
■ TACAIR-SOAR is an intelligent, rule-based system that
generates believable humanlike behavior for large-
scale, distributed military simulations. The inno-
vation of the application is primarily a matter of
scale and integration. The system is capable of exe-
cuting most of the airborne missions that the U.S.
military flies in fixed-wing aircraft. It accomplishes
its missions by integrating a wide variety of intel-
ligent capabilities, including real-time hierarchical
execution of complex goals and plans, communi-
cation and coordination with humans and simu-
lated entities, maintenance of situational aware-
ness, and the ability to accept and respond to new
orders while in flight. The system is currently
deployed at the Oceana Naval Air Station WIS-
SARD (what-if simulation system for advanced
research and development) Lab and the Air Force
Research Laboratory in Mesa, Arizona. Its most
dramatic use was in the Synthetic Theater of War
1997, which was an operational training exercise
that ran for 48 continuous hours during which
TACAIR-SOAR flew all U.S. fixed-wing aircraft. 

In 1992, we began development of a soft-
ware system that emulates the behavior of
military personnel performing missions in

fixed-wing aircraft (Tambe et al. 1995). The
general goal was to generate behavior that
“looks human” when viewed by a training
audience participating in operational military
exercises. The resulting rule-based system,
called TACAIR-SOAR, is currently deployed at the
WISSARD (what-if simulation system for
advanced research and development) facility at
the Oceana Naval Air Station and the Air Force
Research Laboratory at Mesa, Arizona. TACAIR-
SOAR consists of more than 5200 rules that are

executed by the SOAR architecture (Laird,
Newell, and Rosenbloom 1987). As TACAIR-SOAR

has grown, it has participated in a number of
tests, technology demonstrations, and opera-
tional training exercises. Its most dramatic use
was in the Synthetic Theater of War 1997
(STOW ’97), held 29–31 October 1997 (Cera-
nowicz, 1998; Laird, Jones, and Nielsen 1998;
Laird et al. 1998). STOW ’97 was a United
States Department of Defense (DoD) Advanced
Concept Technology Demonstration (ACTD)
that was integrated with the United Endeavor
98-1 (UE 98-1) training exercise. As an ACTD,
the overall goal of STOW ’97 was to permit an
early and inexpensive evaluation of advanced
technologies that show promise for improving
military effectiveness. The goal of our partici-
pation in STOW ’97 was to demonstrate the
ability to generate autonomous, real-time,
high-fidelity behavior for a large-scale simula-
tion of a complete theater battle. STOW ’97
included 722 individual sorties to be flown by
U.S. fixed-wing aircraft. All these sorties were
assigned to TACAIR-SOAR agents, and the agents
successfully flew over 95 percent of them. In
July 1998, TACAIR-SOAR participated in the Road-
Runner ’98 training exercise, where it flew both
with and against human pilots “flying” in sim-
ulators. 

The most obvious innovation of TACAIR-SOAR

lies in the integration of a number of capabili-
ties that support autonomous, intelligent
behavior in a real-time, complex domain.
TACAIR-SOAR generates appropriate behavior for
every fixed-wing mission routinely used by the
U.S. military in full-scale simulated exercises. A
secondary but equally challenging innovation
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controlling the vehicle, using hierarchical
finite-state machines. For example, a SAFOR
aircraft can be told to circle a particular point
at a certain altitude. Similarly, it can be told to
shoot its air-to-air missiles at any airborne tar-
get that is detected within a specific “commit”
range by its simulated radar. However, a
human controller must make the tactical deci-
sions and use a graphic computer interface to
give the SAFOR new orders. The number of
SAFORs that a single human can control
depends on many factors, including the type
of platform being simulated, the expertise of
the controller, and the desired fidelity of the
behaviors. In any event, a number of highly
trained humans are required to oversee and
adjust the run-time behavior of such entities.
Aside from the expense of having humans in
the loop, realism of the simulation suffers
when these controllers must devote close
attention to more than one entity at a time.
Therefore, it was desirable to increase the qual-
ity and autonomy of force behavior to increase
realism and decrease the cost of training. Com-
plicating matters further, there were additional
goals to run as many forces on a single
machine as possible and run the simulation
faster than real time for some applications.

To address these issues, the Defense Ad-
vanced Research Projects Agency (DARPA)
funded a project to develop autonomous com-
puter-generated forces that generate human-
like behavior. Our group at the University of
Michigan, together with researchers at the
University of Southern California Information
Sciences Institute (USC-ISI), created a proto-
type system to generate behaviors for a small
number of air-to-air missions. This prototype
laid out the basic design principles we fol-
lowed throughout the project; an earlier article
(Tambe et al. 1995) provides details on the
design that are not covered here.

The initial work was led by John Laird (Uni-
versity of Michigan) and Paul Rosenbloom
(USC-ISI) and also included two research scien-
tists (Randolph Jones, Milind Tambe) and two
research programmers (Frank Koss, Karl
Schwamb). This original work included the
development of intelligent behaviors, and
interfaces to the simulation environment, as
well as maintaining the software architecture
and infrastructure. Two years into the project,
the group divided, with the USC-ISI group
focusing on behaviors for missions flown by
helicopters (Hill et al. 1997). Our group at
Michigan continued with fixed-wing aircraft,
expanding the types of aircraft and mission as
well as creating software to support the instal-
lation and use of the system in military train-

is that TACAIR-SOAR was integrated into the mil-
itary operational organizational structure so
that existing methods and systems could be
used for specifying missions, interacting with
the aircraft in flight during mission execution,
and reporting after the mission. Thus, the inte-
gration of capabilities within an intelligent
system into an existing organizational struc-
ture was the combined challenge and theme of
our work.

This article starts with a review of the origins
of this project and the requirements that
shaped the development of TACAIR-SOAR. We
then describe the simulation environment and
TACAIR-SOAR’s integration. The main body of the
article presents the structure of TACAIR-SOAR,
relating specific design decisions back to the
original requirements. Finally, we discuss the
deployment and payoffs of TACAIR-SOAR as well
as our ongoing efforts.

Historical Background
Our task was to improve the behavior of indi-
vidual, automated entities participating in
large-scale, entity-based simulation exercises.
The military uses simulation extensively for
training, analysis, and acquisition. Simulation
is often cheaper, more flexible, and safer than
alternatives, such as live training maneuvers.
However, simulation is only an approximation
of the real world and can be ineffective if it
deviates significantly from reality. Many of the
early simulations used by the military repre-
sented only aggregate groups of vehicles and
could not simulate the interactions between
individual vehicles, sensors, and weapons sys-
tems. Instead, such systems use probability
tables to determine the outcome of engage-
ments between large forces. In contrast, entity-
based simulations involve models of the
dynamics of individual vehicles, their sensors,
and weapons. Such entity-based simulations
increase the realism of the simulation and
allow more direct participation by humans.
However, the added realism has the additional
cost of requiring either people or automated
systems to control all the vehicles. For large-
scale simulations where there are thousands of
entities, these requirements can be either
extremely costly (using humans) or technically
challenging.

Before we developed TACAIR-SOAR, the state of
the art for automated entity-level behavior was
semiautomated forces (SAFORs). SAFORs con-
sist of high-fidelity models of vehicle dynamics
(for example, using differential equations to
model the control surfaces of an aircraft)
together with simple automated behaviors for
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ing operations. An additional research scientist
(Paul Nielsen) and two research programmers
(Karen Coulter and Patrick Kenny) were hired
at the University of Michigan. This effort led to
the development and deployment of TACAIR-
SOAR. The currently deployed version of the
system was completed by October 1997 in
time for the STOW ’97 exercise.

The Simulation Environment
TACAIR-SOAR is embedded within real-time large-
scale simulations of a battlefield. Time in the
simulation corresponds to time in the real
world, so both humans and computer forces
must react in real time. The scale of the simula-
tion is that of a theater of war. STOW ’97 took
place over 500 x 775 square kilometers with as
many as 3,700 computer-generated vehicles
making up all U.S. military services as well as
opposition forces. The terrain was detailed,
including 13,500 buildings and over 20,000
destructible objects, runways, roads, bridges,
bushes, rivers, bodies of water, and so on. Some
aspects of the terrain were dynamic, such as
destructible buildings and bridges. Further,
weather servers simulated meteorological fea-
tures such as clouds, rain, tides, and daylight,
sometimes using live feeds from the area of the
world in which the simulation took place.

These simulations are completely distrib-
uted, with no central server responsible for
maintaining all relevant information. STOW
’97 used over 300 networked computers at 6
sites in the United States and the United King-
dom. All the systems participating in the sim-
ulation, be they manned simulators, comput-
er-generated forces, simulations of complex
munitions such as missiles, or even specially
instrumented real vehicles, are responsible for
maintaining their own model of the simula-
tion environment. To minimize communica-
tion across the network, each simulation sys-
tem maintains its own copy of the terrain and
uses dead reckoning to predict the state of all
entities that are relevant to it. Whenever an
entity deviates from its projected position, it
sends out data to the systems that are monitor-
ing its behavior. 

As shown in figure 1, TACAIR-SOAR participates
in the simulation environment by interfacing
with MODSAF (Calder et al. 1993). MODSAF in-
cludes all the necessary software for interact-
ing over the network with other entities in the
simulation as well as simulations of the vehicle
dynamics, weapons, and sensors. TACAIR-SOAR

connects to MODSAF with the SOAR-MODSAF inter-
face (SMI) (Schwamb, Koss, and Keirsey 1994),
which translates simulated sensor and vehicle

information into the symbolic representation
used by SOAR and translates SOAR’s action repre-
sentation into MODSAF function calls (for exam-
ple, to control the vehicle and manipulate
weapons, sensors, and radios). The SMI at-
tempts to organize data so that TACAIR-SOAR has
available the same information a pilot would
have, including data from radar and vision
sensors as well as data on the status of the air-
craft and messages received on its radios. This
information is added directly to the working
memory of each entity and is updated each
cycle of the simulation. For a single entity,
there are over 200 input and over 30 different
types of output for controlling the plane. Each
entity only has access to information from its
own sensors, so that there is no possibility of
cheating.

Each “instance” of TACAIR-SOAR controls a sin-
gle entity. In a typical configuration, several
TACAIR-SOAR entities run with MODSAF as a single
process under LINUX on a PENTIUM class machine
with 256 megabytes of memory. The large
memory is required because of the size of the
terrain database. A round-robin scheduler pro-
vides service to the TACAIR-SOAR entities and
MODSAF. Approximately 10 TACAIR-SOAR entities
run on a single 400 megahertz workstation
with each entity executing 3 to 4 times a sec-
ond, which is sufficient to generate realistic
behavior. During STOW ’97, we ran as many as

Figure 1. TACAIR-SOAR’s Niche in the Simulation Environment.

Articles

SPRING 1999   29

MODSAF: Simulation Interface:
Sensors, Weapons, Vehicle,

Communication

SOAR-MODSAF:-Interface

SOAR

Working
Memory

SOAR SOAR

Other
Simulators

Network

TACAIR

Rules
TACAIR

Rules

Working
Memory

Working
Memory

TACAIR

Rules



fully decomposed so that a primitive operator
is selected, rules create appropriate commands
for the motor system, such as “select a missile
to fire,” “push the fire button,” and “set the
aircraft to fly a particular heading.” Thus, SOAR

supports dynamic hierarchical decomposition
and execution of complex operators. This
organization appears to correspond to the way
human pilots organize their knowledge and
provides readable traces of behavior (in terms
of operator selections and decompositions).

Although dynamic hierarchical decomposi-
tion is important for encoding structured
knowledge such as in official doctrine and tac-
tics, it can be overly restrictive when multiple
goals must be pursued. In TACAIR-SOAR, the
operator hierarchy usually corresponds to the
explicit goals and subgoals of the mission
being executed. However, additional, implicit
goals in TACAIR-SOAR can give rise to actions in
the world. For example, during a flight, a plane
might notice a new blip on its radar. Bringing
together different information sources and
interpreting the identity of the blip is a delib-
erate act performed by an operator. This oper-
ator is not directly part of a goal of executing a
mission but is part of an implicit goal of main-
taining situational awareness. Similarly, a
plane might need to take evasive actions when

102 TACAIR-SOAR entities at a time, distributed
across 28 PENTIUM PRO machines. 

The TACAIR-SOAR System
TACAIR-SOAR is a symbol-processing, rule-based
system built within the SOAR architecture for
cognition (Laird, Newell, and Rosenbloom
1987). SOAR uses production rules as the basic
unit of long-term knowledge (or the program).
Rules in SOAR are used to propose, select, and
apply operators, which correspond to the
actions and goals that human pilots perform
during a mission. Abstract operators, such as
“intercept an enemy,” act as goals, which are
dynamically decomposed by rules proposing
more primitive operators to achieve the
abstract actions. These rules test the current
situation, including the available sensors and
mission parameters, avoiding fixed, scripted
responses. For example, as shown in figure 2,
one of TACAIR-SOAR’s operators is “intercept an
aircraft.” This is not a discrete action that the
system can “just do,” so SOAR creates a new goal
structure. In the context of the new goal, the
system proposes additional operators, such as
“achieve proximity to the aircraft,” “search for
the aircraft,” or “employ weapons against the
aircraft.” When an abstract operator has been

Figure 2. A Sample Active Goal Hierarchy for TACAIR-SOAR.
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it is in danger in response to a survival goal.
These operators are not part of the explicit goal
hierarchy. Rather, they are represented as
opportunistic operators, which can be selected
independently of the currently active, explicit
goals. This mixture of goal-driven and oppor-
tunistic behaviors is crucial to capturing the
ways in which humans interleave complex
sequences of actions in the service of multiple
goals (Jones et al. 1994).

Both goal-driven and opportunistic opera-
tors are proposed based on the current situa-
tion. The operator hierarchy defines only a
part of this situation, which also includes sen-
sory data and an internal model of the other
agents in the world. These representations are
all created in support of making decisions, and
we have found that it is useful to organize the
internal models hierarchically in a manner
analogous to decisions that need to be made in
the operator hierarchy. 

Consider the case where an aircraft has a
potential target contact on its radar screen. In
some cases, it is important to reason about
the heading or bearing of the contact. In oth-
ers, it is important to notice whether the tar-
get is flying to the left or the right (which can
be computed from a combination of the tar-
get’s heading and the agent’s heading). It is

also often important to reason about the tar-
get’s position relative to other contacts that
might be flying with the target. In general, it
is difficult to restrict the agent to reasoning
about the primitive attributes that describe
the situation. It is preferable to combine these
attributes to make different types of decision.
These hierarchical representations are built by
TACAIR-SOAR rules that are not directly associat-
ed with an operator. They are instead part of
a data-driven, situation-interpretation hierar-
chy that generates descriptions of the situa-
tion from the bottom up. 

The benefits of the interaction between the
top-down and bottom-up hierarchies are illus-
trated in figures 3 and 4. Figure 3 describes an
agent’s current “mental state” at some point in
time. The boxes represent a subset of the
agent’s active goals, and the other items are a
subset of the current situation description. The
generation of these goals and features is fairly
rapid (SOAR is capable of firing hundreds of rules
a second), but it does take some time and com-
putational resources. Thus, it is undesirable for
the agent routinely to expend significant effort
maintaining the hierarchies. However, because
of the hierarchical representation, the system
can make incremental adjustments to its cur-
rent mental state as the situation warrants. In

Figure 3. Sample Active Goal and Situation Hierarchies.
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system’s internal representation is extremely
intricate at any point in time (the figures are
highly simplified). However, the interaction of
top-down and bottom-up hierarchies, together
with opportunistic operators, allows a smooth
and efficient implementation of reactive, yet
goal-driven, behavior.

Behavioral Requirements
In this section, we review the requirements
that were set for TACAIR-SOAR and how we
attempted to achieve them; these require-
ments are (1) fly all types of mission using
appropriate doctrine and tactics, (2) fly many
different types of aircraft, (3) generate human-
like behavior, (4) coordinate behavior with
other entities, and (5) behave with low compu-
tational expense.

Fly All Types of Mission Using 
Appropriate Doctrine and Tactics
Our most important requirement is to popu-
late the battlespace with entities that can fly
all the missions commonly flown by United
States Navy, Marine, and Air Force planes. For
STOW ’97, there were over 10 different types
of mission covering defensive and offensive

figure 3, the agent has chosen a missile to use
against a target and is using the target’s posi-
tion information to aim the aircraft for the best
shot. If the target turns a small amount, it
might not lead to any change in the active hier-
archies at all. Rather, the change in target head-
ing will cause a rule to fire that computes a new
attack heading, and the agent will adjust the
aircraft heading in response. If the target turns
by a larger amount, the new geometry of the
situation can take the target from the envelope
of the currently selected missile, which could
cause the agent to delete its current launch-
missile goal, select a new missile to use, and
then create a new launch-missile goal. Finally,
if the target turns by an even larger amount (for
example, to run away), the agent might have to
make significant adjustments, leading to the
situation in figure 4. In this case, the agent
determines that the target might be running
away, so there is no longer a need to shoot it.
Therefore, the agent deactivates the goal to
launch a missile against the target and instead
pursues the target to observe its behavior for
some time.

This example illustrates TACAIR-SOAR’s solu-
tion to the combined constraints of generating
complex behavior in an efficient manner. The

Figure 4. TACAIR-SOAR Changes the Goal Hierarchy in Response to Changes 
in the Situation-Representation Hierarchy (and Vice Versa).
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air-to-air, air-to-ground missions, support
(such as refueling), intelligence gathering,
and command and control. To encode the
knowledge for these missions, we read manu-
als and interviewed subject matter experts
(SMEs). This process is iterative, where we
interview experts, build systems that perform
the missions, demonstrate them to experts,
receive feedback, and revise the behaviors as
appropriate. 

A significant amount of knowledge is
required to fly all the missions according to
appropriate doctrine. However, by encoding the
knowledge hierarchically, TACAIR-SOAR shares
knowledge across many different missions and
tactics. For example, air-to-air combat tactics
involve different methods for getting into a
position to fire a missile, depending on rules of
engagement, enemy threat, and so on. Howev-
er, a significant amount of common knowledge
is still shared across these tactics in terms of the
way they use the radar and missiles. This shar-
ing falls from decomposing complex operators
into simpler ones and using multiple rules to
suggest the same operator in different situa-
tions. Such decomposition also helps avoid the
problem of having rigid, scripted tactics that
must be carried to completion even if they
become inappropriate. Again, the reactive
nature of the rules in TACAIR-SOAR creates behav-
iors that are dynamically composed by rules
proposing individual operators based on the
current situation. Reactive, dynamic composi-
tion allows the system to abandon even high-
level goals if the situation warrants it.

The current version of TACAIR-SOAR contains
over 5200 production rules, organized into
about 450 operators and 130 goals. There are
significant numbers of general rules that are
used in many different missions and some
rules that only apply in very specific situations.
Every agent loads all the rules but does not use
them all over the course of a single mission.
We chose this unified design to simplify soft-
ware development—a single software system
can be used for all missions, and changes and
improvements to shared behaviors are auto-
matically available across all missions.

Fly Many Different Types of Aircraft
For STOW ’97, TACAIR-SOAR had to control many
different U.S. fixed-wing aircraft, using the
appropriate weapons and sensors. The first
step in addressing this problem was the con-
struction of the appropriate parameterized
models of the flight dynamics, weapons, and
sensors. These models were embedded in MOD-
SAF (Calder et al. 1993). Lockheed-Martin Infor-
mation Systems and BMH Associates, Inc.,

built these models by defining a generic com-
mon model for each component, such as an
aircraft, and then defining the parameters for a
specific instantiation of a component, such as
an F-14B.

The second step was to develop uniform
interfaces to control these models. The SOAR-
MODSAF interface provides a uniform interface
to control all aircraft using the same basic
interface: All missiles are launched with the
same command, and all radars deliver their
information in the same format. Having a uni-
form interface available is not strictly true in
the real world but was a necessary simplifica-
tion given our resources.

The third step was to encode general para-
meterized behaviors for each of these compo-
nents. For example, each vehicle has parame-
ters for cruising speeds, fuel consumption,
maximum altitude, and so on. Once the set of
parameters and the general, parameter-driven
behaviors were defined, we could add new air-
planes, weapons, and sensors without chang-
ing the behaviors. Of course, occasionally
some new instances of a component have new
parameters that require modifications to the
behaviors, but this is generally the exception. 

Generate Humanlike Behavior
To be realistic and effective for training, the
behavior of TACAIR-SOAR pilots must correspond
to the behavior of human pilots (Pew and
Mavor 1998). It is not always clear how close
the behavior of the synthetic pilots has to be to
human behavior. Our goal is for the behavior
to appear human at the tactical level. From
earlier experience in cognitive modeling, we
know that attempting to model human behav-
ior to the greatest degree possible would great-
ly slow development and increase the required
computational resources. We adopted three
principles to approximate human behavior
without attempting to build a detailed model
(Jones and Laird 1997).

The first principle is to develop synthetic
pilots using an AI architecture (SOAR) that
roughly corresponds to the human cognitive
architecture. SOAR has a reasoning cycle that
consists of parallel access to long-term memo-
ry in service of selecting and performing
actions and a goal structure that supports hier-
archical reasoning. This level of behavior clear-
ly abstracts away from the underlying imple-
mentation mechanisms (silicon in SOAR,
neurons in a human) but captures the regular-
ities of human behavior at the appropriate
time scale for tactical aircraft—tens of millisec-
onds, not nanoseconds or microseconds. SOAR

has been used for developing a variety of
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control. In TACAIR-SOAR, we model the semantic
content of the sensors available to a human
pilot and the basic commands for controlling
an aircraft. There were some times when we
violated this principle, which, in turn, com-
promised the fidelity of the entities’ behavior.
For example, to avoid the complex reasoning
required to decide if a plane is an enemy, we
allowed the radar to provide the “friend or foe”
identification of an aircraft. At implementa-
tion time, it did not seem worth the develop-
ment effort to encode the necessary logic for
identification. Although this simplification
simplified development, it hurt fidelity,
because SMEs noticed that our aircraft would
decide to commit to intercept an enemy plane
much too quickly.

The final principle is to give the pilots the
same basic knowledge as human pilots. Thus,

detailed models of human behavior (Newell
1990). To speed development, we abstracted
even further to modeling decisions made two
to four times a second. This abstraction elimi-
nates low-level eye and finger movements but
retains the basic tactical decisions. Thus, com-
plex tactical decisions requiring multiple oper-
ators take longer than simple tactical decisions
in a SOAR system, just as they do in a human,
providing us with a gross model of human
reaction time. 

Although the first principle is to give the
system the same basic processing structure, the
second principle is to give the system the same
basic sensory and motor systems. To this end,
we created a “virtual cockpit” interface be-
tween our pilots and the underlying simula-
tion. However, once again, we abstracted away
from the details of human vision and motor

Figure 5. Trace of Interaction between Automated AWACS and Automated Fighter Pilots.
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Kiwi: kiwi, hawk121 your bogey is at bearing 23 for 143 angels 8
    ; Each plane prefaces its communication with its call sign.
    ; Here Kiwi is giving the bearing (23 degrees), range (143 nms) and altitude
(8,000 ft).
Hawk121: Roger
Kiwi: kiwi, Contact is a bandit
    ; Kiwi has identified the radar contact as an enemy plane.
Hawk121: hawk121, Contact is a bandit
Hawk122: Roger
Hawk121: hawk121, Commit bearing 23 for 140 angels 8
    ; The rules of engagement allow Hawk121 to consider the contact hostile.  At
some point,
    ; Hawk121 decides its commit criteria are achieved and starts to intercept the
bandit.
    ; Hawk121 uses the information from Kiwi to plot an intercept course
Kiwi: kiwi, hawk121 your bogey is at bearing 21 for 137 angels 8
    ; Kiwi periodically reports position information to the fighters.
Hawk121: Roger
Hawk122: Roger
Kiwi: kiwi, Bandit is closing on a hot vector
Hawk121: hawk121, Bandit is closing on a hot vector
Hawk121: hawk121, Go to defensive combat-spread formation.
    ; The section changes formation for the attack.
Kiwi: kiwi, hawk121 your bogey is at bearing 12 for 116 angels 8
Hawk121: Roger
Hawk122: Roger
Hawk121: hawk121, Bandit is closing on a hot vector
…
  ; The planes continue to close on each other until the bandit is in missile range
Hawk121: hawk121, Fox three
    ; Hawk121 fires a long-range missile and then performs an f-pole maneuver.
Hawk121: hawk121, Cranking right



we built our synthetic pilots based on the
information we extracted from SMEs. We did
not attempt to derive new tactics, base the
behavior of our agents on some general theory
of warfare, or create learning systems that
would attempt to develop behaviors on their
own. Some of the information we encoded
includes standard doctrine and tactics. Howev-
er, much of it consists of details that are not
mentioned as doctrine or tactics because they
are obvious to a human pilot. For example, we
needed to encode details such as the geometric
features the wingman should pay attention to
when turning while in formation. Our strategy
is generally to rely on SMEs. However, some-
times we believed that the appropriate re-
sponse to a situation was obvious, and we
would insert it into the system without asking
an expert. Often, we would find that the situa-
tion was more complex than we thought and
that what is common sense to an experienced
pilot is quite different from the common sense
of an AI researcher. Needless to say, a critical
component of this development cycle was to
have SMEs critique the behavior of the TACAIR-
SOAR pilots. 

Coordinate Behavior with 
Other Entities
In almost all missions, a plane does not fly
alone but coordinates its behavior with other
forces. At the immediate level, planes are orga-
nized into groups of two or four in which they
maneuver together and carry out the same
mission. Small groups can combine into pack-
ages, such as a strike package, where the sub-
groups have different specific missions, such as
escorts and attack aircraft, but the planes must
coordinate their joint behavior. To simulate
communications, we use simulated radios to
send messages (Hartzog and Salisbury 1996;
Salisbury 1995). 

Figure 5 shows an example interaction
between TACAIR-SOAR agents. Here Kiwi is an
automated AWACS controller, and Hawk121
and Hawk122 are automated fighter pilots. The
interactions unfold dynamically based on the
situation and are not scripted. In the scenario,
Kiwi gets a radar contact, sends a report to the
fighter pilots, and identifies the bogey as an
enemy plane (a bandit). When the bandit
comes within a predefined commit range, the
fighters start an intercept and eventually shoot
a missile at the bandit.

Within a TACAIR-SOAR entity, coordination is
supported by explicitly representing the differ-
ent groups it is a part of, its role in each group,
and the other members of the group and their
roles. Knowledge about how to carry out its

role in a group is encoded just like all other
knowledge—as rules for selecting and applying
operators. Thus, when the role of an entity in
a group changes, different actions are selected
and applied. For example, many of the rules in
TACAIR-SOAR tested whether a pilot is the lead or
the wingman of its current formation. 

In addition to coordination between syn-
thetic aircraft, TACAIR-SOAR must support coordi-
nation between manned control stations such
as an AWACS, or forward air controller, and
synthetic aircraft. Controllers must communi-
cate with synthetic aircraft using a simulated
radio. However, humans need an interface to
the radio system, which we provided using two
approaches: (1) a graphic user interface (GUI)
called the COMMUNICATIONS PANEL (Jones 1998)
and (2) a speech-to-text and text-to-speech sys-
tem called COMMANDTALK (Goldschen, Harper,
and Anthony 1998). In STOW ’97, over 100
different types of message could be sent
between TACAIR-SOAR agents. Examples of com-
mand and control interactions included
changing stations, directing fighters to inter-
cept enemy planes, vectoring aircraft along
various desired routes, and running numerous
on-call close-air support missions against a
variety of targets (including ground vehicles,
buildings, runways, and ships). During the
exercise, humans did not have to microman-
age the planes. Sometimes when we tried to
give the agents detailed directions, we ran into
problems. We discovered that TACAIR-SOAR’s air-
to-air intercepts worked best when humans
gave initial directions toward enemy planes
and then shut up. The TACAIR-SOAR agents often
had a better handle on the tactical situation
than the human controllers did, sometimes
engaging and shooting down planes the
human controllers had missed.

Behave with Low 
Computational Expense
Another important requirement is that several
synthetic pilots must be able to be run at the
same time without excessive computational
expense. If it cost $50,000 for each entity, then
flying 100 or more entities would be prohibi-
tive. We knew from the beginning that our
approach would require more computational
resources than prior finite-state automata
approaches, which are more limited in the
complexity of behaviors that they can gener-
ate. The question was whether this additional
cost would be excessive. 

To minimize costs, we emphasized efficiency
throughout the design and implementation of
the system. We group our approaches to effi-
ciency into five general categories: (1) enhanc-
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This approach did make it easier to expand
the capabilities of the system. However, the
cost was excessive. To increase efficiency, the
system now uses situation-interpretation rules
to compute new features only if those features
are relevant to the agent’s current context. For
example, there might be no reason to compute
whether an enemy aircraft is pointing at the
agent’s aircraft if the enemy aircraft is known
not to carry air-to-air missiles. These changes
were sometimes tedious, but the purely func-
tional concern of efficiency forced us to create
a more plausible representation of human rea-
soning.

The fourth approach was to add multiple
levels of attention to sensing. The original
interface to the sensors provided the same
information about every radar contact, no
matter how important this contact was to the
current mission, which led to many calcula-
tions in the SMI that were irrelevant. We
implemented a three-tiered attention mecha-
nism to allow TACAIR-SOAR agents to select an
appropriate level of information based on the
relevance of the radar contact. For example,
enemy planes being engaged receive a high
attention level, but friendly planes that are not
part of the mission receive low attention (once
identified).

The final contribution to efficiency is the
result of Moore’s law. Over the six years that
TACAIR-SOAR has been under development, com-
puter system speeds have continued their
familiar dramatic improvements. For STOW
’97, we did not try to find the fastest comput-
ers available because low cost was also a goal.
We did try to find a good ratio of performance-
to-system cost and ended up using PENTIUM

PROs running the LINUX operating system. With
these machines, and our attention to efficien-
cy within TACAIR-SOAR’s design, we were able to
run as many as six instances of TACAIR-SOAR on
a single machine without significant degrada-
tion in the quality of behavior. In the months
since STOW ’97, we have been able to increase
this number.

Integration with Operational
Organization

In our early work on this project, we concen-
trated on the design and development of
TACAIR-SOAR and its integration with MODSAF.
However, we quickly discovered that we also
needed to concentrate on how people will
actually use TACAIR-SOAR, which meant integrat-
ing it into the existing military operational
organizations. In the U.S. military, all air mis-
sions are created by the Air Operation Center,

ing the rule-based architecture, (2) moving
nonsymbolic computation into the SMI, (3)
improving the context sensitivity of process-
ing, (4) adding focus of attention to sensing,
and (5) using fast but cheap hardware.

In the summer of 1992, SOAR was rewritten
from scratch in C (from Lisp), and significant
enhancements were made to its rule matcher
to improve its efficiency. The new version of
SOAR was approximately 15 to 20 times faster
than the previous version. Included in these
enhancements were changes that allowed SOAR

to match very large numbers of rules (over one
million in one experiment) without significant
degradation in performance (Doorenbos
1993). As the project progressed, we discovered
other architectural adjustments that address
efficiency. One adjustment was to disable
SOAR’s built-in learning mechanism, which
improved performance about 10 percent.
TACAIR-SOAR does not currently make use of
learning because it provides little benefit to the
expert levels of behavior that this domain
requires. 

The second technique to increase efficiency
was to migrate processing from rule-based
behaviors into the SMI. Initial implementa-
tions restricted the agent’s sensory input from
the SMI to sparse representations. Midway
through the project we realized that some of
the computations being performed by rules
were typically performed by a piece of hard-
ware on a plane instead of the pilot. This dis-
covery led us to redesign our interface, moving
calculations for waypoint headings and bomb
attacks into a “mission computer.” Such fixed,
numeric, and goal-independent processing is
much more efficiently implemented in C code
than in the match-and-fire interpretation cycle
inherent in rules. We recovered significant pro-
cessing time by moving such computations
into the SMI. 

The third technique was to restrict certain
computations so that they are made only when
they are going to be used in decision making.
Early versions of the situation-interpretation
hierarchy processed primitive input informa-
tion from the SMI into as many different repre-
sentations as it could. The original motivation
behind this approach was to make the system
easier to extend. The “right” set of features
would be available any time we added new
behaviors because the system would represent
the situation in so many different ways. As a
simple example, based on numeric sensor
information for a radar contact, we would com-
pute whether the contact is to our left or right,
in front of us or in back of us, pointing at us,
turning, descending or climbing, and so on.
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which generates the Air Tasking Order (ATO)
and Air Coordination Order (ACO) once a day.
The ATO and ACO define all missions to be
flown the next day. The ATO and ACO are gen-
erated using a military software system called
CTAPS and are sent to all Wing Operations Cen-
ters (WOCs) where the missions relevant to the
planes at the wing are extracted. The WOC,
together with the pilots flying the missions,
further refines the missions. During typical
operations, the ATO and ACO are generated
the night before the missions are flown. Each
mission is defined by more than 100 parame-
ters, and for STOW ’97, each ATO contained as
many as 300 individual aircraft missions.
Needless to say, manually typing 30,000 para-
meters into TACAIR-SOAR mission files 12 hours
before takeoff was not a practical option. 

Our goal is to make this process transparent
to training audience members so that they use
their existing tools (such as CTAPS) without
modification. Our approach to mission specifi-
cation is to automate the process as much as
possible but also provide the ability for human
intervention at critical stages. Human inter-
vention is necessary because we know the
automation is incomplete, and we must sup-
port last-minute changes to missions. In
response, we created the exercise editor (Coul-
ter and Laird 1996) and the Automated Wing
Operations Center (AWOC). The exercise edi-
tor allows a person to specify missions for all
the planes at an airbase using a GUI. It orga-
nizes the data hierarchically according to the
structure of the mission and eliminates redun-
dant data entry for shared information. The
exercise editor has been used extensively to
prepare scenarios for testing as well as add
information that is not available in the ATO
but is typically available to human pilots. As
shown in figure 6, the AWOC accepts an elec-
tronic version of the ATO and ACO from CTAPS

and transforms and reorganizes them into a
form readable by the exercise editor. The
AWOC also does some minimal reasoning to
fill in missing fields.

Details of Deployment
TACAIR-SOAR has been used in two major exercis-
es: (1) STOW ’97 and (2) Roadrunner ’98.
TACAIR-SOAR is deployed at the WISSARD Labo-
ratory on the Oceana Naval Air Station at Vir-
ginia Beach, Virginia, where it is used for con-
tinued testing of the underlying network
infrastructure as well as for evaluation and
demonstration of the technology. There is also
a deployed installation at the Air Force Re-
search Laboratory in Mesa, Arizona, with plans

for the system’s use in future training exercises
and technology demonstrations.

STOW ’97
At STOW ’97, TACAIR-SOAR flew all the missions
in the ATO. For 48 hours (7 A.M. EST, 29 Octo-
ber, to 7 A.M. EST, 31 October 1997), our sys-
tems at Oceana received three ATOs of 12, 24,
and 12 hours each. There were 722 scheduled
flights of fixed-wing aircraft, flying missions
that included defensive-counter air, close-air
support, suppression of enemy air-defense
strategic attack (air-to-ground attacks), escorts,
airborne early warning, and Recon/Intel. These
missions included air-to-air engagements
between U.S. and opponent forces; air-to-
ground attacks where TACAIR-SOAR entities
attacked and destroyed ground targets (includ-
ing vehicles, runways, and buildings); and sup-
port missions, such as intelligence gathering.
During STOW ’97, the training audience also
requested a few missions that had not been
included in our requirements, specifically,
attacking ships. No air-to-surface missiles had
been developed for STOW ’97; however, the
close-air support mission was flexible enough
so that we were able to dynamically retask F/A-
18s to successfully attack ships using laser-
guided bombs. 

Each mission varied in length from 90 min-
utes to 8 hours, with the median being 3
hours. At any one time, there were from 30 to
100 planes airborne on as many as 28 PENTIUM

PROs. TACAIR-SOAR flew over 15 different types of
U.S. Navy, Marine, and Air Force aircraft, using
all the sensors and weapons that had been
developed for these aircraft in MODSAF. The sen-
sors included vision, radar, radar-warning
receiver, radio communication, IFF (identifica-
tion of friend of foe), and an ESM (electronic

Figure 6. Diagram of Mission Specification Software.
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times outside the battle area. Such errors imply
a need to enhance these tools to reduce the
likelihood of operator error and enhance the
agent behaviors to flexibly handle incorrect or
missing mission information. These errors
were usually corrected either manually or with
additional commands. 

The performance of our software exceeded
our expectations. Throughout the 48 hours of
STOW ’97, the behavior of the synthetic pilots
was consistent with accepted doctrine and tac-
tics. Once the planes took off, they flew all
their missions without human intervention.
The planes responded to changes in weather
conditions (not launching when the clouds
were too low, flying above the clouds rather
than through them). They landed on time and
reported to the AWOC the results of their mis-
sions. In one case, an F/A-18 on a close-air sup-
port mission broke off its ground attack
because it was threatened by a hostile aircraft.
The F/A-18 intercepted the enemy plane, shot
it down, and then returned to its close-air sup-
port mission without any human interven-
tion. TACAIR-SOAR agents did an excellent job in
beyond-visual-range intercepts, where they
correctly used appropriate tactics and weapons
for intercepting hostile, opponent aircraft.
Throughout the exercise, human controllers
were able to redirect or retask TACAIR-SOAR

planes using the same commands (on simulat-
ed radios) that they would for human-piloted
vehicles.

Although TACAIR-SOAR’s participation in
STOW ’97 was an “unqualified technical suc-
cess,” it was not a complete success in terms of
training the military personnel involved. Some
minor technical issues, such as difficulties with
ground radars and radar-warning receivers,
made specific engagements unrealistic and of
marginal training value. Other problems arose
in getting timely intelligence reports back to
the training audience. Finally, much of the
training audience was unfamiliar with distrib-
uted simulation technology, and although
many tests were run throughout the summer
of 1997, the majority of participants in STOW
’97 were not involved in the testing. Most, if
not all, of these problems can be attributed to
the fact that this was the first time a distributed
simulation-based training exercise the size and
scope of STOW ’97 had been attempted.

Roadrunner ’98 
From 13 to 17 July 1998, the Roadrunner ’98
exercise was held. It was a much smaller exer-
cise than STOW ’97, focusing on integrating
multiple pilot-in-the-loop training simulators
together with synthetic forces to form a virtual

surveillance measure) sensor. Weapons includ-
ed dumb bombs, laser-guided bombs, radar
and infrared guided air-to-air missiles, and air-
to-ground missiles. Some sensors, such as FLIR
(forward-looking infrared), and some wea-
pons, such as air-to-surface missiles and guns,
were not used either because they were not
supported in MODSAF or because there was not
sufficient time to build intelligent behaviors to
use them.

Support personnel for STOW ’97 were kept
busy loading the computers with missions to
fly, working on the ATO with the exercise edi-
tor, monitoring the planes, initiating on-call
close-air support missions, and talking to visit-
ing VIPs. However, the support personnel were
never overwhelmed. Many times during the
night shift, there was little to do but watch the
planes fly their missions. At most times during
the exercise, there were only one or two people
devoted to monitoring the behavior of as
many as 100 TACAIR-SOAR entities. Although
monitoring was minimized, we did discover
some areas that could be automated further,
such as automatic distribution and loading of
missions and automatization of the processing
of the ATO. Our research suggests that humans
are still needed to talk to VIPs.

Problems with sensors and weapons did neg-
atively impact the behavior of the TACAIR-SOAR

agents. For example, the ordnance server,
which simulated missiles in STOW ’97, crashed
multiple times and caused many air-to-ground
missions to be ineffective because the agents
lost the ability to use maverick missiles against
ground targets. A second problem arose when a
component of the network failed, disabling the
simulated IFF emitters, making TACAIR-SOAR’s
planes appear to be enemies to ground forces.
Therefore, ground-to-air Patriot batteries shot
down a few friendly planes. Another combina-
tion of problems with ground radars and air-
craft radar warning receivers prevented TACAIR-
SOAR agents from targeting surface-to-air missile
sites. These problems led to unrealistic losses
during the early hours of the exercise, but this
was not a fault of the system’s knowledge or
behaviors.

Overall, 99 percent of the missions specified
in the ATO were launched. About 3 percent of
the missions were aborted because of software
or hardware failures. Many of the errors were
caused by incorrect entry of commands or mis-
sion data using the exercise editor, the com-
munications panel, or COMMANDTALK. More
than once, a human controller vectored a
plane in a direction only to become distracted
by other activities and forget about the plane,
which, in turn, continued on the vector, some-
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battlespace. The goals for Roadrunner ’98 were
“to demonstrate the training potential of Dis-
tributed Mission Training (DMT) for improv-
ing higher-order individual and collective
warfighter skills, which are difficult to acquire
and maintain” (Roadrunner 1998). The exer-
cise was distributed over seven sites; the main
sites were Air Force Research Laboratory, Mesa,
Arizona; Kirtland Air Force Base, New Mexico;
Tinker Air Force Base, Oklahoma; and Kelly Air
Force Base, Texas.

TACAIR-SOAR participated by flying battlefield
interdiction and suppression of enemy air
defense missions, in which humans in simula-
tors flew air-to-air escorts. TACAIR-SOAR also
engaged humans acting as opponent air forces.
Overall, TACAIR-SOAR flew 174 missions. TACAIR-
SOAR was not only a technical success in this
exercise; it was also operationally successful.
Many of the problems that plagued STOW ’97
were fixed or did not arise because of the small-
er size of the exercise.

Application Payoff
To date, we have not formally evaluated the
payoff of TACAIR-SOAR’s use for military training.
These evaluations will come as TACAIR-SOAR is
involved in additional exercises such as Road-
runner ’98. The dimensions for evaluation will
be the cost and effectiveness of training.
Although formal evaluation has not been pos-
sible, we have observed the success of the sys-
tem along two primary dimensions: (1)
improved realism of automated force behavior
and (2) economy of expense in populating a
synthetic environment with automated partic-
ipants.

In terms of improved realism, a number of
active and retired military personnel have
expressed surprise and enthusiasm at the dif-
ference between TACAIR-SOAR’s behavior and
other simulated entities. In one case, we inter-
viewed an active pilot who had just finished a
training exercise in a flight simulator, flying
air-to-air engagements against TACAIR-SOAR

agents. The pilot was pleased to note that the
system actually reacted to his maneuvers,
unlike the behavior of SAFORs. He claimed
that it was the best simulation training experi-
ence he had ever had.

When asked to summarize the perceived
advantages of TACAIR-SOAR, an SME noted the
following important features of TACAIR-SOAR

that are missing from SAFORs: First, SAFORs
have no coordination with each other (or
humans), so they cannot simulate large, coor-
dinated flights, such as strike missions. Second,
SAFORs have no notion of different flight

phases and the different procedures that are
appropriate for different portions of a mission.
Third, there is negligible reuse of information
in specifying missions for SAFORs. Each entity
must be tasked individually, even for sets of
similar (or identical) tasks. Finally, SAFORs
have extremely limited facilities to react flexi-
bly to changes in the environment or situa-
tion.

These and other similar features suggest that
in many ways there is no room for quantitative
comparison of TACAIR-SOAR with SAFORs.
TACAIR-SOAR agents include a large number of
capabilities that are qualitatively beyond any-
thing a SAFOR can reproduce. These capabili-
ties also lend themselves to arguments of econ-
omy. Because SAFORs have such limited
capabilities, they require significant human
intervention to exhibit realistic, humanlike
behavior. Members of BMH Associates, Inc.
(our primary subject-matter experts and highly
experienced users of SAFORs), estimated that
one human could realistically manage control-
ling as many as four SAFORs to produce behav-
iors that are acceptably flexible, reactive, and
coordinated. In contrast, there were dozens of
TACAIR-SOAR entities “in the air” at a time during
STOW ’97, and they only required a single per-
son to monitor behavior and make sure noth-
ing inappropriate was happening. Similarly,
the initial specification of 722 missions for
STOW ’97 would have taken significantly
more person-hours to complete for SAFORs
than it did for the TACAIR-SOAR entities. These
qualitative factors make it clear that TACAIR-
SOAR provides significant savings in cost, as
well as more realistic simulations, although
precise, quantified estimates of these benefits
are still not available. 

Ongoing Efforts
TACAIR-SOAR continues to be used for technolo-
gy demonstrations and operational training at
the Oceana Naval Air Station and for training
at the Air Force Research Lab. Under the aus-
pices of a new company (Soar Technology,
Inc.), we are installing the system at additional
military training sites and continuing its devel-
opment in a number of ways. One obvious
area of development is to expand and deepen
the behaviors and missions that TACAIR-SOAR

performs to increase its participation and real-
ism in theater-level simulations such as STOW
’97. To address other types of training, we are
also putting significant effort into engineering
TACAIR-SOAR for specific, individual training
roles. Some example roles are synthetic wing-
men to provide partners to individual lead
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