
(remove “?ev”))

Figure 4. Semantic Analysis and Merging.

FALL 2004

51

Articles

52 AI MAGAZINE

events. Merge patterns solve most of the
pronominal references to entities occurring in
the message, as, for example, binding “it” to
“an order” in “I placed an order yesterday on
the site. Now I need to change it.” To solve ref-
erences to entities introduced in the dialogue
by the system, these entities are appended to
the user message by the Natural Language Gen-
eration moduleand then merged as usual.

Logical Interpretation. The application do-
main may logically constrain the meaning of a
user message by making certain interpretations
inconsistent with each other. For example, it is
not possible for someone at the same time to
change the date of an order and to cancel it. We
define a consistent interpretation of a message
as a set of mutually consistent recognized ob-
jects and events. Assuming we have an order
with unique ID 735, {(change-order 735), (can-
cel-order 735)} is not a consistent interpreta-
tion, but both {(change-order 735)} and {(can-
cel-order 735)} are. The score of an inter-
pretation is the sum of the scores of its final
components (objects and events). A compo-
nent is said to be final if it is not contained in
other components (as values of their roles or at-
tributes). The logical-interpretation stage has
the goal of finding a consistent interpretation
of the input that has a maximal score (Fox and
Mostow 1977). The problem can be solved ex-
actly by discrete optimization methods with
branch and bound or other forms of backtrack-
ing search. We have not yet encountered situa-
tions in which this would be needed. Instead,
we provide incompatibility patterns that detect
inconsistent interpretations and locally resolve
them by heuristically choosing what compo-
nents to eliminate.

Similarity-Based Language
Understanding

The analytic approach can provide high accu-
racy but is knowledge intensive. To obtain
wide domain coverage and graceful degrada-
tion, we have integrated a similarity-based
method into our system. This approach does
not provide a first-principles interpretation of a
sentence. Rather, it computes the degree of lex-
ical similarity between a message and a set of
lexical (multiword) entities, returning the enti-
ties with highest similarity. The set of lexical
entities we match against can be arbitrary doc-
uments or more specialized data such as prod-
uct catalogues, geographical locations, institu-
tion names, and so on.

We define a lexical entity e as a tuple: e = <Q,
R, C, O>. Here, Q is a reference question, R is
the response to it, C is a set (corpus) of ques-
tions, C = {g;}, such that each g; has R as its re-

sponse or is semantically a synonym of R. Fi-
nally, O is a list of ontology concepts estab-
lished when this entity is recognized.

If e is a frequently asked question (FAQ), an
example is Q(e) = “How do I contact you?” R(e)
= “Call 1-800-555-1212,” C(e) = {“Do you guys
have a phone number?” “Where do I call
you?”} and O(e) = {FAQ}

With e a geographical location, an example
is Q(e) = “,” R(e) = “Quebec, Canada,” C(e) =
{“Quebec,” “La Belle Province”}, O(e) = {Loca-
tion}.

Finally, with e a product name, an example

is Q(e) = “,” R(e) = “Red Rabbit” and C(e) =
{“Red Rabbit by Tom Clancy,” “Clancy’s latest
book”}, O(e) = {Product}.
Searching and Matching. The standard solu-
tion to recognizing the presence of such enti-
ties in a message is key word search, where key
words consist of words from the Q, R, and C
components after stop-word elimination,
stemming, and synonym equivalence. Found
words are scored based on measures such as in-
verse corpus frequency or fixed scores based on
the part of speech (nouns and verbs score more
than adjectives and adverbs). The final similar-
ity score is computed in several ways depend-
ing on the application. These include the stan-
dard information retrieval tf*idf method
(Salton and McGill 1983) (for FAQs) or more-
specific methods that consider word order as
well (for geographical location and product
names). The implementation is based on the
Jakarta Lucene public-domain search engine
(jakarta.apache.org/).

Reinforcement Learning. The similarity ap-
proach relies on having a rather large and up-
to-date corpus C for each entity. We use rein-
forcement learning (Watkins and Dayan 1992)
to automate the construction and mainte-
nance of this corpus. Given a set of entities E
where each e = <Q, R, C, O>, reinforcement
learning continuously updates a relevance
measure of the value of each element in C(e)
every time the entity e is being asked about.
The low-valued elements are eventually forgot-
ten, while new useful ones are being learned,
guaranteeing that the corpus C(e) is always up
to date.

Assume the user has input the question g =
“Can I give a few bucks to the driver?” First, the
best n matches to this are found. The reference
questions are displayed and the user clicks the
one conveying the intended meaning, for ex-
ample, “Is tipping necessary?” Based on this in-
formation, we update the relevance scores for
the questions in the corpus for this selected en-
tity. Let g, be the corpus question that actually
did match. Its score is increased by rele-

User: [‘ve got the order
yesterday, and all strawberries
were smashed.

System: Do you have the
order number?

User: anyway, what's your
return policy?

System: You can be refunded

up to $10 per month up to
$100 per year. In your case,
you have already been
refunded $70 this year.

So, can I have the order
number, please?

User: [‘ve got the order
yesterday, and all strawberries
were smashed.

System: Do you have the
order number?

User: and two weeks ago I asked
to cancel the order and it was not.
System: I understand you
have a second complaint. Let's
get to that after we finish the
current one.

So, can I have the order
number, please?

Figure 5. Switching between Deliberative and Reactive Behaviors.

vance(q,,) <- d*relevance(q,,) + (1 -d)*1. The oth-
er questions g; were not useful, so their score is
reduced by relevance(q;) <— d*relevance(q;) + (1 -
d) * (-1). In both cases, 0 <=d <=1 is a con-
stant that determines how quickly we devalue
past experiences. Finally, g is added to the cor-
pus of the selected entity. If the size of the cor-
pus for the selected entity exceeds a set limit,
the lowest-scored question is removed.

Similarity-based language understanding
has several uses in our system. It is the fallback
approach when the analytic method fails. Of-
ten FAQ sets are used as the repository in this
case, ensuring that the user will get some rele-
vant answers. And it is also used in situations
where first-principles methods are simply inap-
plicable. For example, to recognize product
names from product catalogues, important in
retail applications, or to recognize references to
geographical locations in applications dealing
with the delivery of goods or services.

Managing the Dialogue

The results of the language-understanding
stage are expressed as frame structures that
have slots for the information extracted from
the input. An input like “I got the order deliv-
ered yesterday, and I noticed that the strawber-
ries were all smashed” is expressed as a Quality-
complaint frame, with strawberries as the
product, physically damaged as the quality is-
sue, and “26 Nov 2002” (say) as the date. This
frame implies that the user’s goal is to make a

complaint and obtain a resolution. User goals
are treated in two ways. Complex goals, like
the quality complaint, are treated in a deliber-
ative manner. The agent starts planning a con-
versation that will decide what information to
elicit and what business policies to apply to
find a mutually satisfactory resolution. Simple
goals, usually requests for information (“Do
you charge a fee for bounced checks?”) are
treated reactively, with the system providing
the response and considering the issue termi-
nated. The two types of goals are treated differ-
ently during the interaction. In the planned
mode, the user can always ignore the current
system question and ask a reactive question—
this is immediately answered, and the planned
mode is resumed (figure 5, left). If the request
can be addressed only in planned mode, the
currently executing planned interaction may
or may not be interrupted, depending on the
priorities of the respective goals (figure 5,
right).

For each deliberative interaction, the Con-
versation Management module creates a work-
space, which contains a local database and a
goal stack initialized with the inferred user
goal, for the Interaction Planner. When the
workspace is active, goals are refined into sub-
goals, questions are asked, inferences are made,
and business policies are applied. Several work-
spaces can be active in the same time, corre-
sponding to various conversation topics.
Mechanisms are provided for a workspace to
inherit values from other workspaces, creating

Articles

FALL 2004 53

Articles

54 AI MAGAZINE

an interaction context that extends across the
entire session. Reactive goals can generate re-
sponses sensitive to the current deliberative
goal as context, as illustrated in figure 5.

The Interaction Planner

In a business environment, a planning ap-
proach to interaction is necessary to guarantee
that the solution search space is systematically
explored and that a solution is found if one ex-
ists. This is a strong argument for Al agents—
they never tire in the search for the best solu-
tion and either find it or tell you if none exists.

We use a hierarchical task network (HTN)
(Wilkins 1988) type of planning for its clarity
and naturalness. In designing the interactive
planning language, the issue has not been the
complexity of the task networks or the size of
the search space—in many business environ-
ments these have to be simple enough for
people to manage. The issue has been con-
ducting the dialogue such that the logical
flow is clear, backtracking in the middle of the
dialogue can be made comprehensible, and
the agent keeps communicating what it is do-
ing and why.

Hierarchical task networks consist of goal re-
finements into subgoals. Figure 6 illustrates a
task network example from the wireless-service
diagnosis application, together with an exam-
ple customer-service conversation. Refine-
ments marked with OR are disjunctive (at least
one must be carried out), while the others are
conjunctive and ordered (all must be carried
out in the shown left-to-right order).

At the top level of the illustrated task net-
work, troubleshooting consists of first acquir-
ing a problem description followed by estab-
lishing the cause of the problem. There can be
two classes of problems in the example, which
we discuss briefly. Download problems are
identified by a recorded attempt to download
(through the air). The attempt to download
can fail because the device has insufficient
memory or because the device loses the con-
nection in the process. In the former case, users
are advised as to how to increase the memory
on their telephone. The latter is treated as a re-
port of network failure, and the service data-
base is updated with the location where the
failure was reported. If the download was suc-
cessful, then the problem is local to the device,
and the user is advised on how to deal with it.

Nondownload problems fall into several
subclasses, and more than one can occur at the
same time. The device may be incompatible
with the service, there may be account restric-
tions (such as content rating), subscriptions
may have run out, or the network may be

down. Any of the established problems are ex-
plained to the user. This process is in fact a
form of heuristic classification (Clancey 1985),
a well-known problem-solving method applic-
able to diagnosis tasks.

To achieve a goal, three types of operators
are available, Ask, Infer, and Expand. The inter-
active operator (Ask) generates a question for
the user (via the natural language generation
module), obtains the interpretations of the re-
sponse from Natural Language Understanding,
and uses them to update the values of the plan-
ning variables associated with the current
workspace. The AskLocation goal in figure 6
can be achieved by an Ask operator that gener-
ates the following example dialogue fragment:

Agent: Where were you when you experienced

the loss of connection?

User: On Highway 400, south of Barrie.

In this case, “Highway 400, south of Barrie”
is extracted as the location of the incident and
stored in the current workspace, where it can
be accessed by other operators. The main com-
ponents of the Ask operator are: (1) a precon-
dition in terms of the workspace variables and
the current and past semantic frames; (2) a lan-
guage-generation request for question formula-
tion; (3) the function or method to interpret
the response; and (4) the number of times the
question can be reasked if the response is not
understood. If this is exceeded without the an-
swer being understood, the operator fails and
backtracking is initiated.

The noninteractive operator (Infer) is used
to perform deductions based on the existing
values in the workspace. It is similar to Ask, but
does not generate any questions. It may, how-
ever, inform the user about inferences drawn to
further clarify the interaction.

If the goal cannot be achieved directly, it can
be expanded into an ordered sequence of sub-
goals using the Expand operator. Figure 6 is
composed of possible refinements as specified
by this operator. This operator is similarly in-
strumented to clarify the dialogue flow. In-
form-type messages can be specified for use
when a goal is expanded into certain subgoals
(for example, “I'm going to ask you now a few
questions about your account”). Other Inform
messages are for use when an expansion failed
and backtracking is about to begin (for exam-
ple, “I could not find your order based on the
provided information”) or when an expansion
succeeded. The Expand operator also specifies
the constraints that must be satisfied in order
for the expansion to be considered successful.
The constraints are of two kinds. Computed
constraints are predicates among workspace
variables (for example, that a subscription to a

Articles

WirelessServiceTroubleshoot

~

UpdateServiceDB

At our cottage in Haliburton

/OR \

EstablishCause
OR
AcquireProblemDescription
NonDownloadProblem
DownloadProblem VerifyDeviceCompatibility
« O
VerifyAccountRestrictions
DownloadSuccessful Y
VerifySubscription
InsufficientMemory LossOfConnection
VerifyNetworkDowntime

IdentifyLocation

g S

AskLocation

UpdateServiceDB

Please describe your problem.
2 hours ago my kid tried several times to play Invaders, but without success

Where were you when this happened?

Our digital network is temporarily out of service in the Haliburton area, due to some
upgrade work. The network should be restored by 5 pm today. We really apologize for this.

Figure 6. Task Network for Service Diagnosis and Example Conversation.

service by a user is still active). Interactive con-
straints replace the predicate by an accept-re-
ject type of question addressed to the user, for
example “Service upgrade during weekends is
subject to an extra $5.00 per month. Would
you like to upgrade?” Computed constraints
are similar to Infer operators, while interactive
ones are similar to Ask operators, except that
they do not update workspace data.

This description applies to the deliberative
behavior. The reactive behavior allows users to
deviate for a short time from the planned inter-
action, ask their own questions, get the re-
sponse, and continue with the planned inter-

action. To make the agent reactive, we use the
React operator. This looks for unexpected se-
mantic frames (coming from unexpected in-
put) and answers them if the preconditions are
satisfied. Reactions can be supported every-
where or in specified contexts, for example,
when a certain (deliberative) goal is being pur-
sued or during certain Ask executions. A reac-
tion can specify the response messages to be
generated and the side-effect actions to exe-
cute. In many cases, we use reactions to answer
FAQs in context, as illustrated in figure 5.

The interaction planning system is aware of
the interaction channel (Web, e-mail, or voice)

FALL 2004 55

Articles

(BusinessRule

(name fastest-delivery)

(patter “(shortest-lead-time-query (from ?from) (to ?to))”
“?crt <— (current-shortest ?from ?to ?time ?mode ?cost)”
“(delivery-lead-time-policy
(from ?from)(to ?to)(lead-time ?lead)(price-per-kg ?pr))”

(test “(< ?lead ?time)”)

(do “(retract ?crt)”

“(assert (current-shortest ?from ?to ?lead ?pr))”)).

56 AI MAGAZINE

Figure 7. Sample Business Rule.

on which the system functions. The differences
among these channels require that we use the
advantages and avoid the drawbacks of each.
For example, plan to fill in a form in a browser,
parse information from e-mails, or prompt and
check pieces of information individually on
the telephone. Channel-specific behaviors are
created by specifying alternative goal expan-
sions conditioned by the interaction channel.
Voice interactions based on commercial voice-
recognition engines are particularly limited by
the size of the vocabulary that can be reliably
recognized and are therefore handled in our
applications by specific goal expansions.

Business Reasoning

Our architecture makes a clear distinction
among the strategic level at which all interac-
tions are managed by Conversation Manage-
ment, the level of planning of goal-directed in-
teractions by the Interaction Planner, and the
domain reasoning level supported by the Busi-
ness Reasoning module. This is consistent with
previous work on knowledge acquisition and
problem-solving methods (McDermott 1988)
that has emphasized the recognition of the
types and roles of knowledge as the basis of sys-
tematic development of Al applications.

The main purpose of the Business Reasoning
module is to provide the framework for speci-
fying and applying business-specific policies.
In the wireless-service diagnosis example, a
business policy is that accounts can not con-
tain applications that violate defined content
ratings. Business policies for e-commerce appli-
cations may specify lead times and cutoff times
for order modification, various constraints on
refunds and returns, and so on. The second
purpose is to map the data model used by back-
end systems into a format understood by our
platform and to update the back end in a trans-
actional manner.

The provided conceptualization for describ-
ing business reasoning consists of classes for

business objects, business policies, business
rules, queries, and actions. The system is used
through an Ask and Tell interface. The Ask op-
erator is used to pose a query that will be an-
swered, while Tell is used to assert facts, which
the system may act on at its discretion. For ex-
ample, (ask shortest-lead-time Toronto Van-
couver) asks for the shortest lead-time for a de-
livery from Toronto to Vancouver. To answer it,
the system applies business rules that match
queries with policies to produce answers. For
an example, see figure 7.

Language Generation

The language-generation component creates
the linguistic form for the system’s questions
and messages. We use a two-stage generation
process. First, the individual messages request-
ed by various planning operators are collected
into several buckets. Second, these messages
are assembled and edited in the final form to
be seen by the user. The component messages
can contain any number of Inform speech acts
and a single Ask speech act. Each component
message is created by instantiating a Genera-
tionTemplate. The templates themselves are
annotated with pragmatic attributes of the text
they generate, for example concise, verbose, po-
lite, and so on. There can be multiple templates
generating the same information content in
different forms. The choice of the actual tem-
plate used depends on a score that reflects how
well its pragmatic attributes match the attrib-
utes in the initial generation request (the latter
are set by the planning operators and are based
on the context and nature of the interaction).
Randomization is used when scores are equal.
The assembly and editing of the individual
messages into the final form are performed by
language-generation operators named Genera-
tionPolicies. These can sort the components,
filter out redundant ones, insert punctuation,
format the text, and so on.

On interaction channels that use text (Web,
e-mail), the system generates either simple text
or HTML forms. On the voice channel, it gen-
erates VoiceXML (Boyer et al. 2000) scripts that
play vocal prompts, define input grammars,
and evaluate the voice response using a voice-
recognition engine. The Natural Language Un-
derstanding module is bypassed for voice inter-
actions, as we use the comparatively limited
language-understanding ability of the voice-
recognition engine. We currently use commer-
cial voice-recognition engines provided by
voice ASPs like Voxeo (www.voxeo.com),
which also provide all the telephony inter-
faces. The voice ASP handles the voice ex-
change according to the VoiceXML script re-

Articles

Gifts Web Flowers Department Store Books and Music
(Production) Grocery (Beta) (Client Evaluation) (Client Evaluation)
(Beta)
Correctly 66% 65% 52% 55% 64%
Solved
Order Status 33% 10% 3.3% - 20%
Order 2% 3% 4.6% - 12%
Change
Quality Issue - 17% - - -
Missing - 16% - - 4%
Items
Account 15% 9% 4.9% 12% 6%
Issues
Product 5% 10% 7.2% - 1%
Availability
Delivery 21% 2% 2.8% - 4%
Inquiries
Business 3% 11% 56.4% 67% 11%
Policy
Questions

Table 1. Applications Based on the Retail Repository.

ceived from our server. Interestingly, adding
VoiceXML scripts to the generation module
was the only platform modification required to
have our conversational approach function on
the telephony network.

Ontology-Driven Development

Managing the application development pro-
cess for this platform is challenging due to the
diversity and specialization of the knowledge
involved. We are addressing this problem by
adopting an ontology-driven development ap-
proach. In essence, we develop an application
by creating an ontology that contains frames
for all the types of knowledge we need. This is
possible because, as illustrated, we have de-
fined frame structures for every type of knowl-
edge in the system-linguistic components
(such as object and event patterns, merge pat-
terns), conversation and planning components
(such as the Ask, Infer, Expand, and React op-
erators), and language-generation and busi-
ness-reasoning components.

We use Protégé (Noy, Fergerson, and Musen
2000) as our visual ontology editor (figure 8).
The frames manipulated in the development
process are translated into the platform’s native
Jess (Friedman-Hill 2003) rule language objects
via the Jess Tab included in Protégé. Once trans-
lated into Jess objects, the normal processing
takes place. Some objects are interpreted by Jess
rules to provide the desired functionality, for ex-
ample, the planning and the language-genera-
tion operators. Others are compiled into Jess

rules using Jess’s ability to generate rules dy-
namically. This is how the natural-language and
business-reasoning components are treated.

The advantage of this approach is the ability
to represent a large knowledge typology in a
uniform frame format for which a sophisticat-
ed visual knowledge editor exists. The editor
makes it possible to develop industry-specific
repositories of components, such as the retail
and telecommunication repositories from
which we used several examples throughout
the article.

Evaluation

The retail repository was used to create several
applications, currently in different stages of de-
ployment (table 1). Each column in table 1
shows an application, with each row represent-
ing a service issue dealt with by the applica-
tion. Client Evaluation means the application
has been evaluated by the client company pri-
or to beta testing on site. For each issue (row),
we show, as a percentage, how often it occurs
in interactions in the application. (As we show
only the main issues, they sum to less than 100
percent for each application.) The Correctly
Solved row shows what total percentage (across
all issues in an application) was correctly
solved by the system. An 80/20 rule was appar-
ent: a few issues dominate the majority of in-
teractions. This is good news because it helps
focus natural language and problem solving on
those issues.

To cope with the remaining issues, we have

FALL 2004 57

Articles

B‘; KPRetailEx1 Protégé-2000

Project Edit Window Help

(C:\Program Files\Protege-2000\KPRetailEx1_pprj)

blsl@ [~ 28

(T)ciasses (s Tstots | TForms| <> mstances |{#h Queries | 7 Jess|

Classes v |: SR ’T”F”z"? : ki> ask-if-change-address-again (askable) [c][x]
IO THING A | kD> ask-if-change-address-again “| Name Known A% E‘F 4
& O :SYSTEM-CLASS A (O ask-new-delivery-date ; |ask-ir-change-address-again | order-id "5:
% KPAbstractStructure (1) 4 &> choose-task-for-order-number delivery-destination-for-new-address
@ EE'S‘COI A gconﬁrm-stt.art-.ovler doct) e first-delivery-date-string-for-new-address
ass conversation-infroduction-again |7 - o
&%NLGCIassA L5 conver introductionfiret Ei [ask if-change-address-again |
@ (C) CMClass A K> dialogue-quit Z
@ (C) PlanningClass A K popup-order-items e Not-known VI iF
(©) goal-communication (8) | popup-order-items-for-missing-prog 7 |categories-got—from-askahle ‘
(C) interactive-constraint (2) 2> popup-orders Z
@ computed-constraint (8) 4 &> popup-recipient-information-form %| Precondition
(© action | |
(©linferable (111) ‘
{S)askable (11) /
© follow-up (20) / Category Category-in-response-to A" I £ IF
(C) expansion-method (95) : [|
@ (© TaskNetworkA 7
¢ © l’gdn‘sar-l;ieIir\rer\;r-al:lclreas‘A Z [Categnry-precnmmm |
@ #expand-modify-delivery: ;
(© authenticate & | [pom—— Expected vV I c I[T
(©) get-orderA ‘ nlu-accept
% get-order-informatio | | iu-reject
©-(C) check-and-change-d Z =
- ; 2| Interpret-with
@ (©) modify-delivery-date & v
©- (C) #expand-modify-delivery |save-calegories-gat-from-askable ‘ When-clicked e I c !’T
@ (©) inquire-delivery A I
Inti et-with-category
©- (C) info-delivery-status & 7 il
©- (C) cancel-orderA / | | _
©- (C) confirm-order A PR Reask Futility-limit
©-(C) send-catalog A | 1” ‘
& (©) do-start-overA 7 [chang&adu:ess‘agam |
© (©introduce-conversation A | ask.with-after-followe-up Reask.inform
@ (T) missing-product-complaint "
©-(C) modify-order & 4 [| |
M ‘| sair
|@ “| Inagementiapplications/retailiconversations

58 AI MAGAZINE

Figure 8. Ontology Editor Screen (Protégé).

Telecommunications Solutions Vendor

(Client Evaluation)
74%
100%

Correctly Solved
Diagnosis and explanation
of wireless service issues

Wireless billing questions -

Consulting Company
(Client Evaluation)
85%

100%

Table 2. Applications Based on the Telecommunications Repository.

included in each application a base of FAQs
recognized through similarity matching.

Table 2 shows similar results for the
telecommunications repository. Here we have
two different applications. The diagnosis one
uses heuristic classification (Clancey 1985) as
the problem-solving method and leads to
longer conversations. The wireless billing ap-
plication has a broad but shallow one ques-
tion—-one answer nature and was done by sim-
ilarity methods.

The critical aspect in all applications is the

ability to understand language. We monitor
and assess this constantly on the basis of graphs
like the one shown in figure 9 (a typical week
from the production Gifts application). We dis-
tinguish in-scope questions (those that the
knowledge base is prepared to deal with) from
out-of-scope ones, but we try to extend the
scope by similarity methods, currently answer-
ing about 30-40 percent of questions overall.
These results are generally satisfactory for a
low-cost “self-serve” customer service solution,
as they show the ability of the automated sys-

tem to reduce call-center costs and give cus-
tomers more access to information.

There is also considerable room for improve-
ment, which we do in several ways. The indus-
try-specific repository approach based on on-
tology modeling languages allows us to
improve our language-understanding ability
by creating reusable concepts and semantic pat-
terns. The lower-accuracy but wide-coverage
similarity-matching method provides a simple,
nontechnical way to extend the scope of the
system dynamically. Finally, we are extending
the similarity-matching approach with statisti-
cal text-classification methods (Dumais et al.
1998), such as Support Vector Machines, that
can learn to perform more-complex mappings
between text and abstract categories than pos-
sible with the standard information-retrieval
model.

Lessons Learned
and Conclusions

Paradoxically, designers of conversational cus-
tomer-interaction systems do not control the
scope of their system. Users do. People will ask
about anything they need to know or do, with-
out caring about the “scope” of the system as
defined by its designers. If the e-commerce site
being serviced happens to be slow for whatever
reason, the customer service agent will get com-
plaints about it. If any information is missing or
unclear on the site, the agent will get questions
about it. The scope of the system is always
“anything commonsensically related to the
business.” Achieving such breadth through de-
tailed semantic language analysis is very hard,
if at all possible. For this reason, we are always
aiming for a “bell curve” relation between the
breadth and depth of understanding. Business
subareas that require deep understanding (for
example, quality complaints in retail) are sup-
ported by elaborated linguistic patterns. Other
subareas are supported by the less-accurate but
wide-coverage similarity method that taps into
the existing document base of any business.
This graceful degradation property ensures that
people get an answer in most cases, even if an
approximate one. Experience has shown that
users are more forgiving if they get an approxi-
mate or partially relevant response than no re-
sponse at all. Finally, if none of these works,
clear provisions must be made to connect cus-
tomers to a live representative before they run
out of patience. A good rule of thumb is to be
risk adverse: every time the answer has been de-
termined by similarity search, insert informa-
tion for live-person connection.

The second lesson has to do with how re-

Articles

90

Percentage

11 12 13 14 16 17
Day of Month
—&@— In scope —A— Correct versus total
—3— Correct versus in scope —>¢— Error

Figure 9. Natural Language Understanding Performance.

sponses are written. In the absence of nonver-
bal communication, gestures that play such an
important role in interhuman interaction, the
connotations contained in the textual respons-
es must be weighed carefully. Freshness, vari-
ety, and being cute when you don’t understand
will always help.

The third lesson is about the role of AI. Many
previous applied Al systems have reported the
“disappearance of AI” phenomenon— fewer
and fewer Al technologies were used as the sys-
tem was being deployed commercially. Our to-
date experience has been that this need not be
the case—our current system contains a good
assortment of integrated Al solutions, each ap-
plied to significant parts of the overall task.

One reason this was possible is the fourth les-
son learned, that we couldn’t have done it
without using an Al programming language.
Most of the system is written in Jess, a Java-em-
bedded descendant of OPS5 and Clips. Properly
understood and used, rule-based programming
and Al-style “second-order programming”
based on constructs like eval, apply, and the Jess
build are invaluable for writing and integrating
complex algorithms in a concise and timely
manner. And their integration with Java gives
us unconstrained access to all the Internet and
other programming resources ever needed.

The platform has been used to create cus-
tomer interaction agents in industry verticals
such as wireless-service provisioning and several
retail domains. These have undergone extensive

FALL 2004 59

Articles

beta testing; some of them have been
in production, and more are to come.
The jury is still out with respect to
whether we have managed to build the
knowledgeable and infinitely patient
agents able to provide the frictionless
customer-service experience envi-
sioned. However, we strongly believe
that this will happen only at the end of
a serious integration effort aimed at
putting together a wide range of Al, In-
ternet, and conventional technologies.

References

Allen, J. E; Byron, D. K.; Dzikovska, M.; Fer-
guson, G.; and Galescu, L. 2001. Toward
Conversational Human Computer Interac-
tion. AI Magazine, 22(4)(Winter): 27-37.
Appelt, D. E.; Hobbs, J. R.; Bear, J.; Israel, D.;
and Tyson, M. 1993. FASTUS: A Finite-State
Processor for Information Extraction from
Real-World Text. In Proceedings of the Thir-
teenth International Joint Conference on Arti-
ficial Intelligence. San Francisco: Morgan
Kaufmann Publishers.

Borgida, A.; Brachman, R. J.; McGuiness,
D.; and Resnick, L. A. 1988. CLASSIC: A
Structural Data Model for Objects. In Pro-
ceedings of the ACM SIGMOD Internation-
al Conference on Management of Data, 59-
67. New York: Association for Computing
Machinery Special Interest Group on Man-
agement of Data.

Boyer, Linda; Danielsen, Peter; Ferrans, Jim;
Karam, Gerald; Ladd, David; Lucas, Bruce,
and Rehor, Kenneth. 2000. Voice Extensi-
ble Markup Language (VoiceXML) W3C
Note 5 May. (www.w3.org/TR/voicexml).
Piscataway, N.]J.: VoiceXML Forum

Clancey, W. J. 1985. Heuristic Classifica-
tion. Artificial Intelligence 27(3): 289-350.

Friedman-Hill, E. 2003. Jess in Action.
Greenwich, Conn.: Manning Publications
Company.

McDermott, J. 1988. A Taxonomy of Prob-
lem Solving Methods. In Automating
Knowledge Acquisition, 225-226, ed S. Mar-
cus. Dortrecht, Holland: Kluwer Academic
Press.

Dumais, S. T.; Platt, J.; Heckerman, D.; and
Sahami, M. 1998. Inductive Learning Algo-
rithms and Representation for Text Catego-
rization. In Proceedings of the Seventh Inter-
national Conference on Information and
Knowledge Management, 148-155. New
York: ACM Press.

Fox, M. S.; and Mostow, J. 1977. Maximal
Consistent Interpretations of Errorful Data
in Hierarchically Modeled Domains. In Pro-
ceedings of the Fifth International Joint Con-
ference on Artificial Intelligence, 165-171. Los
Altos, Calif.: William Kaufmann, Inc.

60 AI MAGAZINE

Noy, N. E; Fergerson, R. W.; and Musen, M.
A. 2000. The Knowledge Model of Protégé
2000: Combining Interoperability and
Flexibility. In Proceedings of the Twelfth Eu-
ropean Workshop on Knowledge Acquisition,
Modeling and Management, 17-32. Lecture
Notes in Computer Science. Berlin:
Springer-Verlag.

Salton, G.; and McGill, M. 1983. Introduc-
tion to Modern Information Retrieval. New
York: McGraw Hill.

Watkins, C. J. C. H.; and P. Dayan, P. 1989.
Q-learning. Machine Learning 8(3): 279-292.
Wilkins, D. 1988. Practical Planning. San
Mateo, Calif.: Morgan Kaufmann Publish-
ers.

Mihai Barbuceanu’s re-
search interests are in
creating theories and
models of interaction
and coordination be-
tween human and artifi-
cial agents. He has creat-
ed one of the first
agent-coordination lan-
guages based on a conversational model;
modeled joint work in organizations using
deontic relationships; and applied decision
theory, game theory, and constraint opti-
mization to develop a negotiation method
that achieves optimal allocations of goods
and services. Recently, his work has been
focused on human computer interaction
using written and spoken natural language.
He is the principal architect of a commer-
cial framework for conversational cus-
tomer-interaction systems that integrate
knowledge-based and statistical methods
for language understanding, information
retrieval, commonsense and specialized do-
main ontologies, multitopic dialogue man-
agement, and hierarchical task-planning
methods. Barbuceanu received his Ph.D.
from the Technical University of Bucharest.
He can be reached at mihai at novator.com.

Mark S. Fox cofounded
and is chairman and
chief executive officer of
Novator Systems Ltd., a
provider of e-commerce
services and software
since 1994. In October
2003, Fox launched
ChocolatePlanet.com,
which will provide same-day delivery of
premium chocolates across North America.
Fox is also a professor of industrial engi-
neering at the University of Toronto, where
his research focuses on enterprise integra-
tion and artificial intelligence. Fox is
known for his pioneering work in con-
straint-directed scheduling, which under-
lies current logisitics, supply-chain man-
agement, and scheduling solutions, and for

his work in ontologies for enterprise mod-
eling. In 1984 Fox cofounded Carnegie
Group Inc. (CGIX on Nasdaq until 1998), a
software company that specialized in intel-
ligent systems for solving engineering,
manufacturing, and telecommunications
problems. In 1975 Fox received his B.Sc. in
computer science from the University of
Toronto, and in 1983 he received his Ph.D.
in computer science from Carnegie Mellon
University, where he was an associate pro-
fessor of computer science and robotics un-
til his return to Toronto in 1991. He is a Fel-
low of the American Association for
Artificial Intelligence. His e-mail address is
msf at eil.utoronto.ca.

Lei Hong received her
B.Sc. degree from Harbin
University of Technolo-
gy, China, in 1990, and a
Master’s degree from
University of Toronto,
Canada, in 2000. In 1990
she joined China Aero-
space Industry Inc.,
where she spent most of her time on real-
time control-system development for vari-
ous industrial applications. From 2000 to
2003 she worked for Novator Systems Inc.,
where she actively worked on e-commerce
applications. Hong’s main interests include
software development for intelligent sys-
tems.

Yannick Lallement re-
ceived his Ph.D. in com-
puter science from the
University of Nancy I,
France, in 1996. He later
joined the Human Com-
puter Interaction Insti-
tute at Carnegie Mellon
University, developing
models of human performance in Soar. He
is now with Novator Systems in Toronto,
working on automated customer-care solu-
tions. His interests focus on artificial intel-
ligence, cognitive modeling, and human-
computer interaction. His e-mail address is
yannick at novator.com.

Zhongdong Zhang re-
ceived his Ph.D. from
the Department of Com-
puter and Information
Science, University of
Constance, Germany, in
1998. He is currently
working on e-commerce
and automated cus-
tomer-care solutions. His research interests
include Web-based information systems,
text categorization/information extraction,
and Web analytics. His e-mail address is
zhang at novator.com.

