
� AI has embraced medical applications from its
inception, and some of the earliest work in suc-
cessful application of AI technology occurred in
medical contexts. Medicine in the twenty-first cen-
tury will be very different than medicine in the
late twentieth century. Fortunately, the technical
challenges to AI that emerge are similar, and the
prospects for success are high.

When I was asked to make this presen-
tation, the organizers specifically
asked me to review a bit of the histo-

ry of AI in medicine (AIM) and to provide an
update of sorts. I have therefore taken the lib-
erty of dividing the last 30 years of medical AI
research into three eras: the era of diagnosis,
the era of managed care, and the era of molec-
ular medicine. A description of these eras
allows me to review for you some of the early
and current work in AIM and then tell you
about some of the exciting opportunities now
emerging.

Why is AI in medicine even worth consider-
ing? In the late 1950s, medicine was already
drawing the attention of computer scientists
principally because it contains so many stereo-
typical reasoning tasks. At the same time, these
tasks are fairly structured and so are amenable
to automation. Every medical student learns
that when one thinks about a disease, one
thinks in an orderly way about epidemiology,
pathophysiology, diagnosis, treatment, and
then prognosis. These are the bins into which
medical information is parsed. These sorts of
structured reasoning methods made medicine
an attractive application area. In addition,
medicine is clearly knowledge intensive, and
so at places like Stanford (where knowledge
was power [Feigenbaum 1984]), it was very
tempting to try to encode knowledge for the
purposes of reproducing expert performance at
diagnosis and treatment. The working hypoth-
esis was that rich knowledge representations
would be sufficient, with only relatively weak

inference algorithms required. There was (and
is) considerable debate about how complex
inference should be for expert performance,
but it is clear that medicine is a field in which
there is a lot of knowledge required for good
performance. It is also clear that physicians
constantly feel a sense of overload as they deal
with the individual data associated with their
patients as well as the content knowledge of
medicine that they are trying to apply to the
treatment of these patients. I can try to provide
a feel for the information-processing load on a
physician: A full-time general practitioner is
currently expected to longitudinally follow a
panel of 2000 to 2500 patients. Of course, the
severity of illness varies, but it is clear that
physicians need systems (computer or other-
wise) to track the data pertaining to these
patients and turn it into working hypotheses
for diagnosis, treatment, and long-term prog-
nosis.

The other appeal to working in AI in medi-
cine is that the field is large, and so virtually all
aspects of intelligent behavior can be studied
in one part or another of medicine. You can
study issues of image processing, automated
management of database information, robotic
automation of laboratories, computer-assisted
diagnosis, multimedia for physician and
patient education, virtual and telesurgery, and
many other issues. For some, AI in medicine
provides a kinder, gentler, “greener” applica-
tion area in which to apply their techniques.

Three Eras for AI in Medicine
The first era of AI in medicine was the “Era of
Diagnosis.” The first aspect of medical reason-
ing that caught the imagination of AI
researchers was the process of collecting clini-
cal data and applying inference rules to make
the diagnosis of a disease. This is the common
image of the doctor as sleuth, determining
what disease is causing the patient’s symp-
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bution from the NLM was the creation of an
online database of the published biomedical
literature, MEDLINE. Having gone through a
number of transformations, the MEDLINE data-
base was recently made available to the general
public via the PUBMED resource on the World
Wide Web (www.ncbi.nlm.nih.gov/PubMed/).
For better or worse (I believe for the better),
physicians and patients now have unprece-
dented access to a literature that is growing
exponentially. The challenges in indexing,
searching, and parsing this literature represent
a major challenge to AI investigators.

The 1970s brought the push for diagnostic
performance. De Dombal et al. in 1972 showed
that you could make clinically accurate diag-
noses using Bayesian inference (de Dombal et
al. 1972). Also in 1972, Kulikowski and the
team at Rutgers created the CASNET system in
which they explored methods for using causal
models for somewhat deeper diagnostic tasks
(Kulikowski and Weiss 1982). The models were
deeper because physiological models were now
being used to explain symptoms and describe
diagnostic possibilities. Shortliffe, Buchanan,
and coworkers showed soon afterwards (with
the MYCIN system in Buchanan and Shortliffe
[1984]) that production rules could be used to
make expert-level diagnosis of infectious dis-
eases. Pauker and coworkers created the PIP sys-
tem (Presenting Illness Program) in which the
cognitive processes associated with short-term
and long-term memory were modeled in order
to create programs that could consider multi-
ple diagnoses but then focus on the few most
likely solutions quickly (Szolovits and Pauker
1976). Figure 1 shows a figure from one of the
PIP papers, in which an associative memory
structure is modeled. As particular concepts are
activated and drawn into the river represent-
ing active memory, they drag into the river
with them associated ideas that then come to
the attention of the inference engine.

A magnum opus during this period was the
INTERNIST knowledge base and inference pro-
gram published by Miller, Myers, and cowork-
ers (Miller, Pople, and Myers 1982). INTERNIST

had the goal of diagnosing any problem within
general internal medicine—basically any sys-
temic disease or disease of the organs between
the neck and the pelvis. INTERNIST was based on
a very large knowledge base that was trans-
ferred to a PC-based program called QMR, which
now forms the basis for a commercial product
(Miller, Masarie, and Myers 1986). The
INTERNIST/QMR knowledge base associated dis-
eases with findings using two numbers: a fre-
quency of association and an evoking strength.
There was then an algorithm created for col-

toms. The second era of AI in medicine was
what I have called the “Era of Managed Care of
Chronic Disease.” This era has approached a
set of problems quite distinct from those tack-
led in the preceding period, as I will discuss.
Finally, we are on the precipice of the “Era of
Molecular Medicine,” which is once again
going to raise issues that are different from
those occupying researchers during the first
two.

The Era of Diagnosis
In 1959, Ledley and Lusted (1959) published a
paper in Science entitled “The Reasoning Foun-
dations of Medical Diagnosis.” This classic
paper has the feature of many classic papers: It
puts forth a series of statements that are now
taken as almost self-evident. Ledley and Lusted
pointed out that medical reasoning was not
magic but instead contained well-recognized
inference strategies: Boolean logic, symbolic
inference, and Bayesian probability. In partic-
ular, diagnostic reasoning could be formulated
using all three of these techniques. Their paper
mapped a research program for the next 15
years, as investigators spun out the conse-
quences of applying these inference strategies
to medical domains.

The research that followed was varied and
excellent, and I cannot properly review all the
contributions but instead will pick some exem-
plary efforts. For example, in 1965 Lawrence
Weed introduced a computer system called
PROMIS to support a problem-oriented medical
information methodology (Tufo et al. 1977).
Weed’s work was among the first to demon-
strate a truly electronic medical record. More-
over, this record was a highly structured,
strongly typed data structure (in many ways
similar to our modern frame-based systems)
that even today is rarely matched in its insis-
tence on structured data input. Weed’s work
was limited by the absence of standard termi-
nologies to use within his data structure, but
his belief in structured data is still a major goal
within the medical informatics community.

In the late 1960s the National Library of
Medicine (NLM) (www.nlm.nih.gov/) was
established as one of the National Institutes of
Health (NIH). This was remarkable for many
reasons, not least of which was that most insti-
tutes within the NIH are associated with an
organ or a disease (for example, The National
Institute of Heart, Lung, and Blood or The
National Cancer Institute). The NLM is still in
search of its organ or disease. Nevertheless, the
extramural research program of the NLM has
been a principal source of research funds for AI
in medicine. The principal intramural contri-
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lecting findings and computing the most likely
diagnoses. Since the introduction of this pro-
gram, others have been introduced that are
based on similar ideas, including DXPLAIN (Bar-
nett et al. 1987) and ILIAD (Bouhaddou et al.
1995). The performance of these programs has
been evaluated and compared by running
them on some challenging case reports (called
clinicopathological cases, or CPCs) such as those
that appear each week in the New England Jour-
nal of Medicine (www.nejm.com) (Berner, Jack-
son, and Algina 1996; Wolfram 1995; Feldman
and Barnett 1991). In most cases, the perfor-
mance of the programs is comparable to expert
diagnostic performance (as judged by a blinded
review of diagnoses produced by both experts
and the programs, or unblinded evaluation of
the performance using defined performance
criteria for success). The programs routinely
outperform medical students and physicians in
training.

In the mid- to late 1980s, Heckerman and
coworkers showed that the preliminary work
of De Dombal could be extended using

Bayesian networks for diagnosis, in which the
conditional dependencies between variables
could be modeled in a somewhat natural man-
ner (Heckerman, Horvitz, and Nathwani
1992). They also were able to recast some of
the assumptions behind the other (apparently
nonprobabilistic) systems (MYCIN and INTERNIST)
to create a unified probabilistic “map” of the
space of diagnostic algorithms (Dan and
Dudeck 1992; Middleton et al. 1991; Shwe et
al. 1991). So by the end of the 1980s, there was
a large and distinguished literature on medical
diagnosis. This literature has continued and
expanded to nonmedical areas such as the
diagnosis of faults in electronic circuitry and
other engineering applications. 

The Era of Managed 
Care of Chronic Disease
So what happened to the Era of Diagnosis? All
of these systems were evaluated, and all of
them seemed to perform near the level of
human experts. Well, there were a few prob-
lems. First, physicians did not embrace these

Figure 1. A Representation of the Associative Memory Required for Medical 
Diagnosis from the PIP Work  (Szolovits and Pauker 1976).

A. A “fact” is searching for a connection to the network, so that the appropriate concepts can be pulled down into the short-term memo-
ry. B. A “fact” has found a matching concept and thus pulls the appropriate associated concepts into the short-term memory.
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One of the ways to reduce the cost of health
care is to move it out of expensive hospital
rooms and into outpatient clinics. So instead
of intense episodes in the hospital, we have
these much more frequent less intense
episodes in the clinic where similar things are
being done but in a more fragmented manner.
The fragmentation may cause confusion as we
ask physicians to track the progress of 2500
patients with periodic interactions. 

One way to capture the look and feel of AI in
Medicine today is to look at the contents of a
recent meeting. The AI in Medicine Europe
(AIME) conference was held in Grenoble in
1997 (Shahar, Miksch, and Johnson 1997). An
examination of the table of contents reveals
three subjects, in particular, that reflect current
concerns: (1) the representation and manipu-
lation of protocols and guidelines, (2) natural
language and terminology, and (3) temporal
reasoning and planning. Other areas of impor-
tance include knowledge acquisition and
learning, image and signal processing, decision
support, and (our old friend) diagnostic rea-
soning.

Protocols and guidelines have become an
important way to standardize care and reduce
variance. Guidelines are created by panels of
physicians who assess available data and rec-
ommend treatment strategies. For example,
how should a newly discovered breast lump be
evaluated? The AI challenges follow directly:
How do we develop robust and reusable repre-
sentations of process? How do we create adap-
tive plans that respond to changes in available
information? How do we distinguish between
high-level plan recommendations and their
specific local implementation? How do we
modify guidelines in response to data collected
during their execution? How do we model the
effects of guidelines on organizations? There is
an increasing interest in the representation
and simulation of organization systems in
order to predict the effects of interventions in
medical care. One recent development in this
area has been the development of a guideline
interchange format (GLIF) (Ohno-Machado et
al. 1998). GLIF is a syntax for specifying clinical
protocols. It contains a language for represent-
ing actions, branch steps, and synchronization
steps (among others) needed to specify a clini-
cal guideline (figure 2).

Natural language and standardized termi-
nologies remain a critical issue in medical
computing. The medical goal is to create stan-
dards for communication that move away
from hand-written natural language. Medicine
is the only major industry still relying on
hand-written documentation. How do we

technologies. Clinical data, unlike billing data,
were not routinely available in a digital form,
so when you ran these programs there were
these very awkward interfaces that asked you
lots of questions in order to get the informa-
tion necessary to do the diagnosis. Clinicians
simply did not want to spend time entering
data that were already written into a note
using natural language. The AI in medicine
community realized that they needed elec-
tronic medical records as a prerequisite infra-
structural element to allow the deployment of
these technologies. Thus, issues of knowledge
representation, automatic data acquisition,
federation of databases, and standard termi-
nologies became quite important. The second
problem for diagnostic programs was that
physicians did not want help with diagnosis.
Diagnosis is fun, and physicians are trained to
do it well in medical school and only improve
with years of practice. They did not want to
give up that fun to a computer. The most sig-
nificant problem, however, was that diagnosis
is a actually very small part of what physicians
do in the delivery of medicine. Most visits to a
physician are for an existing, previously diag-
nosed problem. The challenge to the physician
is to follow the problem and respond to its
evolution intelligently. Diagnosis is a relatively
rare event, probably accounting for less than 5
percent of physician time. What physicians
really need is help following chronic and slow-
ly evolving disease in 2500 patients that are
seen in brief episodes but require expert inter-
ventions. So we have the era of chronic care
driving AI in medicine research. This problem
is compounded by an aging population with
more chronic diseases. 

There is one other element of medicine that
has changed the imperatives for AI research,
and this is the emergence of new economic
models for funding medicine (Selby 1997; Det-
sky and Naglie 1990). The traditional model
has been fee for service: A physician performs
a service and gets paid an agreed-upon
amount. If the physician performs lots of ser-
vices, the physician makes more money. The
new model of medical funding is based on a
standard rate per patient that is paid to a
physician, regardless of the usage of services by
the patient. Now, the financial incentives are
reversed. If the physician provides a service,
then its cost in time and resources is taken out
of the pot of money that represents potential
profit. Now physicians still want to treat ill-
ness, but there is now a huge incentive to
deliver cost-effective, high-quality care. Sys-
tems for supporting these activities become
the mandate.

The AI in
medicine

community
realized that
they needed

electronic
medical

records as a
prerequisite

infra-
structural 
element to
allow the

deployment 
of these 

technologies.
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define formal semantics so that when we cre-
ate these electronic medical records, we can
populate them with clean data? What is the
underlying ontology for clinical medicine?
How do you map natural language into stan-
dard terminologies? How do we accommodate
local and global changes to these terminolo-
gies? How do we integrate legacy databases
with newer, semantically clean databases?
How can we have machine-learning tech-
niques for extracting new medical knowledge
from our semantically clean databases? It is
important here to mention the Unified Med-
ical Language System (UMLS), a project at the
National Library of Medicine with the goal of
integrating a number of existing medical
vocabularies using a common semantic struc-
ture (Bodenreider et al. 1998). The existing ter-
minologies include those for specifying diag-
noses, medical procedures, and bibliographic
indexing (Cote and Robboy 1980; Slee 1978).
The UMLS is based on a semantic network and
has about 500,000 terms that have been classi-
fied into about 150 semantic types with speci-
fied relationships. A fragment of its semantic
network is shown in figure 3.

Temporal reasoning and planning become
critical in a setting where diseases are chronic,
and interactions are episodic. The challenges
are to integrate database and knowledge base
technology with temporal inferencing capabil-
ities. How do we actually modify medical data-
bases so that we can do effective temporal
inference with them? How can we recognize
and abstract temporal trends in clinical data?
Nonmonotonic reasoning becomes essential:
As new data are collected, we retract old infer-
ences and assert different ones. How do we cre-
ate “smooth” models of patient state based on
episodic data collection? Finally, how can we
create plans for treatment over time?

My colleague at Stanford, Yuval Shahar, has
done excellent work in the area of temporal
abstraction and has a system that is able to
automatically take a set of discrete data points
and transform them into sensible intervals
that can, in turn, be grouped together into
even higher-level abstractions (Shahar,
Miksch, and Johnson 1998) (as summarized in
figure 4).

There are some other application areas with-
in medicine that deserve mention, including
telemedicine, how to deliver medical care at a
distance using multimedia; intensive care med-
icine, with emphasis on reasoning with limited
resources; and clinical trials, methods to auto-
matically recognize that a patient is eligible for
a trial and to enroll them.

The Era of Molecular Medicine
Although the management of chronic disease
under conditions of capitated payment are
likely to continue, I believe that there is an
even more revolutionary set of changes com-
ing to medicine. These changes will arise from
the work being done in basic biology in deter-
mining the complete DNA sequence of both
the human organism as well as most major dis-
ease-causing organisms. There is an excellent
paper in the IAAI-98 proceedings by Rick Lath-
rop and coworkers (Lathrop et al. 1998) that is
an example of the opportunities in linking
molecular concepts with medical care and AI
research.

Some Biology First, it is appropriate to give
some background about the genome sequenc-
ing efforts. The entire development, structure,
and function of an organism is specified by a
sequence of four DNA letters: A, T, C, and G are
the abbreviation of their chemical names
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Figure 2. The Guideline Interchange Format.
This is a segment of a representation of the process of evaluating a breast mass.
The language has a syntax for sequences of events, branches, and other struc-

tured metainformation about the process of evaluation.

Guideline the_breast_mass_guideline
{ name = "Breast Mass Guideline";

authors = SEQUENCE 1 {"Max Borten, MD, JD";};
eligibility_criteria = NULL;
intention = "Evaluation of breast mass.";
steps =

SEQUENCE 40
{ (Branch_Step 1);

(Action_Step 101);
(Action_Step 102);
(Action_Step 103);
(Synchronization_Step 1031);
(Conditional_Step 104);
(Conditional_Step 105);

Action_Step 102
{ name = "Elicit Risk Factors for Breast Cancer in Personal History";

action = Action_Spec 102.1
{ name = "Elicit Personal History";

description = "Elicit Personal History";
patient_data = SEQUENCE

{ Patient_Data 102.1
{ name = "Personal risk factors for breast cancer";
type = "" ;
possible_values = Sequence 0 {};
temporal_constraint = "valid thru all time";
didactics = SEQUENCE 0 {};};

};
didactics = SEQUENCE 0 {};

};

subguideline = NULL;
next_step = (Synchronization_Step 1031);
didactics = SEQUENCE 0 {};}



these 3 billion into subsegments for logistical
reasons, with an average length of 256 million
DNA letters. Genes are subsequences within the
sequence of 3 billion that encode for particular
functions or structures that exist in your body.

(energy). A human organism is specified by
three billion letters, arranged serially, that con-
stitute its genome. With 2 bits per DNA letter, it
takes about 750 megabytes of data to specify a
human. There are 23 chromosomes that divide
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Figure 3. A Subset of the Semantic Net Created for the Unified Medical Language System (UMLS), 
in Which the Concept of Biological Function Is Specialized into Subsets.

The semantic network is used to organize about 500,000 concepts in the UMLS.
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There are about 100,000 genes within a human
genome. More than 99.9 percent of the
genome is identical for all humans. And so all
the diversity of human life is contained in the
0.1 percent that is different. One of the human
genes encodes a channel that allows a chloride
ion to pass from the outside of a cell to its
inside. This channel sometimes has a mutation
that leads to the disease cystic fibrosis. An
understanding of how the DNA letters differ in
patients with cystic fibrosis allows biologists to
begin to understand the mechanism of the dis-
ease and ways to alter its course. The cystic
fibrosis gene was isolated in a relatively expen-
sive, focused manner before the genome
sequencing project was under way. The logic
behind a genome project is to isolate all genes
for an organism and catalog them using
economies of scale. The primary genome pro-
ject is the Human Genome Project, but there
are also genome projects for important model
organisms and organisms that cause human
disease. The principal funding agencies for the
genome project are the National Institutes of
Health (via the National Human Genome
Research Institute, www.nhgri.nih.gov/) and
the Department of Energy (www.er.doe.gov/
facepage/hug.htm).

Associated with the genome sequencing
projects are a number of other new technolo-
gies in biology that will allow data to be col-
lected on a large scale, never before possible.
Soon it will be possible to assess the complete
set of genes that are active in a cell and com-
pare this set with the genes that are active in a
diseased version of the same cell (Marshall and
Hodgson 1998). Thus, we can find out which
genes are active in a normal prostate cell as
well as which genes are active in a prostate
cancer cell. The differences are the obvious
places to look for new treatments of prostate
cancer. The differences may also provide new
ways to make a more sensitive and specific
diagnosis of prostate cancer in a patient. Final-
ly, the differences may be used to determine
the likely prognosis of a particular prostate
cancer, based on its constellation of genes, and
whether they are associated with an indolent
or aggressive type of cancer.

Having defined all the genes in a biological
system, there are incredible opportunities for
information storage, retrieval, and analysis
technologies. First, the epidemiology of dis-
ease will now have a molecular basis. We will
track the spread of infections by identifying
the unique sequences of the offending bacteria
and using this as a signature to follow its
spread through the population. For example,
investigators have tracked the spread of tuber-

culosis with these technologies (Behr et al.
1998; Blower, Small, and Hopewell 1996). Sec-
ond, clinical trials will have patients who are
stratified by the differences and similarities in
their genes. We will be able to relate particular
clinical syndromes to particular treatments
based on a molecular understanding of the
basis of these syndromes. The diagnosis of
many diseases will become a simple lookup in
the genome of the patient to see which variant
is present (Winters et al. 1998). We will be able
to focus treatments using this information,
once we have learned from the data the best
drugs to use against different disease/gene vari-
ations. Finally, we will have prognostic infor-
mation beyond anything currently available
because we will have access to the full genetic
endowment of a patient and, when relevant,
the infectious pathogens causing disease. In
some cases, in fact, we may know decades
before a disease is evident that a patient is at
high risk for that disease. At this point, it is
important to mention the ethical, social, and
legal issues associated with the Human
Genome Project. A certain fraction of the
annual genome project budget is spent on
grants addressing these issues, including issues
of privacy, ethical use of medical information,
patients rights to information, and the like
(www.nhgri.nih.gov/About_NHGRI/Der/Elsi/).

What’s the status of the genome sequencing
projects? Although this is not AI per se, it is
useful to get a feeling for the amounts and
types of data that are being generated. Consid-
er the GENBANK database of DNA sequences
(Benson et al. 1998). A recent release of that
database contained 1.6 billion bases. (Remem-
ber, there are 3 billion bases in a human). How-
ever, this database contains DNA sequences
from all organisms, and not just humans. Fig-
ure 5 shows the growth in the size of this data-
base since its inception in 1982. All these data
are available on the World Wide Web, and one
of the remarkable aspects of the explosion of
biological data is the ease in which it can be
accessed, and so it becomes something of a
playground for information scientists who
need to test ideas and theories. Table 1 shows
the ranking of species in the DNA databases by
the values of sequenced bases for each
sequence. For example, we have roughly 700
million bases of human genome sequence. The
human genome is currently scheduled to be
completed around 2003. Other organisms
include important laboratory test organisms
(for example, mouse, rat, or fruit fly) or human
pathogens (for example, the HIV virus, malar-
ia, syphilis, or tuberculosis). One of the most
exciting challenges that arises as we learn the

Articles

FALL 1999   73



ear sequences of the DNA and of protein mol-
ecules (Durbin et al. 1998). 

Second, the technologies for defining
ontologies, terminologies, and their logical
relationships have been used to create formal
theories for areas within biology (Schulze-Kre-
mer 1998). 

Third, genetic algorithms and genetic pro-
gramming have been used to create solutions
that are in some cases superior to solutions cre-
ated by hand (Koza 1994). 

Fourth, neural networks have been used, as
they have in many other fields, to achieve clas-
sification performance that is often quite
impressive. The work in predicting aspects of
three-dimensional structure from sequence
information alone has received considerable
attention (Rost and Sander 1994).

Fifth, unsupervised cluster analysis of bio-
logical sequences and structures, including
Bayesian approaches, has been successful in
creating sensible categories within biological
data sets (States, Harris, and Hunter 1993). 

Sixth, case-based reasoning has become very
important in areas that are still data poor. For
example, information about the three-dimen-
sional structure of biological molecules is still
lagging behind the associated DNA sequence
information. Thus, of the 100,000 proteins in
a human, we only know the structure of about
700 of them. These examples represent valu-
able “cases” that are constantly being used to
extrapolate new information about the
remaining 99,000 proteins (Jones 1997).

Seventh, knowledge representation tech-
niques have been used to represent the entire
set of metabolic capabilities of the bacteria
Escherichia coli. The resulting ECOCYC knowl-
edge base has been used to infer metabolic
capabilities and compare these capabilities
across organisms (Karp et al. 1998).

Eighth, new knowledge representation and
digital library techniques have been used to
represent the complete literature of a subdisci-
pline within molecular biology using ontolo-
gies for biological data, biological structure,
and scientific publishing (Chen, Felciano, and
Altman 1997). We have created a collaborative
resource, RIBOWEB, that allows scientists to
interact with these data and compute with it
over the web.

Ninth, intelligent agents are being designed
to assist biologists in understanding and min-
ing the data that are accumulating from the
new high-throughput biological experiments.
The National Center for Biotechnology Infor-
mation (www.ncbi.nlm.nih.gov/) is the clear-
ing house for many sources of useful biological
data. Their collection includes data about DNA

complete genetic background of bacteria is to
develop comparative methods for understand-
ing how differences in genetic endowment cre-
ate differences in preference for mode of infec-
tion, type of infection, and virulence. Table 2
shows some organisms whose genomes are
completely known.

An international society (The International
Society for Computational Biology,
www.iscb.org/) has been formed to create a
community for researchers in biocomputing.
In many ways, it is a spin-off from the AAAI
community. A conference entitled Intelligent
Systems for Molecular Biology was first held in
1993 in association with AAAI (//ismb99.gmd.
de/). It subsequently was disconnected from
AAAI for scheduling reasons but has been
remarkably successful. The proceeds from this
meeting provided the core funds to spawn the
society. The name of the field (computational
biology, bioinformatics, biocomputing, intelli-
gent systems for molecular biology) has been
the matter of some debate and often reflects
the disciplinary training of the debate partici-
pants (Altman 1998).

AI Contributions to Molecular Medi-
cine    I would like to briefly review some of
the successes in the AI and molecular biology
community. In many cases, existing technolo-
gy has been transferred effectively, or new vari-
ants have been created in response to the
needs of the field. 

First, Hidden Markov Models, developed
originally for natural language processing,
have become a powerful tool for analyzing lin-
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Major DNA Sequence Database.
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Genes DNA Bases Species (Common Name) 

1573906 1000128755 Homo sapiens (human)
403552 191558011 Mus musculus (mouse)
76540 142527757 Caenorhabditis elegans (soil nematode)
71079 78218600 Arabidopsis thaliana
56199 63799526 Drosophila melanogaster (fruit fly)
10581 28685645 Saccharomyces cerevisiae (baker’s yeast)
45849 28537572 Rattus norvegicus (rat)
4953 18023376 Escherichia coli
41866 17672014 Rattus sp.
32190 16498151 Fugu rubripes (puffer fish)
36345 16196521 Oryza sativa (rice)
9610 12068959 Schizosaccharomyces pombe
25383 11280798 Human immunodeficiency virus type 1 (HIV)
1094 9985595 Bacillus subtilis
4734 7009140 Plasmodium falciparum (malaria)
16688 6331052 Brugia malayi (filariasis)
5379 5922144 Gallus gallus (chicken)
685 5711838 Mycobacterium tuberculosis (tuberculosis)
5136 4648144 Bos taurus (cow)
10847 4413291 Toxoplasma gondii (toxoplasmosis)

Aquifex aeolicus (bacteria that grows at 85° to 95° C!)
Archaeoglobus fulgidus (bacteria that metabolizes sulfur, lives at high temperatures)
Bacillus subtilis (ubiquitous soil bacteria)
Borrelia burgdorferi (causes Lyme Disease)
Chlamydia trachomatis (causes blindness in developing countries)
Escherichia coli (can cause urinary tract infections, dysentery)
Haemophilus influenzae (causes upper respiratory infections)
Methanobacterium thermoautotrophicum (bacteria that produces methane, lives at 70° C)
Helicobacter pylori (causes ulcers, maybe cancer)
Methanococcus jannaschii (bacteria that produces methane)
Mycobacterium tuberculosis (causes tuberculosis)
Mycoplasma genitalium (smallest genome of known independent organisms)
Mycoplasma pneumoniae (causes “walking pneumonia”)
Pyrococus horikoshii (grows best at 98° C!)
Saccharomyces cerevisiae (baker’s yeast)
Treponema pallidum (causes syphillis)

Table 1. Number of Genes and Total Bases of DNA Sequenced for Various Organisms as of 10/98.

Table 2. Some Completed, Fully Sequenced Genomes.
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Dan, Q., and Dudeck, J. 1992. Certainty
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matics (London) 17(2): 87–103.
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7. We need systems to provide
and document continuing educa-
tion for physicians. 

Evaluation Challenges

8. We need demonstrations of the
cost-effectiveness of advanced
information technology. 

9. We need to create new medical
knowledge with machine-learn-
ing and/or data-mining tech-
niques. Having established the
data infrastructure for clinical
data and biological data, there
will be unprecedented opportuni-
ties for gaining new knowledge. 

10. Finally, we need to ensure
that there is equitable access to
these technologies across patient
and provider populations.

Conclusions
The Era of Diagnosis got things rolling
and created excitement as existing
inferencing strategies were tested in
the real-world application domain of
medicine. The current Era of Chronic
Disease and Managed Care has
changed the focus of our efforts. The
coming Era of Molecular Medicine
contains challenges that can keep
information technologists busy for
decades. 
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