
� We describe the HSP2.0 planning algorithm that
entered the second planning contest held at the
Fifth International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS’00). HSP2.0 is
a domain-independent planning algorithm that
implements the family of heuristic search planners
that are characterized by the state space that is
searched (either progression or regression space),
the search algorithm used (variants of best-first
search), and the heuristic function extracted from
the problem representation. This general planner
implements a scheduler that tries different variants
concurrently with different (time) resource
bounds. We also describe how HSP2.0 can be used
as an optimal (and near-optimal) planning algo-
rithm and compare its performance with two oth-
er optimal planners, STAN and BLACKBOX.

HSP2.0 is a new version of the heuristic
search planner (HSP), a domain-inde-
pendent planner that was entered into

the first planning competition (Long 2000;
McDermott 2000). These planners, as well as
the regression planner HSPR (Bonet and Geffner
1999) and the optimal planner HSPR* (Haslum
and Geffner 2000), are all based on the same
idea: Planning problems are mapped into
search problems in a suitable space, which is
solved using a heuristic function extracted
automatically from the problem encoding.
This formulation of planning as heuristic
search appears in McDermott (1996) and
Bonet, Loerincs, and Geffner (1997). Other
heuristic search planners in the AIPS2000 Con-
test are GRT (Refanidis and Vlahavas 1999), FF

(Hoffmann 2000), and ALTALT (Nguyen et al.
2000). Planners such as MIPS (Edelkamp and
Helmart 2000) and STAN (Edelkamp and Hel-
mart 2000) also make use of heuristic search
ideas in certain contexts.

Pure heuristic search planners can be charac-
terized along three main dimensions: (1) the
state space that is searched (either the progres-
sion or regression space), (2) the search algo-

rithm used (most often some version of best-
first or hill-climbing search), and (3) the
heuristic function extracted from the problem
representation. The original version of HSP, for
example, searches the progression space with a
hill-climbing algorithm and a nonadmissible
heuristic derived from a relaxation where
delete lists are assumed empty, and atoms are
assumed independent. FF searches the same
progression space using a different hill-climb-
ing algorithm and a different nonadmissible
heuristic. Something similar is done by GRT.
ALTALT, however, derives the heuristic from the
plan graph constructed by a GRAPHPLAN-type
procedure and uses this heuristic to drive a
regression search from the goal. As a last exam-
ple, HSPR* searches the regression space using
the IDA* algorithm and an admissible heuristic
function computed using a shortest-path algo-
rithm.

Because no choice of the state space, search
algorithm, and heuristic function appears best
across different domains, we developed the
HSP2.0 planner as a general platform for exper-
imenting with different state spaces and differ-
ent heuristics. The search algorithm in HSP2.0 is
currently fixed and implements the WA* algo-
rithm (Korf 1993; Pearl 1983), an A* algorithm
in which the heuristic term h(n) of the evalua-
tion function f(n) = g(n) + h(n) is multiplied by
a parameter W ≥ 1.

It is well known that the parameter W
achieves a trade-off between optimality and
speed. For W = 1, WA* becomes A* and is opti-
mal as long as the heuristic function is admis-
sible (nonoverestimating). For higher W, for
example, W = 2, WA* finds solutions faster, but
these solutions are only guaranteed to be at
most W times away from optimal.

For a particular planning problem, the user
of HSP2.0 can specify the state space to be
searched, the heuristic, and the W parameter.1

For example, the invocation

Articles

FALL 2001 77

HEURISTIC SEARCH
PLANNER 2.0

Blai Bonet and Hector Geffner

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 22 Number 3 (2001) (© AAAI)

S2. The initial state s0 is I.
S3. The goal states s ∈ SG are such that

G ⊆ s.
S4. The actions a ∈ A(s) are the operators

op ∈ O such that Prec(op) ⊆ s.
S5. The transition function f maps states s

into states s′ = s – Del(a) + Add(a) for
a ∈ A(s).

S6. The action costs c(a) are all equal to 1.

We refer to this state space as the progression
space, in contrast to the regression space
described later. When HSP is told to search in
the forward direction, it searches the progres-
sion space starting from the initial state s0.

The regression state space associated with the
same planning problem P can be defined by
the tuple ℜ = (S, s0, SG, A(⋅), f, c), where

R1. The states s ∈ S are sets of atoms from
A.

R2. The initial state s0 is the goal G.
R3. The goal states s ∈ SG are such that

s ⊆ I.
R4. The set of actions A(s) applicable in s

are the operators op in O that are rele-
vant and consistent; namely, Add(op)
∩ s ≠ ∅, and Del(op) ∩ s = ∅.

R5. The state s0 = f(a,s) that follows from
the application of a = op in s, for a ∈
A(s), is such that s′ = s – Add(op) +
Prec(op).

R6. The action costs c(a) are all equal to 1.

HSP2.0 searches this regression space when
told to search backward from the goal. The
regression search has the advantage that it
makes it possible to compute the bulk of the
heuristic function only once (Bonet and Geff-
ner 1999). In the progression search, the
heuristic values are computed from scratch in
every new state. This recomputation is expen-
sive, yet in certain cases, it pays off by provid-
ing useful new information. Likewise, the
regression search has the problem that it often
generates spurious states: states that are not
reachable from the initial problem situation,
such as those where one block is on top of two
different blocks. Some such states are detected
by a procedure that identifies pairs of mutually
exclusive propositions adapted from GRAPHPLAN

(Blum and Furst 1997). Overall, the forward
search is slower than the regression search in
certain domains, but in general, it appears to
be more robust (Bonet and Geffner 2000).

Heuristics
The heuristics hadd and hmax in HSP are derived as
approximations of the optimal cost function of
a “relaxed” planning problem in which delete

hsp –d backward –h h2max –w 1.5
prob4.pddl domain.pddl

runs HSP over the regression space using the
heuristic h2 and the parameter W = 1.5 over
the instance in file prob4.pddl with domain
file domain.pddl. The syntax for the instance
and domain files is given by the PDDL stan-
dard.2 HSP2.0 deals with a fragment of PDDL
that includes STRIPS, negation, types, and con-
ditional effects.

In HSP2.0, the search can be done either for-
ward or backward, and the heuristics can be the
nonadmissible heuristic hadd used in the origi-
nal version of HSP, the admissible heuristic
hmax, and the more informed admissible heuris-
tic h2 formulated in Haslum and Geffner
(2000). By default, HSP2.0 searches in the for-
ward direction with h = hadd and W = 2. The user
can also choose a schedule of options as done
in BLACKBOX. For example, it can tell HSP2.0 to
use some direction and heuristic for a fixed
amount of time and then switch to a different
direction-heuristic combination if no solution
is found. In addition, the different options can
be run concurrently as threads. In the Fifth
International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS’00),
HSP2.0 ran three options concurrently for three
minutes: (1) forward/hadd, backward/hadd, and
backward/h2, all with W = 2. If no solution was
reported by then, HSP2.0 continued with the
forward/hadd option only. The choice for the
three-minute threshold was empirical, follow-
ing the observation that the regression search
most often solved problems quickly or didn’t
solve them at all. The curve for the forward/hadd
combination is smoother: More time often
means more problems solved. Some options
clearly dominated others in particular domains:
For example, in the logistics domain, most
problems were solved by the backward/hadd
option, but in the FreeCell domain most prob-
lems were solved by forward/hadd.

In the rest of this article, we make more pre-
cise the options supported by the HSP2.0 plan-
ner, illustrate the optimality-speed trade-off
involved in the use of the W parameter, and
briefly discuss some results.

State Spaces
A STRIPS problem is a tuple P = 〈A, O, I, G〉, where
A is a set of atoms, O is a set of ground STRIPS

operators, and I ⊆ A and G ⊆ A encode the initial
and goal situations. The state space determined
by P is a tuple S = 〈S, s0, SG, A(⋅), f, c), where

S1. The states s ∈ S are collections of
atoms from A.

Articles

78 AI MAGAZINE

lists are ignored. More precisely, the heuristics
are obtained by combining the estimated costs
g(p; s) of achieving each of the goal atoms p
from a state s. These estimates are obtained by
solving the functional equation

(1)

for all atoms p by means of a Bellman-Ford
type of algorithm. In this algorithm, the mea-
sures g(p; s) are updated as

(2)

starting with g(p; s) = 0 if p ∈ s and g(p; s) = ∞
otherwise, until they do not change. In these
expressions, O(p) stands for the set of operators
that “add” p, and g(Prec(a); s) stands for the
estimated cost of achieving the set of atoms
Prec(a) from s.

For the additive heuristic hadd, the cost g(C;
s) of sets of atoms C is defined as the sum of the
costs g(r; s) of the individual atoms r in C. We
denote such additive costs as gadd(C; s):

(3)

The heuristic hadd(s) is then defined as

(4)

The definition of the cost of sets of atoms in
equation 3 assumes that subgoals are indepen-
dent, which is not true in general, and as a
result, the heuristic might overestimate costs
and is not admissible. An admissible heuristic
can be obtained by defining the costs g(C; s) of
sets of atoms as

(5)

The resulting max heuristic hmax(s) = gmax(G;
s) is admissible, but it is not very informative.
Both heuristics hadd and hmax are supported in
HSP2.0.

The last heuristic supported in HSP2.0 is an
admissible heuristic h2 that dominates hmax.
Both h2 and hmax can be understood as
instances of a general family of polynomial
and admissible heuristics hm for m = 1, 2, ...
(Haslum and Geffner 2000). The higher the
value of m, the more accurate the heuristic but
the more expensive its calculation. The idea
underlying the heuristics hm is to approximate
the cost g(C; s) for achieving a set of atoms C
from a state s by the cost gm(C; s) of the most
costly subset of size m in C. Thus, for m = 1, the
cost g(C; s) is approximated by the cost of the
most costly atom in C, for m = 2, by the cost of
the most costly atom pair in C, and so on. The
costs gm(C; s) are characterized by the equation
in figure 1, where B ∈ R(C) if B is the result of
regressing the set of atoms C through some
action a. The heuristic function hm(s) is then

max
(;) max (;)g C s g r s

r C

def (max costs)
∈

add addh gs G s() (;)def

add
r C

g C s g r s(;) (;)def (additive costs)
∈
∑

g p s g p s g a s
a O p

; : min ; , ;() = () + ()()[]∈ ()
1 Prec

g p s
g a s

p s

a O p

;
min (;)() + ()[]






∈

∈ ()

def

Prec
if

otherwise

0

1

defined as gm(G; s), where G is the goal. HSP2.0
accommodates the heuristics hm for m = 1 and
m = 2 only. Both are obtained by solving the
equation in figure 1 with a Bellman-Ford type
of shortest-path algorithm.

Results
As mentioned earlier, in the competition,
HSP2.0 was run with three concurrent options
for three minutes: (1) forward/hadd, (2) back-
ward/hadd, and (3) backward/h2. If no solution
was found by then, only the option
forward/hadd was allowed to continue. HSP2.0
solved all problems in most of the domains,
except for the scheduling domain, where it
solved the smallest instances only, and blocks
world, where it failed to solve some of the large
instances. In many cases, such as in blocks
world, the plans generated were long and far
from optimal. Overall, the planner FF, based on
similar ideas, did better and, in certain cases,
significantly better primarily because of three
factors: (1) the search direction (forward search
appears to be more robust than backward
search), (2) a heuristic more accurate than hadd
(the only heuristic used by HSP2.0 in the forward
direction), and (3) a good rule for quickly dis-
carding nodes without computing their heuris-
tic values. These features, and others, discussed
at more length in the article by Jörg Hoffmann,
appear to make FF a more powerful planner
than HSP. A potential advantage of HSP is that it
uses a more systematic search algorithm and
that it can be used to generate optimal or arbi-
trarily close to optimal plans. Optimal plans are
obtained for the settings h = h2, dir = backward,
and W = 1. At the same time, if a value of W >
1 is used, the resulting plans are known to be at
most W times away from optimal, and they are
found much faster. As an optimal planner,
HSP2.0 appears to be competitive with optimal
(parallel) GRAPHPLAN and SAT planners such as
STAN and BLACKBOX (see table 1). At the same
time, plans can be obtained much faster with a
small degradation in plan quality by using a
value of W slightly higher than 1 (see table 2).
This trade-off is not so easily available in either
the GRAPHPLAN or SAT planners.

Articles

FALL 2001 79

g C s g B s

g D s

C s

C mm
B R C

m

D C D m
m

; min (;)

max (;)
()

,| |

() +[]








⊆
≤∈

⊂ =

def
if , else

if | |

otherwise

0

1

Figure 1. The Costs gm(C; s).

Paper presented at the Workshop on Model-Theoret-
ic Approaches to Planning, Fifth International Con-
ference on Artificial Intelligence Planning and Sched-
uling (AIPS’00), 14–17 April, Breckenridge, Colorado.

Haslum, P., and Geffner, H. 2000. Admissible Heuris-
tics for Optimal Planning. In Proceedings of the Fifth
International Conference on AI Planning Systems, 70–82.
Menlo Park, Calif.: AAAI Press.

Hoffmann, J. 2000. A Heuristic for Domain-Indepen-
dent Planning and Its Use in an Enforced Hill-Climb-
ing Algorithm. In Proceedings of the Twelfth Interna-
tional Symposium on Methodologies for Intelligent
Systems (ISMIS-00), 216–227. New York: Springer.

Korf, R. 1993. Linear-Space Best-First Search. Artificial
Intelligence 62(1): 41–48.

Long, D. 2000. The AIPS-98 Planning Competition.
AI Magazine 21(2): 13–34.

Long, D., and Fox, M. 1999. The Efficient Implemen-
tation of the Plan-Graph in STAN. Journal of Artificial
Intelligence Research 10:85-115.

McDermott, D. 2000. The 1998 AI Planning Systems
Competition. AI Magazine 21(2): 35–56.

McDermott, D. 1996. A Heuristic Estimator for
Means-Ends Analysis in Planning. In Proceedings of
the Third International Conference on AI Planning Sys-
tems, 142–149, Menlo Park, Calif.: AAAI Press.

Pearl, J. 1983. Heuristics. San Francisco, Calif.: Mor-
gan Kaufmann.

Nguyen, Z.; Nigenda, R. S.; and Kambhampati, S.
2000. ALTALT: Combining the Advantages of GRAPH-
PLAN and Heuristic State Search. Technical report,
College of Engineering and Applied Sciences, Arizona
State University.

Refanidis, I., and Vlahavas, I. 1999. GRT: A Domain-
Independent Heuristic for STRIPS Worlds Based on
Breedy Regression Tables. In Recent Advances in AI
Planning: Proceedings of the Fifth European Conference
on Planning, 346–358. Lecture Notes in AI 1809. New
York: Springer.

Blai Bonet got his bachelor’s degree and M.S. in
computer science from Universidad Simon Bolivar in
Caracas, Venezuela, under the supervision of Hector
Geffner. He has published papers in the areas of clas-
sical planning, planning with uncertainty and
incomplete information, and causal and probabilistic
reasoning. He is currently a Ph.D. student at the Uni-
versity of California at Los Angeles. His e-mail
address is bonet@ldc.usb.ve.

Hector Geffner got his Ph.D. at the University of
California at Los Angeles with a dissertation that was
co-winner of the 1990 Association for Computing
Machinery Dissertation Award. He worked as staff
research member at the IBM T.J. Watson Research
Center in New York for two years before returning to
the Universidad Simon Bolivar, in Caracas,
Venezuela, where he currently teaches. Geffner is
author of the book Default Reasoning: Causal and
Conditional Theories, which was published by MIT
Press in 1992. He is interested in models of reason-
ing, action, and learning and in the development of
high-level tools for modeling and problem solving.
His e-mail address is hector@ldc.usb.ve.

gence 129(1–2): 5–33.

Bonet, B., and Geffner, H. 1999. Plan-
ning as Heuristic Search: New Results.
In Recent Advances in AI Planning: Pro-
ceedings of the Fifth European Conference
on Planning, 359–371. Lecture Notes in
AI 1809. New York: Springer.

Bonet, B.; Loerincs, G; and Geffner, H.
1997. A Robust and Fast Action Selec-
tion Mechanism for Planning. In Pro-
ceedings of the Fourteenth National
Conference on Artificial Intelligence,
714–719. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Edelkamp, S., and Helmert, M. 2000.
On the Implementation of MIPS.

Articles

80 AI MAGAZINE

HSP STAN BLACKBOX
Problem Length Time Length Time Length Time

7-0 20 0.18 20 0.05 20 0.28
7-1 22 0.19 22 0.13 22 0.78
7-2 20 0.17 20 0.08 20 0.43
8-0 18 0.18 19 0.13 18 0.79
8-1 20 0.20 20 0.15 20 1.16
8-2 16 0.18 16 0.07 16 0.46
9-0 30 0.44 30 0.29 30 3.20
9-1 28 0.21 28 0.17 28 1.21
9-2 26 0.25 26 0.14 26 0.89
10-0 34 1.37 34 0.95 34 7.78
10-1 32 361.19 32 24.24 32 220.03
10-2 34 1.61 34 1.44 34 19.35
11-0 32 333.72 32 346.94 32 409.47
11-1 30 504.61
11-2 34 38.65 34 89.96 34 114.42
12-0 34 3.99 34 15.98 34 50.30
12-1 34 1.00 34 2.39 34 24.52

— — — —

Table 1. Optimal Planning.
Results over blocks-world instances from competition for some optimal planners.
hsp2.0 results obtained with options d = backward, h = h2, and W = 1. Time report-
ed in seconds.

HSP, W = 1 HSP, W = 1.25 HSP, W = 1.75
Problem Length Time Length Time Length time
7-0 20 0.18 20 0.17 22 0.17
7-1 22 0.19 22 0.18 22 0.21
7-2 20 0.17 20 0.17 20 0.18
8-0 18 0.18 18 0.18 18 0.17
8-1 20 0.20 20 0.21 20 0.18
8-2 16 0.18 16 0.22 16 0.18
9-0 30 0.44 32 0.36 32 0.35
9-1 28 0.21 28 0.25 30 0.21
9-2 26 0.25 26 0.24 26 0.19
10-0 34 1.37 36 0.57 40 0.53
10-1 32 361.19 32 18.48 34 0.37
10-2 34 1.61 34 0.59 38 0.23
11-0 32 333.72 32 2.60 34 0.28
11-1 —
11-2 34 38.65 34 0.62 34 0.65
12-0 34 3.99 34 0.53 34 0.31
12-1 34 1.00 34 0.31 36 0.29

— ————

Table 2. Optimality-Speed Trade-Off.
Results for HSP2.0 over same instances but with different W values.

Note
1. HSP2.0 is available at www.ldc.usb.
ve/~hector and www.cs.ucla.edu/
~bonet.

2. D. McDermott, 1998, PDDL, the plan-
ning domain definition language.
Available at www.cs.yale.edu/~dvm.

References
Blum, A. L., and Furst, M. L. 1997.
Fast Planning through Planning
Graph Analysis. Artificial Intelligence
90(1–2): 281–300.

Bonet, B., and Geffner, H. 2001. Plan-
ning as Heuristic Search (Special Issue
on Heuristic Search). Artificial Intelli-

