
■ Research on constraints and agents is emerging at
the intersection of the communities studying con-
straint computation and software agents. Con-
straint-based reasoning systems can be enhanced
by using agents with multiple problem-solving
approaches or diverse problem representations.
The constraint computation paradigm can be used
to model agent consultation, cooperation, and
competition. An interesting theme in agent inter-
action, which is studied here in constraint-based
terms, is confronting ignorance: the agent’s own
ignorance or its ignorance of other agents.

Constraints and agents have a natural
synergy. On the one hand, agent behav-
ior, for example, negotiation, can be

modeled as constraint satisfaction and opti-
mization. On the other hand, agents can be
used to accomplish constraint satisfaction and
optimization, for example, to solve distributed
scheduling problems. Agents offer opportuni-
ties to apply the constraint computation para-
digm and present challenges to extend the par-
adigm.

Constraint computation provides a general
problem-solving framework (see the Con-
straints sidebar). Agents are self-directed prob-
lem-solving entities (see the Agents sidebar).

Software agents can benefit by using con-
straint computation to improve the efficiency
of individual agent problem solving (Tambe
1996; Wellman 1994); assist in knowledge
acquisition (Freuder and Wallace 1997); or
model the difficult issues of negotiation, col-
laboration, and competition among agents
with differing interests (Freuder and Eaton
1997; Liu and Sycara 1994a).

Constraint-based–reasoning systems can be
enhanced by using software agents to improve
performance by combining the expertise of
multiple, heterogeneous problem solvers

(Petrie, Jeon, and Cutkosky 1997; Andreoli et
al. 1997); improve solution quality when the
different interests of multiple agents are neces-
sary (Freuder and Eaton 1997); improve the
performance of constraint-satisfaction meth-
ods by distributing the problem over multiple
agents (Petrie, Jeon, and Cutkosky 1997; Eaton
and Freuder 1996; Liu and Sycara 1994a); or
improve system reliability by providing redun-
dancy (Eaton and Freuder 1996; Cheng, Lee,
and Wu 1996).

Background
We briefly survey some of the recent work on
constraints and agents. We do not include dis-
tributed, concurrent, or parallel constraint-sat-
isfaction systems. Parallel and concurrent con-
straint-satisfaction systems do not possess
software agent characteristics as we define
them. In particular, even though components
in these systems might exchange data, they are
not complete problem solvers but cogs within
a problem-solving system. Constraint-agent
technology extends the work on distributed
constraint-satisfaction systems to provide
autonomous entities capable of representing
the diverse interests of heterogeneous systems
during cooperative problem solving. We are
also limiting the scope of this article by largely
excluding robotic agents.

Nwana and Ndumu (1997) categorize soft-
ware agents into six agent types: (1) collabora-
tive constraint, (2) interface constraint, (3)
information and internet constraint, (4)
mobile constraint, (5) reactive constraint, and
(6) hybrid constraint. We separate constraint
agents into these categories and add a seventh
category, infrastructure, to encompass the
development of tools, languages, and frame-
works to assist software engineers in using con-

Articles

SUMMER 1998 51

Constraints and Agents
Confronting Ignorance

Peggy S. Eaton, Eugene C. Freuder, and Richard J. Wallace

Copyright © 1998, American Association for Artificial Intelligence. All rights reserved. 0738-4602-1998 / $2.00

AI Magazine Volume 19 Number 2 (1998) (© AAAI)

Articles

52 AI MAGAZINE

Collaborative Constraint Agents

Collaborative scheduling agents Anke, Staudte, and Dilger 1997; Liu and
Sycara 1994a; Miyashita 1997; Murthy et
al. 1997; Musliner and Boddy 1997;
Solotorvsky and Gudes 1997

Agent ordering during problem solving Armstrong and Durfee 1997
Constraint-based discourse agents Donaldson and Cohen 1997
Multiple diverse viewpoints Eaton and Freuder 1996
Compromise strategies Freuder and Eaton 1997
Improvement of asynchronous backtrack search Havens 1997
Distributed valued constraint satisfaction Lemaitre and Verfaillie 1997
Collaboration and resource requirements Neiman et al. 1994
Distributed constraint optimization Parunak et al. 1997
Minimization of intraagent constraint violations Saks et al. 1997
Tracking of dynamic team activities Tambe 1996
Modeling of interactions using markets Wellman 1994

Interface Constraint Agents

Constraint acquisition during matchmaking Freuder and Wallace 1997
Mixed-initiative constraint-satisfaction problems Jackson and Havens 1995

Information and Internet Constraint Agents

Constraint-based knowledge broker agents Andreoli et al. 1997, 1995
Java constraint library Torrens, Weigel, and Faltings 1997

Mobile Constraint Agents

Mobile knowledge brokers Andreoli et al. 1997
Solving of constraint-satisfaction problems over
internet

Torrens, Weigel, and Faltings 1997

Reactive Constraint Agents

Cooperative constraint-satisfaction problem
agents

Clearwater, Huberman, and Hogg 1991;
Liu and Sycara 1994b, 1993

Specification of reactive agents Mali 1997

Hybrid and Heterogeneous Constraint Agents

Reactive and deliberative collaboration Anderson 1997
Reactive and collaborative agents Carlson, Gupta, and Hogg 1997
Framework for constraint agents Nareyak 1997
Distributed, concurrent engineering design Orbst 1997; Petrie, Jeon, and Cutokosky

1997
Interface and collaborative agents Tate 1997

Infrastructure

Evaluation of agent problem solving Mammen and Lesser 1997
Framework for reactive agents Shvetsov, Nesterenko, and Starovit 1997
Information integration using context Bressan and Goh 1997
Constraint extensions to VMRL Diehl 1997
Web search techniques Gilbert, Eidhammer, and Jonassen 1997
Constraint logic programming language Lawal, Gilbert, and Letichevsky 1997
Java constraint library Torrens, Weigel, and Faltings 1997

Table 1. Summary of Constraint Agent Applications.

straint agents. Table 1 shows constraint agents
mapped into these categories. (For more meld-
ing of constraints and agents, see Freuder
[1997] and Fruhwirth et al. [1997].)

Collaborative Constraint Agents
Collaborative constraint agents are exemplified
by the distributed meeting scheduling work of
Liu and Sycara (1994a), the work on agent
compromise strategies of Freuder and Eaton
(1997), Donaldson and Cohen’s (1997) work
on turn taking during discourse, and Neiman
et al.’s (1994) work on the exchange of ab-
stracted messages among agents.

In the distributed meeting scheduling work
by Liu and Sycara (1994a), calendar agents
know their owner’s schedule and scheduling
preferences. Calendar agents negotiate with
each other to schedule meetings. This system
uses a flexible but centralized approach by
appointing a task agent to coordinate a partic-
ular meeting. The task agent is the agent that
has the most constrained schedule in the
group. Agents exchange scheduling con-
straints and preferences as they search for a
joint solution. A global solution is reached by
the limited exchange of local information. If a
conflict occurs, the agents can relax their con-
straints based on their own preferences and
schedule. The goal of Liu and Sycara’s work is
similar to the goal of our work (Freuder and
Eaton 1997), where agents find a solution that
is not only feasible but is a high-quality solu-
tion for the group.

Constraint computation is useful for model-
ing the dynamic nature of discourse as
explored by Donaldson and Cohen (1997).
Turn taking among agents participating in dis-
course results in multiple goals being tracked
and resolved; local repair techniques are used
to generate solutions to the dynamic con-
straint-satisfaction problem (CSP).

Agents in the distributed airport resource
management system negotiate by exchanging
messages concerning their resource require-
ments (Neiman et al. 1994). The agents make
local decisions about whether to contact other
agents for a resource. Conflicts are managed by
local relaxation strategies.

Interface Constraint Agents
The efficiency of asynchronous backtrack
search is improved by committing to value
selections made by human users in work by
Jackson and Havens (1995). This algorithm
reuses the valid part of previous solutions in an
attempt to maintain a user’s preferences for
particular values. When the assignment can-
not be made, the user is given an explanation.

A matchmaker agent provides potential solu-

tions (the suggestions) to a user based on par-
tial knowledge (Freuder and Wallace 1997).
The matchmaker gathers information about
the user based on the user’s evaluation of the
suggestions provided by the matchmaker.
Problem solving proceeds by iterating between
the matchmaker and the user until the user is
satisfied.

Information and
Internet Constraint Agents
Collaborating constraint-based knowledge broker
agents manage electronic documents for users
(Andreoli et al. 1997). Brokers are agents that
can process search requests for electronic infor-
mation or delegate the search activity to other
brokers. The agents use signed feature con-
straints to represent partially specified infor-
mation. Information communicated among
agents includes values, variables, and con-
straints. The agents use a common language.
The life span of the agents varies depending on
the application. Agents can be persistent and
reuse previously retrieved information. Agents
can also be terminated after queries have been
satisfied.

Mobile Constraint Agents
Andreoli et al. (1997) propose the use of tools,
such as ODYSSEY by General Magic, to support
the implementation of mobile broker agents.
ODYSSEY supports the movement agents across
the network. For example, Andreoli et al.’s bro-
ker agent travels to a site, but rather than
return with information that has been
retrieved, the agent remains at the site process-
ing queries from the user based on current
local information. An advantage is lower com-
munication costs because the local broker
agent can perform local processing and sum-
marize results before transmission.

Preliminary work on the JAVA constraint
library provides a simple mobility mechanism
for running constraint agents in a client-server
mode of operation on the internet (Torrens,
Weigel, and Faltings 1997).

Reactive Constraint Agents
The concurrent, reactive CSP agents in Liu and
Sycara (1994a) and Clearwater, Huberman,
and Hogg (1991) are simple agents performing
local computations based on the state of vari-
ables with which they are concerned. The
agents communicate with each other by
changing the values of the variables to main-
tain consistency. Agent coordination occurs
because shared variables are modified. A global
solution emerges as a result of this simple
agent coordination.

Articles

SUMMER 1998 53

tion, (2) cooperation, and (3) competition. For
consultation, we explore suggestion strategies;
for cooperation, sharing strategies; and for
competition, compromise strategies.

We briefly survey work we have begun that
addresses the following intriguing questions:
How can agents elicit a human’s unarticulated
desires in an effective and unobtrusive man-
ner? How can agents cooperate to overcome
their individual limitations when they do not
want to allow unrestricted access to each oth-
er? How can agents compromise to work
together despite differing desires, which they
might not want to reveal? We believe that con-
straint technology supports promising prelim-
inary answers to each of these questions. An
interesting theme has emerged in our work,
which we might call confronting ignorance: The
consulting agent in our example must over-
come its own ignorance of the customer to
overcome the customer’s ignorance of the con-
sultant’s service. The cooperating agents in our
example must compensate for their individual
ignorance of portions of their joint problem to
arrive at a complete solution. The competing
agents in our example must deal with their
ignorance of each other’s priorities.

Constraint information can be communi-
cated at several levels: Our consulting agents
exchange constraints and solutions, our coop-
erating agents exchange inferences, and our
competing agents exchange choices or rank-
ings. Knowledge, once acquired, can be propa-
gated naturally.

An intriguing aspect of ignorance here is
that agents might regard ignorance as desirable
but still need to cope with the limitations it
imposes. Agents might want to reveal as little
as possible of their needs, their knowledge, or
their priorities for privacy or proprietary rea-
sons. At the same time, greater openness might
enable their needs to be better fulfilled, their
problems to be solved more easily, and their
priorities to be better met. A key research issue
then will be to develop different strategies that
provide the best balance of privacy and open-
ness for different needs.

Consultation
An important application field of agent tech-
nology is the facilitation of commerce on the
World Wide Web. Search agents are already
being used to locate web sites that offer specific
services. In addition, content-focused match-
maker agents can provide advice to internet
consumers (people or other agents) about
complex products (Gomez et al. 1996). At pre-
sent, the reigning paradigm for such agents is

Hybrid Constraint Agents
and Heterogeneous Systems
Hybrid software agents combine one or more of
the previously defined types. Heterogeneous
agent systems are a collection of the various
agent types that interoperate with each other
using a common communication language.

PROCESSLINK is a system consisting of con-
straint specialists cooperating to solve concur-
rent engineering design problems (Petrie, Jeon,
and Cutkosky 1997). The goal is to provide
application programming interfaces (APIs) for
legacy tools (computer-aided design systems,
simulators, and so on) that can communicate
with each other. Agents communicate with
each other using KQML (the knowledge query
and manipulation language). The tools are
integrated using a bookkeeper, the REDUX

agent, that keeps track of the activities associ-
ated with the multiple problem solvers and
performs dependency-directed backtracking.
The constraint manager agent performs consis-
tency management and works together with
the redux agent to explain inconsistencies
when backtracking is necessary.

Infrastructure
A variety of tools, languages, and frameworks
are being developed to support agents and
constraints. Mammen and Lesser (1997) pro-
pose a general framework for the evaluation of
MASs. The proposed tool allows the adjust-
ment of problem parameters and gathers data
as specified by the user. MINT, a web-based tool
discussed in Bressan and Goh (1997), inte-
grates information from different and possibly
conflicting information sources using context
information. Diehl (1997) extends VRML (inter-
net standard for three-dimensional [3D] con-
tent) to include constraints used to describe
relationships among objects in a 3D scene. The
JAVA constraint library is a collection of JAVA

classes to facilitate client-side constraint prob-
lem solving (Torrens, Weigel, and Faltings
1997).

Case Studies from the
University of New Hampshire
Constraint Computation Center
Software agents need to acquire knowledge.
They need to exchange knowledge. They need
to use this knowledge cooperatively and com-
petitively. They might need to operate in an
environment in which complete a priori dis-
closure of all relevant knowledge is impractical
or undesirable.

In the remainder of this article, we illustrate
three important agent interaction modes with
examples from our own work: (1) consulta-

An important
application

field of agent
technology

is the
facilitation

of commerce
on the World

Wide Web.

Articles

54 AI MAGAZINE

the deep interview, illustrated by the PERSON-
ALOGIC web site (Krantz 1997), where the pri-
mary mode of interaction is the MATCHMAKER

query. MATCHMAKER poses a series of (essential-
ly) multiple-choice questions about product
features, and the customer’s answers allow
MATCHMAKER to select products that meet
his/her specifications. We approach the prob-
lem of product selection using a constraint-
based paradigm with a very different form of
interaction.

In our paradigm, the primary mode of inter-
action is the suggestion, made by MATCHMAKER to
the customer, where each suggestion is a pos-
sible product. The secondary mode of commu-
nication is the correction, made by the cus-
tomer to the MATCHMAKER, indicating how the
product selected by MATCHMAKER fails to meet
the customer’s needs.

The objective here is to model a situation in
which customers do not enter the interaction
with a fully explicit description of their needs.
They might be unfamiliar with what is avail-
able in the marketplace. They cannot list all
their requirements up front, but they can rec-
ognize what they do not want when they see
it. We believe this arrangement to be a com-
mon form of customer conduct. (Picture your-
self browsing through a store or a catalogue or
interacting with a salesclerk.)

In our approach, MATCHMAKER’s knowledge
base and the customer’s needs are both mod-
eled as networks of constraints. A suggestion
corresponds to a solution to the current CSP as
it is understood by MATCHMAKER. A correction
specifies the customer constraints that the pro-
posed solution violates. Repeating the cycle of
suggestion and correction allows MATCHMAKER

to improve its picture of the customer’s prob-
lem until a suggestion provides a satisfactory
solution for the customer. The problem of both
acquiring and solving a CSP has been termed
the constraint acquisition and satisfaction prob-
lem (CASP) by Freuder (1995), where the basic
suggestion-correction model was suggested but
not implemented.

Matchmaking and
Suggestion Strategies
MATCHMAKER can facilitate this interaction by
an appropriate choice of suggestions, or tenta-
tive solutions. For example, some suggestion
strategies can lead to a satisfactory customer
solution more easily than others, that is, with
fewer iterations of the suggestion-correction
cycle. However, ease of use is not the only eval-
uation criterion. In an environment in which
MATCHMAKER has an ongoing relationship with
the customer, it might be desirable for MATCH-

MAKER to learn as much as possible about the
customer’s constraints to facilitate future inter-
actions. In our implementation, it is possi-
ble—in fact, it proves experimentally the
norm—for MATCHMAKER to come up with a sat-
isfactory solution before acquiring all the cus-
tomer constraints because constraints can be
satisfied fortuitously by a suggestion. Thus, we
use the number of customer constraints
acquired by MATCHMAKER as another perfor-
mance metric when comparing suggestion
strategies. (Conversely, the customer might
not want to reveal more information than nec-
essary to complete the transaction. In this case,
the second criterion is useful in gauging the
degree to which the number of customer con-
straints acquired is minimized.)

If our goal is to limit the length of the dia-
logue between two agents, one strategy is to
try to find solutions that are more likely to sat-
isfy constraints between variables, even
though these constraints are not currently in
MATCHMAKER’s CSP representation. This is con-
sistent with the additional policy of maximiz-
ing satisfaction, in terms of the number of sat-
isfied constraints, at each step in the dialogue.
An alternative, and possibly perverse, ap-
proach is to maximize constraint violations.
Here, the strategy is to find solutions that vio-
late as many constraints as possible so that
more constraints are incorporated into MATCH-
MAKER’s set from the start.

For algorithms that use complete or exhaus-
tive search, selecting values less likely to be in
conflict with values in other variables is a
promising method for maximizing satisfaction.
For hill-climbing or heuristic repair methods, a
method in the same spirit is solution reuse, that
is, starting each search with the solution
obtained earlier after revising information
about conflicts based on the last customer com-
munication. In each case, a method that con-
forms to the strategy of maximizing violations
is the converse of the method for maximizing
satisfaction. For complete search, we can
choose values that are most likely to be in con-
flict. A corresponding hill-climbing technique
is to search each time from a new location, that
is, with a new set of initial values.

As suggested earlier, a second goal in match-
making might be to learn as much (or as little)
as possible about the customer during an inter-
action. Here, learning about the customer
means learning the customer’s constraints.
Intuitively, strategies that maximize satisfac-
tion should minimize the number of con-
straints learned, and violation strategies
should maximize this quantity.

Articles

SUMMER 1998 55

bility pc, it was added to the customer’s set.
Four sets of values were used for pb and pc,
respectively: 0.2 and 0.4, 0.2 and 0.8, 0.4 and
0.4, 0.4 and 0.8.

Different suggestion strategies were realized
by ordering domain values in specific ways pri-
or to search. To maximize constraint satisfac-
tion, values in each domain were ordered by
maximum average promise (max-promise),
where promise is the relative number of sup-
porting values in each adjacent domain (Gee-
len 1992), and these proportions are averaged
across all adjacent domains. A violation strate-
gy was obtained simply by reversing this order
for each domain, which gave an ordering by
minimum average promise (min-promise).
Another violation strategy was to shuffle the
domains before each search, that is, to order
each domain by random sequential selection
of its values. Lexical ordering of values served
as a control.

Representative results for the different value
orderings are shown in table 2. In one case (pb
= 0.2, pc = 0.4), the satisfaction strategy, max-
promise, found acceptable solutions after few-
er iterations of the dialogue in comparison
with either the lexical ordering or the con-
straint-violation strategies. However, with
more customer constraints in relation to
MATCHMAKER constraints, a violation strategy,
min-promise, was more efficient in this respect
than max-promise. In both cases, min-promise
was the most effective in uncovering viola-
tions quickly, as reflected in the measure of

Comparing Suggestion Strategies
We illustrate these remarks with some simula-
tions of customer-MATCHMAKER dialogues using
random CSPs, from which MATCHMAKER and
customer problems were derived by randomly
selecting constraints from the original prob-
lem. For brevity, we limit our account to com-
plete search algorithms although comparable
results have been found with hill-climbing
methods.

In these tests, we simplified the matchmak-
ing dialogue in the following ways: We
assumed that both MATCHMAKER’s and the cus-
tomer’s constraints were drawn from the same
universe. Hence, when the MATCHMAKER was
apprised of a constraint violation, it did not
have to decide what the constraint actually
was, that is, the set of acceptable tuples. More-
over, constraints known to MATCHMAKER are
assumed to be a proper subset of the cus-
tomer’s (implicit) constraints. (In an overall
customer-MATCHMAKER dialogue, such con-
straints might be determined by preliminary
questioning.) We also assumed that on each
iteration of the communication cycle, the cus-
tomer gave MATCHMAKER the complete set of
constraints violated by the last solution.

In these simulations, each problem was test-
ed five times, making five dialogues. At the
beginning of each dialogue, the full constraint
set was scanned, and with probability pb, a
given constraint was added to both MATCHMAK-
ER’s and the customer’s constraint sets. If the
constraint was not chosen, then with proba-

Articles

56 AI MAGAZINE

Constr.
Probs.

Val. Ord. Iterats.
to Sol.

Violats. /
Iter.

Undisc.
Constr.

Sol. Sim. Time (sec.)

2, .4
lex 8 8 59 .72 .03

max 6 5 85 .83
min 8 11 37 .61
shuf 14 8 15 .22

.2, .8
lex 12 14 69 .54 .55

max 15 9 105 .65 .43
min 11 17 47 .48 .53
shuf 19 11 21 .24 .41

Notes. Iterats = number of iterations before a customer solution was found. Violats = mean number of customer
violations on one iteration. Undisc constr = mean number of undiscovered customer constraints at end of a run.
Sol sim = mean similarity (proportion of common values) of successive solutions found during a run.

.02

.02
.02

Table 2. Matchmaking Dialogue Statistics for Different Value Orderings.

Constraints
Many problems can be viewed naturally as constraint-satisfaction (or
optimization) problems (CSPs) (Freuder and Mackworth 1994; Tsang
1993). In such problems, we seek to find values for problem variables
that satisfy or optimize restrictions on value combinations. A computer
configuration problem, for example, might require us to choose a
power supply and a fan such that the fan is powerful enough to dissi-
pate the heat generated by the power supply. Applications are found
in many fields of AI, including planning, design, diagnosis, temporal
reasoning, vision, and language.

More formally, CSPs are characterized by (1) a set of problem vari-
ables, (2) a domain of potential values for each variable, and (3) con-
straints that specify which combinations of values are permitted (con-
sistent). These problems are often represented by constraint networks,
whose nodes correspond to variables and whose links correspond to
constraints.

Inference and search methods are applied during problem solving.
A central form of inference, arc consistency, can be used to eliminate
some inconsistent values (values that cannot be part of a solution)
from the domains of the variables. Some search methods, generally
based on backtracking, are systematic and complete, guaranteeing
that a solution (or optimal solution) will be found. Others, generally
forms of hill climbing, are stochastic and incomplete but can quickly
find satisficing solutions.

Variations in the inference and search methods exploit features or
characteristics of CSPs in an effort to achieve greater problem-solving
efficiency. A common performance measure for constraint algorithms
is the number of constraint checks performed, the number of times we
have to ask if a combination of values is consistent.

The constraint-satisfaction paradigm has been extended in many
directions. For example, CSP representations and algorithms have
been extended to handle overconstrained problems (for example,
Freuder and Wallace [1992]), dynamic problems (for example, Schiex
and Verfaillie [1993] and Mittal and Falkenhainer [1990]), and distrib-
uted problems (for example, Yokoo, Ishida, and Kuwabara [1992]).

Constraint computation more generally draws on results from other
disciplines, such as operations research and discrete mathematics. A
variety of constraint solving methods have been embodied in powerful
constraint languages and systems.

violations for each iteration. However, the
shuffling procedure found more violations
across the whole dialogue.

The trade-off expected with max-promise
was clear-cut: This procedure uncovered far
fewer customer constraints than any other.
This trade-off was also found for the shuffling
procedure. Although it was the least efficient
ordering, it uncovered the most constraints.

Interestingly, the min-promise ordering
required relatively few iterations but found
more violations for each iteration on average
than the other orderings, and in this respect, it
tended to overcome the trade-off between effi-
ciency and constraint discovery. In fact, when
there were more customer constraints not in
the initial MATCHMAKER set, this ordering was
better than the satisfaction ordering, max-
promise, on both metrics.

Further insight into the performance of dif-
ferent methods can be obtained by consider-
ing curves for measures, such as the number of
undiscovered constraints, across an entire dia-
logue. An example is given in figure 1 for one
problem where pb = 0.2 and pc = 0.8. Here, it
can be seen that during the early iterations,
min-promise finds the most constraints, but it
levels out more quickly than shuffle. It also
finds a completely satisfactory solution more
quickly; so, its curve is shorter. Consequently,
the curve for shuffle falls below the other curve
on the eighth iteration. The curve for max-
promise remains well above the other two
throughout the dialogue.

From these results, it appears that either
max- or min-promise can be used to limit dia-
logue length, depending on the characteristics
of the problem. If we want MATCHMAKER to dis-
cover as much as it can about the customer
while we bound the dialogue, min-promise
should be used, but if the object is to find solu-
tions with a minimum amount of prying, then
max-promise is the best method.

Cooperation
Cooperative problem-solving agents can solve
problems on their own and cooperate with
group members when another agent possesses
special expertise that can benefit the group,
when an agent has redundant capabilities that
increase the reliability of the group, or when
the task is simply too large for one agent. A
team of cooperating constraint-based reason-
ing agents might be able to solve a CSP even
when members of the team have undercon-
strained representations by sharing informa-
tion obtained during problem solving (Eaton
and Freuder 1996). Each agent in a team of

cooperating constraint agents is a constraint-
based reasoner with a constraint engine, a rep-
resentation of the CSP, and a coordination
mechanism.

Compensating for Agent Ignorance
Cooperation among constraint agents can com-
pensate for incomplete knowledge and permit a
solution because the agents have different rep-
resentations of a CSP. This agent-oriented tech-
nique uses the exchange of partial information
rather than the exchange or comparison of an
entire CSP representation when constraints are
missing. Agent designers might want to avoid
the complete exchange of representations

Articles

SUMMER 1998 57

written by a different member of the
band. Can you match each musician with
his instrument and his song?

1- Icky and Muke are, in one order or the
other, the composer of 2 Yuk 4 Words and
the keyboardist.

2- Neither Slyme nor the composer of
Heartburn Hotel plays guitar or bass.

3- Neither the bass player (who isn’t Icky)
nor the drummer wrote Love Is Garbage.

Logic puzzle problems can be represented as
a CSP using a constraint network; the variables
are the nodes of the network, and the edges of
the network are the constraints among the
variables. All constraints in this network are
inequality constraints. A solution to the logic
puzzle is a labeling of the network so that the
constraints are not violated. Figure 2 shows the
three different representations used by the
agents in this experiment.

The constraint agents are autonomous and
are able to communicate with the other agents
working on the logic puzzle. Each agent con-
tains a different representation of the problem,
a problem-solving engine, and a facility for
communication with other agents working on
the problem.

In this example, no agent can solve the
problem alone because of missing information
in each representation. CSP representations
can be missing constraints for a variety of rea-
sons, including constraints that are purpose-
fully left out of the representation because
they are difficult to describe or because an
engineer makes a mistake when building the
representation. The representations used by
agent 2 and agent 3 are both underconstrained
because rule 1 cannot easily be represented
using a standard binary constraint between the
two variables. Without this additional infor-
mation, agent 2 and agent 3 cannot individu-
ally solve the problem. The representation
used by agent 1 is underconstrained because
an arbitrary constraint was left out when the
engineer created the representation. Note that
the constraint between Heartburn and Guitar
was left out of agent 1’s representation.
Although the agents cannot solve the problem
as individuals, they can cooperate and find a
solution to the logic puzzle.

Each agent runs a simple consistency and
search algorithm. Agents cooperate by sending
messages containing the inconsistent (no-
good) values discovered during the preprocess-
ing phase of solving the CSP. Arc consistency is
a preprocessing constraint inference method
used to reduce the search effort. The domains
of the variables can be reduced during the pre-

because agents developed by different compa-
nies might contain proprietary knowledge. A
group of cooperating constraint-based reason-
ing agents might be able to solve a CSP even
when members of the team have undercon-
strained representations of the problem.

Agents can exchange messages about con-
straint violations or required assignments of
values to variables. The members of the group
receiving a message must be able to translate
the message given the context of their own
representation. Information sharing among
the members of the team is modeled as the
translation of no-goods.

Sharing Inferences
The utility of sharing information among
agents with different viewpoints is demonstrat-
ed in an experiment where three constraint
agents cooperate to solve a logic puzzle prob-
lem. Consider the following logic puzzle, called
the Flumm Four, taken from a commercial
booklet of logic puzzles (Schuster 1995, p. 8):

The Flumm Four is a new punk rock
group from Liverpuddle. The four musi-
cians (Furble, Icky, Muke, and Slyme) play
bass, drums, guitar, and keyboard, not
necessarily in that order. They’ve taken
the music world by storm with four hit
songs from their first album. Each of these
songs—Grossery Store, Heartburn Hotel,
Love Is Garbage, and 2 Yuk 4 Words—was

Figure 1. Undiscovered Customer Constraints after Successive Iterations with
Three Value Orderings Representing Different MATCHMAKER Strategies.

Means are based on five dialogues with one problem.

Articles

58 AI MAGAZINE

1 3 5 7 9 11 13 15 17 19 21 23 25
0

50

100

150

200

250
U

nd
is

co
ve

re
d

 C
on

st
ra

in
ts

Iteration

max-promise
min-promise

shuffle

Articles

SUMMER 1998 59

Bass Drums

Guitar Keyboard

Grossery Heartburn

Love 2Yuk

Bass Drums

Guitar Keyboard

Furble Icky

Muke Slyme

Grossery
Heartburn
Love
2Yuk

Grossery
Heartburn
Love
2Yuk

Grossery
Heartburn
Love
2Yuk

Grossery
Heartburn
Love
2Yuk

Grossery
Heartburn
Love
2Yuk

Grossery
Heartburn
Love
2Yuk

Grossery
Heartburn
Love
2Yuk

Grossery
Heartburn
Love
2Yuk

Grossery Heartburn

Love 2Yuk

Furble Icky

Muke Slyme

Bass
Drums
Guitar
Keyboard

Furble
Icky
Muke
Slyme

Furble
Icky
Muke
Slyme

Furble
Icky
Muke
Slyme

Furble
Icky
Muke
Slyme

Furble
Icky
Muke
Slyme

Furble
Icky
Muke
Slyme

Furble
Icky
Muke
Slyme

Furble
Icky
Muke
Slyme

Bass
Drums
Guitar
Keyboard

Bass
Drums
Guitar
Keyboard

Bass
Drums
Guitar
Keyboard

Bass
Drums
Guitar
Keyboard

Bass
Drums
Guitar
Keyboard

Bass
Drums
Guitar
Keyboard

Bass
Drums
Guitar
Keyboard

Agent 3

Agent 2

Agent 1

Figure 2. Multiple Representations of the Flumm Four Logic Puzzle.

Agents
Software agent technology is a broad area of research that has pro-
duced a variety of definitions for agent. Comprehensive discussions of
software agents can be found in Wooldridge and Jennings (1994),
Nwana (1996), and Nwana and Ndumu (1997). Nwana defines soft-
ware agents as those agents that embody at least two of the following
three characteristics: (1) autonomous functions, (2) collaborative prob-
lem solving, and (3) learning ability.

Autonomous agents are able to solve problems on their own, can be
decentralized, and can be distributed geographically.

The elements of communication and cooperation are fundamental
to the definition of agents because it is the group problem-solving abil-
ities of a collection of agents that make them unique among other
types of software. Collaborative problem-solving agents are able to
communicate with others to coordinate group activity.

Although learning ability is important to the development of intel-
ligent agents capable of adapting to dynamic environments, few
agents have this characteristic.

Evaluating the success of software agents can be difficult because
the performance measures are rather ad hoc and particular to the spe-
cific implementation. There are some common metrics used to evalu-
ate the effectiveness of a particular agent or team of agents, among
them the number of messages exchanged during problem solving,
individual and group solution quality, central processing unit time,
comparisons with centralized approaches, degree of autonomy,
degree of collaboration, and learning ability.

problem, individuals with different prefer-
ences might be willing to give up the choice of
location if allowed to choose the time of the
meeting. Compromise benefits the overall
solution quality by allowing each agent an
opportunity to participate in the solution. We
demonstrate the utility of this approach using
a collection of agents collaborating on random
graph coloring problems. We propose several
simple metrics for evaluating solutions from
the perspective of individual agents and addi-
tional metrics for evaluating the solutions as
compromises. Finally, we experimentally eval-
uate the performance of the strategies with
respect to the metrics.

Compromise Strategies and Metrics
Compromise strategies are useful when agents
have competing goals but perceive an advan-
tage to working together in a fair way and can
be useful in application areas where user pref-
erences play an important role, such as sched-
uling, intelligent user interfaces, and telecom-
munication (Maes 1994). The joint problem-
solving strategies we propose emphasize the
emergence of a solution among a team of
agents:

The turn-taking strategy is a simple strategy
where agents take turns assigning values to
variables.

The average-preference strategy is an a priori
computation of the average-preference utility
for the values of each variable across the
agents. The value selected for assignment has
the highest-average preference utility. The
individual metric computation is based on the
original set of preference utilities for the agent.

The concession strategy is a variation of turn
taking, where agents making a variable assign-
ment will concede their turn to another team
member if the other agent has a higher prefer-
ence utility for a variable-value assignment.

The lowest-score strategy was designed to
minimize disparity among the agents. The team
members keep track of their scores for the cur-
rent labeling of a problem. When a variable is to
be assigned a value, the agent with the lowest
score chooses based on its own preferences.

The selection of an appropriate compromise
strategy is dependent on the type of group
interaction desired and the type of measure-
ments used. We propose simple metrics to com-
pare how well individual agents fare and how
well the group performs when using each com-
promise strategy. We also compare the perfor-
mance of the strategies in terms of efficiency.

Individual agents compute the quality of a
solution by summing the preference utilities
associated with the values assigned to the vari-

processing phase if the arc-consistency algo-
rithm identifies values that are inconsistent.
The values identified as no good are sent to the
other agents when the arc-consistency algo-
rithm has finished. In the Flumm Four exam-
ple, agent 3 discovers several no-goods during
preprocessing, including the knowledge that
the author of Heartburn does not play the Gui-
tar. Agent 3 sends the no-good list to agent 1
and agent 2. Similarly, the other agents send
their no-good list to the team. During problem
solving, an agent incorporates messages
received from others into their own represen-
tations, and the arc-consistency algorithm is
run again on the modified representation. This
process continues until there are no changes in
the domains; then the agent searches for a
solution.

Competition
We describe several joint problem-solving
strategies for a team of multiinterest con-
straint-based reasoning agents (Freuder and
Eaton 1997). Agents yield in one area of con-
flict to gain concessions in another area. For
example, in a distributed meeting scheduling

Articles

60 AI MAGAZINE

ables. The individual sum measure can be used
as an indicator of an agent’s preference for a
particular problem solution and is the sum of
the preference utilities for each variable-value
assignment in the solution. These metrics are
similar to the metrics proposed by Rosen-
schein and Zlotkin (1994) for evaluating two-
agent negotiation protocols.

The team computes the quality of a solution
by summing each agent’s solution quality. The
strategies are then compared using the follow-
ing group metrics across the set of experi-
ments: (1) the median of individual metric for
each agent, (2) the maximum solution quality
of the group, (3) the minimum solution quali-

ty of the group, (4) the disparity (the difference
between maximum and minimum solution
qualities), and (5) the number of constraint
checks. In addition, we consider the efficiency
of the compromise strategies by comparing the
number of constraint checks generated during
problem solving.

Comparing Compromise Strategies
The compromise strategies and metrics are
evaluated using solvable random coloring
problems. Coloring problems are representative
of scheduling and resource-allocation prob-
lems. In these problems, colors must be
assigned to variables so that related variables

Articles

SUMMER 1998 61

138

136

134

132

130

128

126

124

122

120

118

Strategies

Turn-Taking Average Concession Lowest-Score

138

136

134

132

130

128

126

124

122

120

118

Strategies

Turn-Taking Average Concession Lowest-Score

3

2

1

0

Strategies

Turn-Taking Average Concession Lowest-Score

Group Sum: Max-Min -

138

136

134

132

130

128

126

124

122

120

118

Strategies

Turn-Taking Average Concession Lowest-Score

Group Sum: Median

Group Sum: Maximum Group Sum: Minimum

So
lu

ti
o

n
 Q

u
al

it
y

So
lu

ti
o

n
 Q

u
al

it
y

So
lu

ti
o

n
 Q

u
al

it
y

So
lu

ti
o

n
 Q

u
al

it
y

Figure 3. Group Metrics.

value 6 can only be assigned to one of the
domain values of this variable.

Figures 3 and 4 show solution qualities for
the group. To select a compromise strategy for
a team, the designer must consider (1) lowest
solution quality generated by an agent on the
team, (2) median solution quality—the team
score, (3) highest solution quality generated by
an agent on the team, (4) disparity of scores
among team members, (5) problem-solving
performance—constraint checks, and (6) the
willingness of the agents to share all the infor-
mation they possess.

Trade-offs are inevitable; no one strategy
wins in every performance area. A team requir-
ing a low disparity among team members and
information hiding will select the concession
strategy, but a team requiring high problem-
solving performance would choose turn taking.

The average preference strategy provides
high solution quality and low disparity among
agents; this strategy performs well, but there
are two issues that must be considered: First,
the average preference strategy requires agents
to exchange all preference utilities before
beginning problem solving. Second, the aver-
age preference strategy is not as efficient as
other strategies.

The max group metric identifies which strat-
egy produced the highest-average solution
quality. The average preference metric per-
forms best.

Disparity (max-min) is the difference in solu-
tion qualities over the set of agents, so a low
score is best. This measure is useful when we
are interested in everyone on the team being
equally happy. The average preference strategy
and the lowest-score strategy generate solu-
tions in a way that minimizes the disparity of
the scores among the agents. Agents using the
turn-taking strategy suffer from increased dis-
parities in solution quality.

Conclusion
Constraint technology can help us build
agents. Agents can augment constraint tech-
nology. Current research continues along
these two paths.

Constraint-agent technology is being
applied to agent interactions such as collabo-
ration, negotiation, and coordination (Don-
aldson and Cohen 1997; Freuder and Eaton
1997; Mammen and Lesser 1997; Eaton and
Freuder 1996; Liu and Sycara 1994a; Neiman
et al. 1994).

Constraint-based reasoning is being ex-
plored as a way to gain performance improve-
ments during agent problem solving (Havens

do not have the same color. Agents can have
different preferences for colors assigned to
variables. The experiments consist of a set of
100 random coloring problems.

Agents use identical search algorithms and
CSP representations except for their preference
vectors. The preference vectors are randomly
assigned when the problem representation is
created. The problem representation of each
agent is augmented with a preference utility
for each value associated with a variable. The
preference utilities are assigned on a scale of 1
to the maximum domain size. For example, if
the domain size is 6, the maximum preference

Figure 4. Group Constraint Check Metric.

Articles

62 AI MAGAZINE

3000

2500

2000

1500

1000

500

0

Strategy

Turn-Taking Average Concession Lowest-score

Constraint Checks

25000

20000

15000

10000

5000

0
Turn-Taking Average Concession Lowest-score

Maximum Agent Constraint Checks

C
o

n
st

ra
in

t
C

h
ec

k
s

C
o

n
st

ra
in

t
C

h
ec

k
s

Strategy

average

median

1997; Tambe 1996; Wellman 1994).
Scalability and stability issues where large

numbers of agents interact to solve problems
need to be addressed because the technology is
applied to large, real-world problems (Carlson,
Gupta, and Hogg 1997; Freuder and Eaton
1997).

The improvement of problem solving and
the quality of solutions generated is the
research focus of constraint agents because
they are applied to resource-allocation prob-
lems, such as distributed scheduling (Anke,
Staudte, and Dilger 1997; Miyashita 1997;
Musliner and Boddy 1997; Solotorvsky and
Gudes 1997; Liu and Sycara 1994a).

The use of constraint agents to tackle the
explosion of information on the internet is an
active area of research that includes the acqui-
sition of user constraints, the development of
mobile constraint agents, and the develop-
ment of the infrastructure to support the trans-
fer of agents over networks. Infrastructure
needs include tools, protocols, and languages
for interagent communication (Andreoli et al.
1997; Freuder and Wallace 1997; Shvetsov,
Nesterenko, and Starovit 1997; Torrens,
Weigel, and Faltings 1997).

Teams of constraint agents and constraint-
based reasoning techniques are being explored
as a framework for solving distributed, concur-
rent engineering problems (Obrst 1997;
Parunak et al. 1997; Petrie, Jeon, and Cutkosky
1997).

In our Constraint Computation Center, we
are exploring agent consultation, cooperation,
and competition. Confronting ignorance has
emerged as an intriguing theme.

Constraints can naturally arise in the agents
community, for example, in modeling negoti-
ation. Agents can naturally arise in the con-
straints community, for example, in coopera-
tive problem solving. It is important for the
two communities to communicate lest they
reinvent each other’s wheels.

Acknowledgments
This material is based in part on work support-
ed by the National Science Foundation under
grant IRI-9504316. We thank Nancy Schuster
and Dell Magazines for permission to repro-
duce material from Dell Logic Puzzles.

References
Anderson, J. 1997. WAFFLER: A Constraint-Directed
Approach to Intelligent Agent Design. In Constraints
and Agents: Papers from the 1997 AAAI Workshop,
70–75. Technical Report WS-97-05. Menlo Park,
Calif.: AAAI Press.

Andreoli, J.; Borghoff, U.; Pareschi, R.; and
Schlichter, J. 1995. Constraint Agents for the Infor-

mation Age. Journal of Universal Computer Science
1(12): 762–789.

Andreoli, J.; Borghoff, U.; Pareschi, R.; Bistarelli, S.;
Montanari, U.; and Rossi, F. 1997. Constraints and
Agents for a Decentralized Network Infrastructure.
In Constraints and Agents: Papers from the 1997 AAAI
Workshop, 39–44. Technical Report WS-97-05. Menlo
Park, Calif.: AAAI Press.

Anke, K.; Staudte, R.; and Dilger, W. 1997. Producing
and Improving Time Tables by Means of Constraint
and Multiagent Systems. In Constraints and Agents:
Papers from the 1997 AAAI Workshop, 142–146. Tech-
nical Report WS-97-05. Menlo Park, Calif.: AAAI
Press.

Armstrong, A., and Durfee, E. 1997. Dynamic Priori-
tization of Complex Agents in Distributed Con-
straint-Satisfaction Problems. In Constraints and
Agents: Papers from the 1997 AAAI Workshop, 8–13.
Technical Report WS-97-05. Menlo Park, Calif.: AAAI
Press.

Bressan, S., and Goh, C. 1997. Semantic Integration
of Disparate Information Sources over the Internet
Using Constraint Propagation. Paper presented at
the Workshop on Constraint Reasoning on the Inter-
net, 29 October–1 November, Schloss Hagenberg,
Austria.

Carlson, B.; Gupta, V.; and Hogg, T. 1997. Control-
ling Agents in Smart Matter with Global Constraints.
In Constraints and Agents: Papers from the 1997 AAAI
Workshop, 58–63. Technical Report WS-97-05. Menlo
Park, Calif.: AAAI Press.

Cheng, B.; Lee, J.; and Wu, J. 1996. Speeding Up
Constraint Propagation by Redundant Modeling. In
Proceedings of the Second International Conference on
Principles and Practice of Constraint Programming
(CP96), ed. E. C. Freuder, 91–103. Berlin: Springer-
Verlag.

Clearwater, S.; Huberman, B.; and Hogg, T. 1991.
Cooperative Solution of Constraint-Satisfaction
Problems. Science 254:1181–1183.

Diehl, S. 1997. Extending VRML by One-Way Equa-
tional Constraints. Paper presented at the Workshop
on Constraint Reasoning on the Internet, 29 Octo-
ber–1 November, Schloss Hagenberg, Austria.

Donaldson, T., and Cohen, R. 1997. Constraint-
Based Discourse Agents. In Constraints and Agents:
Papers from the 1997 AAAI Workshop, 87–92. Techni-
cal Report WS-97-05. Menlo Park, Calif.: AAAI Press.

Eaton, P. S., and Freuder, E. C. 1996. Agent Coopera-
tion Can Compensate for Agent Ignorance in Con-
straint Satisfaction. In Agent Modeling Papers from the
1996 AAAI Workshop, eds. M. Tambe and P. Gmy-
trasiewicz, 24–29. Technical Report WS-96-02. Men-
lo Park, Calif.: AAAI Press.

Freuder, E. C. 1997. Constraints and Agents: Papers
from the 1997 AAAI Workshop. Technical Report WS-
97-05. Menlo Park, Calif.: AAAI Press.

Freuder, E. C. 1995. Active Learning for Constraint
Satisfaction. Paper presented at the AAAI-95 Fall
Symposium on Active Learning, 10–12 November,
Cambridge, Massachusetts.

Freuder, E., and Eaton, P. 1997. Compromise Strate-
gies for Constraint Agents. In Constraints and Agents:

Articles

SUMMER 1998 63

ence on Multiagent Systems (ICMAS), 12–14 June,
San Francisco, California.

Liu, J., and Sycara, K. 1994a. Distributed Meeting
Scheduling. Paper presented at the Sixteenth Annual
Conference of the Cognitive Science Society, 13–16
August, Atlanta, Georgia.

Liu, J., and Sycara, K. 1994b. Distributed Problem
Solving through Coordination in a Society of
Agents. Paper presented at the Thirteenth Interna-
tional Workshop on Distributed Artificial Intelli-
gence, 17–29 July, Lake Quinalt, Washington.

Liu, J., and Sycara, K. 1993. Distributed Constraint
Satisfaction through Constraint Partition and Coor-
dinated Reaction. Paper presented at the Twelfth
International Workshop on Distributed Artificial
Intelligence, May, Hidden Valley, Pennsylvania.

Maes, P. 1994. Agents That Reduce Work and Infor-
mation Overload. Communications of the ACM 37(7):
30–40.

Mali, A. 1997. Constraint-Based Specification of
Reactive Multiagent Systems. In Constraints and
Agents: Papers from the 1997 AAAI Workshop, 51–57.
Technical Report WS-97-05. Menlo Park, Calif.: AAAI
Press.

Mammen, D., and Lesser, V. 1997. A Test Bed for the
Evaluation of Multiagent Communication and Prob-
lem-Solving Strategies. In Constraints and Agents:
Papers from the 1997 AAAI Workshop, 32–38.
Technical Report WS-97-05. Menlo Park, Calif.: AAAI
Press.

Mittal, S., and Falkenhainer, B. 1990. Dynamic Con-
straint-Satisfaction Problems. In Proceedings of the
Eighth National Conference on Artificial Intelli-
gence, 25–32. Menlo Park, Calif.: American Associa-
tion for Artificial Intelligence.

Miyashita, K. 1997. Iterative Constraint-Based Repair
for Multiagent Scheduling. In Constraints and Agents:
Papers from the 1997 AAAI Workshop, 136–141. Tech-
nical Report WS-97-05. Menlo Park, Calif.: AAAI
Press.

Murthy, S.; Rachlin, J.; Akkiraju, R.; and Wu, F. 1997.
Agent-Based Cooperative Scheduling. In Constraints
and Agents: Papers from the 1997 AAAI Workshop,
112–117. Technical Report WS-97-05. Menlo Park,
Calif.: AAAI Press.

Musliner, D., and Boddy, M. 1997. Contract-Based
Distributed Scheduling for Distributed Processing. In
Constraints and Agents: Papers from the 1997 AAAI
Workshop, 118–128. Technical Report WS-97-05.
Menlo Park, Calif.: AAAI Press.

Nareyek, A. 1997. Constraint-Based Agents. In Con-
straints and Agents: Papers from the 1997 AAAI Work-
shop, 45–50. Technical Report WS-97-05. Menlo
Park, Calif.: AAAI Press.

Neiman, D.; Hildum, D.; Lesser, V.; and Sandholm, T.
1994. Exploiting Metalevel Information in a Distrib-
uted Scheduling System. In Proceedings of the
Twelfth National Conference on Artificial Intelli-
gence. Menlo Park, Calif.: American Association for
Artificial Intelligence.

Nwana, H. 1996. Software Agents: An Overview.
Knowledge Engineering Review 11(3): 205–244.

Nwana, H., and Ndumu, D. 1997. An Introduction

Papers from the 1997 AAAI Workshop, 1–7. Technical
Report WS-97-05. Menlo Park, Calif.: AAAI Press.

Freuder, E. C., and Mackworth, A. K. 1994. Con-
straint-Based Reasoning. Cambridge, Mass.: MIT Press.

Freuder, E. C., and Wallace, R. J. 1997. Suggestion
Strategies for Constraint-Based MATCHMAKER Agents.
In Constraints and Agents: Papers from the 1997 AAAI
Workshop, 105–111. Technical Report WS-97-05.
Menlo Park, Calif.: AAAI Press.

Freuder, E. C., and Wallace, R. J. 1992. Partial Con-
straint Satisfaction. Artificial Intelligence 58:21–70.

Fruhwirth, T.; Hermengildo, M.; Tarau, P.; Codognet,
P.; and Rossi, F., eds. 1997. Paper presented at the
Workshop on Constraint Reasoning on the Internet,
29 October–1 November, Schloss Hagenberg, Aus-
tria.

Garrido, L., and Sycara, K. 1996. Multiagent Meeting
Scheduling: Preliminary Experimental Results. Paper
presented at the Second International Conference
on Multiagent Systems (ICMAS-96), 10–13 Decem-
ber, Kyoto, Japan.

Geelen, P. A. 1992. Dual Viewpoint Heuristics for
Binary Constraint-Satisfaction Problems. In Proceed-
ings of the 1992 European Conference on Artificial Intel-
ligence, 31–35. Chichester: Wiley.

Gilbert, D.; Eidhammer, I.; and Jonassen, I. 1997.
STRUCTWEB: Biosequence Searching on the Web Using
CLP(FD). Paper presented at the Workshop on Con-
straint Reasoning on the Internet, 29 October–1
November, Schloss Hagenberg, Austria.

Gomez, J.; Weisman, D. E.; Trevino, V. B.; and
Woolsey, C. A. 1996. Content-Focused MATCHMAKERs.
In Money and Technology Strategies 2(3).

Havens, W. 1997. No-Good Caching for Multiagent
Backtrack Search. In Constraints and Agents: Papers
from the 1997 AAAI Workshop, 26–31. Technical
Report WS-97-05. Menlo Park, Calif.: AAAI Press.

Jackson, W., and Havens, W. 1995. Committing to
User Choices in Mixed-Initiative CSPs. Paper pre-
sented at the Fifth Scandinavian Conference on Arti-
ficial Intelligence, 29–31 May, Trondheim, Norway.

Krantz, M. 1997. The Web’s Middleman. Time
149(7): 67–68.

Lawal, B.; Gilbert, D.; and Letichevsky, A. 1997. A
Web-Based Course Scheduler in Constraint Logic
Programming: Interactive Computing with Con-
straints. Paper presented at the Workshop on Con-
straint Reasoning on the Internet, 29 October–1
November, Schloss Hagenberg, Austria.

Lemaitre, M., and Verfaillie, G. 1997. An Incomplete
Method for Solving Distributed Valued Constraint-
Satisfaction Problems. In Constraints and Agents:
Papers from the 1997 AAAI Workshop, 14–20. Techni-
cal Report WS-97-05. Menlo Park, Calif.: AAAI Press.

Liu, J., and Sycara, K. 1996. Multiagent Coordination
in Tightly Coupled Real-Time Environments. Paper
presented at the Second International Conference
on Multiagent Systems (ICMAS-96), 10–13 Decem-
ber, Kyoto, Japan.

Liu, J., and Sycara, K. 1995. Exploiting Problem
Structure for Distributed Constraint Optimization.
Paper presented at the First International Confer-

Articles

64 AI MAGAZINE

to Agent Technology, Volume 1198, 1–26. Berlin:
Springer-Verlag.

Obrst, L. 1997. Constraints and Agents in MADE-
SMART. In Constraints and Agents: Papers from the 1997
AAAI Workshop, 83–86. Technical Report WS-97-05.
Menlo Park, Calif.: AAAI Press.

Parunak, V.; Ward, A.; Fleischer, M.; Sauter, J.; and
Chang, T. 1997. Distributed Component-Centered
Design as Agent-Based Distributed Constraint Opti-
mization. In Constraints and Agents: Papers from the
1997 AAAI Workshop, 93–99. Technical Report WS-
97-05. Menlo Park, Calif.: AAAI Press.

Petrie, C.; Jeon, H.; and Cutkosky, M. 1997. Combin-
ing Constraint Propagation and Backtracking for
Distributed Engineering. In Constraints and Agents:
Papers from the 1997 AAAI Workshop, 76–82. Techni-
cal Report WS-97-05. Menlo Park, Calif.: AAAI Press.

Rosenschein, J., and Zlotkin, G. 1994. Rules of
Encounter: Designing Conventions for Automated Nego-
tiation among Computers. Cambridge, Massachusetts:
MIT Press.

Saks, V.; Braidic, G.; Kott, A.; and Kirschner, C. 1997.
Distributed Medical Evacuation Planning: What
Problem Should Each Agent Solve? In Constraints
and Agents: Papers from the 1997 AAAI Workshop,
129–135. Technical Report WS-97-05. Menlo Park,
Calif.: AAAI Press.

Schiex, T., and Verfaillie, G. 1993. No-Good Record-
ing for Static and Dynamic Constraint-Satisfaction
Problems. In Proceedings of the International Con-
ference on Tools with AI, 48–55. Washington, D.C.:
IEEE Computer Society.

Schuster, N. 1995. Flumm Four Logic Puzzle. In Logic
Puzzles, 8. New York: Dell Magazines.

Shvetsov, I.; Nesterenko, T.; and Starovit, S. 1997.
Technology of Active Objects. In Constraints and
Agents: Papers from the 1997 AAAI Workshop, 64–69.
Technical Report WS-97-05. Menlo Park, Calif.: AAAI
Press.

Solotorvsky, G., and Gudes, E. 1997. Solving a Real-
Life Nurses Time Tabling and Transportation Prob-
lem Using Distributed CSP Techniques. In Con-
straints and Agents: Papers from the 1997 AAAI
Workshop, 148–153. Technical Report WS-97-05.
Menlo Park, Calif.: AAAI Press.

Tambe, M. 1996. Tracking Dynamic Team Activity.
In Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence, 80–87. Menlo Park,
Calif.: American Association for Artificial Intelli-
gence.

Tate, A. 1997. Multiagent Planning via Mutually
Constraining the Space of Behavior. In Constraints
and Agents: Papers from the 1997 AAAI Workshop,
100–104. Technical Report WS-97-05. Menlo Park,
Calif.: AAAI Press.

Torrens, M.; Weigel, R.; and Faltings, B. 1997. JAVA

Constraint Library: Bringing Constraints Technolo-
gy on the Internet Using the JAVA Language. In Con-
straints and Agents: Papers from the 1997 AAAI Work-
shop, 21–25. Technical Report WS-97-05. Menlo
Park, Calif.: AAAI Press.

Tsang, E. 1993. Foundations of Constraint Satisfaction.
San Diego, Calif.: Academic.

Wellman, M. 1994. A Computational Market Model
for Distributed Configuration Design. In Proceedings
of the Twelfth National Conference on Artificial
Intelligence, 401–407. Menlo Park, Calif.: American
Association for Artificial Intelligence.

Wooldridge, M., and Jennings, N. 1994. Agent The-
ories, Architectures, and Languages: A Survey. In
1994 European Conference on AI Workshop on Agent
Theories, Architectures, and Languages, eds. M.
Wooldridge and N. Jennings, 1–39. Berlin: Springer-
Verlag.

Yokoo, M.; Ishida, T.; and Kuwabara, K. 1992. Distrib-
uted Constraint Satisfaction for DAI Problems. Paper
presented at the Tenth European Conference on Arti-
ficial Intelligence, 3–7 August, Vienna, Austria.

Peggy S. Eaton is a Ph.D. candi-
date in the Department of Com-
puter Science at the University of
New Hampshire. Her research
interests include constraint-based
reasoning agents and distributed
constraint computation. Her e-
mail address is pse@cs.unh.edu.

Eugene C. Freuder is a professor
in the Department of Computer
Science at the University of New
Hampshire and director of its Con-
straint Computation Center. He is
a fellow of the American Associa-
tion for Artificial Intelligence, edi-
tor in chief of Constraints, and

executive chair of the organizing committee of the
International Conference on Principles and Practice
of Constraint Programming. He chaired the Work-
shop on Constraints and Agents at AAAI-97. His e-
mail address is ecf@cs.unh.edu.

Richard Wallace received his
Ph.D. in psychology from the Uni-
versity of Oregon and an M.S. in
computer science from the Uni-
versity of New Hampshire in 1987.
Currently, he is working with
Eugene Freuder in the area of con-
straint-based reasoning at the Uni-

versity of New Hampshire. The primary focus of his
research in computer science has been on extensions
of the constraint-satisfaction paradigm to overcon-
strained and dynamically changing problems. His e-
mail address is rjw@cs.unh.edu.

Articles

SUMMER 1998 65

