
■ Giving robots the ability to operate in the real
world has been, and continues to be, one of the
most difficult tasks in AI research. Since 1987,
researchers at Carnegie Mellon University have
been investigating one such task. Their research
has been focused on using adaptive, vision-based
systems to increase the driving performance of
the Navlab line of on-road mobile robots. This
research has led to the development of a neural
network system that can learn to drive on many
road types simply by watching a human teacher.
This article describes the evolution of this system
from a research project in machine learning to a
robust driving system capable of executing tacti-
cal driving maneuvers such as lane changing and
intersection navigation.

For the past decade, researchers in the Navlab
Project at The Robotics Institute at Carnegie
Mellon University (CMU) have been conduct-
ing research on autonomous navigation of
automotive robots. This research has included
investigating route planning, obstacle avoid-
ance, and position estimation. Perhaps the
most dramatic improvement over the decade
has been in the area of vision-based lane
keeping—using a video camera to extract road
information, such as lines and edges, that is
used to keep the vehicle centered in its lane. 

Early vision-based lane-keeping systems, at
CMU and elsewhere, were model based: The
programmer decided what information or fea-
tures were important for driving and devel-
oped specific algorithms to detect these fea-
tures. These systems typically looked for
features such as asphalt-colored regions and
lane markings to determine where the road
boundaries were located. These systems
worked well when the features they were pro-
grammed to detect were clearly visible but
had difficulty when these features were

obscured or absent. Other challenges occurred
when the road’s appearance changed dramati-
cally, for example, from a city street to an
interstate highway. In these cases, the system
had to be reprogrammed to use the new
road’s features, a tedious and time-consuming
task. A system that could handle noisy, real-
world data and quickly adapt to new roads
would clearly be useful.

A lane-keeping system with these capabili-
ties began to take shape in the fall of 1987 as
part of a project on machine learning using
supercomputers. At that time, the WARP super-
computer was being developed at CMU’s
School of Computer Science. The parallel pro-
cessing this computer could perform was well
suited to the back-propagation learning algo-
rithm, a basic neural network training tech-
nique. Dean Pomerleau, a first-year graduate
student at the time, decided to use the WARP

to investigate mobile robot control using neu-
ral networks, and the idea of ALVINN (au-
tonomous land vehicle in a neural network)
was born.

As ALVINN began to take shape, the method
of training the system’s neural network
became the central research issue. Pomerleau
wanted the system to be capable of learning
to drive on many different road types, and
over the course of the next several years, he
developed a method to achieve this capabili-
ty. ALVINN would learn to associate road
images with steering wheel direction. It
would learn by watching a person drive,
using his/her actions as a training signal. If
the person steered to the right in response to
a particular road scene, ALVINN would associate
this scene with a particular angle of the steer-
ing wheel. After watching and learning from
many of these associations, it would be able
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the actual image. Because canonical, or virtu-
al images, could be created at any location in
the scene, this framework allowed ALVINN to
focus its lane-finding capabilities on the areas
of the scene most relevant for the task at
hand. For example, if lane changing was to
be performed, this enhanced version of
ALVINN could be used to track each lane. Simi-
larly, for intersection navigation, each branch
could be identified.

The following sections describe Pomer-
leau’s original ALVINN system and its accom-
plishments and shortfalls on the Navlab
series of vehicles and Jochem’s extension,
which allowed it to evolve into more than
just a lane-keeping system.

ALVINN

This section describes the architecture, train-
ing, and performance of the ALVINN system. It
demonstrates how simple connectionist net-
works can learn to precisely guide a mobile
robot in a wide variety of situations when
trained appropriately. In particular, this sec-
tion details training techniques that allow
ALVINN to learn in less than five minutes to
autonomously control the Navlab test-bed
vehicles by watching a human driver’s
response to new situations. With these tech-
niques, ALVINN has been trained to drive in a
variety of circumstances, including single-
lane paved and unpaved roads, multilane
lined and unlined roads, and obstacle-ridden
on- and off-road environments, at speeds as
high as 55 miles per hour (mph).

Network Architecture
The basic network architecture used in the
ALVINN system is a single hidden-layer, feed-
forward neural network (figure 1). The input
layer consists of a single 30 3 32 unit “retina”
onto which a sensor image from either a
video camera or a scanning laser range finder
is projected. Each of the 960 input units is
fully connected to the hidden layer of 4
units, which, in turn, is fully connected to
the output layer. The 30-unit output layer is a
linear representation of the currently appro-
priate steering direction that can serve to
keep the vehicle on the road or prevent it
from colliding with nearby obstacles, depend-
ing on the type of input sensor image and the
driving situation it has been trained to han-
dle. The centermost output unit represents
the travel-straight-ahead condition, and units
to the left and the right of center represent
successively sharper left and right turns. The
units on the extreme left and right of the out-

to drive by itself. When driving on a new
road was desired, the system could simply be
retrained by watching the person drive again.

Testing and debugging continued, and
when the WARP computer was placed on the
Navlab 1, a converted Chevrolet panel van,
ALVINN got its “learner’s permit.” From this
first unsteady drive down a paved bike path
near campus, ALVINN has gone on to drive
thousands of miles in eight different vehicles
with researchers from four different institu-
tions. ALVINN has been rewritten at least four
times, going from a centralized process to a
distributed architecture and back again. It no
longer needs a supercomputer to run—a 486-
class machine works just fine. It has driven
test-bed vehicles forward and backward, using
video cameras, laser range finders, and
infrared sensors.

The system, which served as the basis for
Pomerleau’s Ph.D., has been used by him for
lane-keeping and roadway-departure warning
experiments and research into neural net-
work learning and sensitivity analysis. ALVINN

was also the basis of another Ph.D. disserta-
tion. This thesis, by Pomerleau’s first graduate
student, Todd Jochem, extended the capabili-
ties of ALVINN to include tactical driving tasks
such as lane changing and intersection navi-
gation. To accomplish these tasks, Jochem
used a geometric model of image formation
that allowed images to be created from arbi-
trary locations in the world using pixels from
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Figure 1. ALVINN’s Network Architecture.
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put vector represent turns with an approxi-
mately 30-meter radius to the left and the
right, respectively, and the units in between
represent turns that decrease linearly in their
curvature down to the straight-ahead middle
unit in the output vector.

To drive the Navlab, an image from the
appropriate sensor is reduced to 30 3 32 pix-
els and projected onto the input layer. After
propagating activation through the network,
the output layer’s activation profile is trans-
lated into a vehicle-steering command. The
steering direction dictated by the network is
taken to be the center of mass of the hill of
activation surrounding the output unit with
the highest activation level. Using the center
of the activation mass, instead of the most
active output unit, when determining the
direction to steer permits finer steering cor-
rections, thus improving ALVINN’s driving
accuracy.

Network Training
The network is trained to produce the correct
steering direction using the back-propagation
learning algorithm (Rumelhart, Hinton, and
Williams 1986). In back propagation, the net-
work is first presented with an input, and
activation is propagated forward through the
network to determine the network’s response.
The network’s response is then compared
with the known correct response. If the net-
work’s actual response does not match the
correct response, the weights between con-
nections in the network are modified slightly
to produce a response more closely matching
the correct response.

In the initial experiments, ALVINN was
trained using artificially generated road
images and the corresponding correct steer-
ing directions. Although this approach
achieved limited success, it proved difficult
to generate artificial images that realistically
depict the variety and complexity of real-
world road scenes. Instead, a method of
training using real road images was required.
Training on real images would dramatically
reduce the human effort required to develop
networks for new situations by eliminating
the need for a hand-programmed training
example generator. On-the-fly training
should also allow the system to adapt quick-
ly to new situations.

In theory, it should be possible to teach a
network to imitate a person as he/she drives
using the current sensor image as input and
the person’s current steering direction as the
desired output. This idea of training on the
fly is depicted in figure 2.

Potential Problems
There are two potential problems associated
with training a network using live sensor
images as a person drives. First, because the
person steers the vehicle down the center of
the road during training, the network will
never be presented with situations where it
must recover from misalignment errors.
When driving for itself, the network can
occasionally stray from the road center; so, it
must be prepared to recover by steering the
vehicle back to the middle of the road—a
capability it might not possess if it never
encounters this situation during training. The
second problem is that naively training the
network with only the current video image
and steering direction might cause it to over-
learn recent input. If the person drives the
Navlab down a stretch of straight road at the
end of training, the network will be presented
with a long sequence of similar images. This
sustained lack of diversity in the training set
will cause the network to “forget” what it had
learned about driving on curved roads and
instead learn to always steer straight ahead.
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Figure 2. Schematic Representation of Training “on the Fly.”
The network is shown images from the on-board sensor and trained to steer in

the same direction as the human driver. 
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plars. Instead of presenting the network with
only the current sensor image and steering
direction, each sensor image is shifted and
rotated in software to create additional
images in which the vehicle appears to be sit-
uated differently relative to the environment
(figure 3). The sensor’s position and orienta-
tion relative to the ground plane are known,
so precise transformations can be achieved
using perspective geometry.

The image transformation is performed by
first determining the area of the ground plane
that is visible in the original image and the
area that should be visible in the transformed
image. These areas form two overlapping
trapezoids, as illustrated by the aerial view in
figure 4. To determine the appropriate value
for a pixel in the transformed image, the pix-
el is projected onto the ground plane and
then back projected into the original image.
The value of the corresponding pixel in the
original image is used as the value for the pix-
el in the transformed image. One important
thing to realize is that the pixel-to-pixel map-
ping that implements a particular transforma-
tion is constant. In other words, based on a
planar world, the pixels that need to be sam-
pled in the original image to achieve a
specific shift and translation in the trans-
formed image always remain the same. In the
actual implementation of the image-transfor-
mation technique, ALVINN takes advantage of
this constant transformation by precomput-
ing the pixels that need to be sampled to per-
form the desired shifts and translations. As a
result, transforming the original image to
change the apparent position of the vehicle
simply involves changing the pixel sampling
pattern during the image-reduction phase of
preprocessing. Therefore, creating a trans-
formed low-resolution image takes no more
time than is required to reduce the image res-
olution to that required by the ALVINN net-
work. Obviously, the environment is not
always flat. However, the effects on the image
from hills or dips in the road are small
enough that the neural network can learn to
compensate for them.

Extrapolating Missing Pixels
The less than complete overlap between the
trapezoids in figure 4 illustrates the need for
one additional step in the image-transforma-
tion scheme. The extra step involves deter-
mining values for pixels that have no corre-
sponding pixel in the original image.
Consider the transformation illustrated in
figure 5. To make it appear that the vehicle is
situated one meter to the right of its position

Both problems associated with training on
the fly stem from the fact that back propaga-
tion requires training data that are represen-
tative of the full task to be learned. The first
approach we considered for increasing the
training-set diversity was to have the driver
swerve the vehicle during training. The idea
was to teach the network how to recover
from mistakes by showing it examples of the
person steering the vehicle back to the road
center. However, this approach was deemed
impractical for two reasons: First, training
while the driver swerves would require turn-
ing learning off while the driver steers the
vehicle off the road and then back on when
he/she swerves back to the road center. With-
out this ability to toggle the state of learning,
the network would incorrectly learn to imi-
tate the person swerving off the road as well
as back on. Although possible, turning learn-
ing on and off would require substantial
manual input during the training process,
which we wanted to avoid. The second prob-
lem with training by swerving is that it would
require swerving in many circumstances to
enable the network to learn a general repre-
sentation, which would be time consuming
as well as dangerous when training in traffic.

Solution—Transform the 
Sensor Image
To achieve sufficient diversity of real sensor
images in the training set, without the prob-
lems associated with training by swerving, we
developed a technique for transforming sen-
sor images to create additional training exem-
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Figure 3. The Single Original Video Image Shifted and Rotated.
Multiple training exemplars are thus created in which the vehicle appears to be

at different locations relative to the road.

Original Image

Shifted and Rotated Images



in the original image requires not only shift-
ing pixels in the original image to the left but
also filling in the unknown pixels along the
right edge.

The pixels can be filled using an extrapola-

tion technique that relies on the fact that
interesting features (such as road edges and
painted lane markers) typically run parallel to
the road and, hence, parallel to the vehicle’s
current direction. With this assumption, to
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Figure 4. An Aerial View of the Vehicle at Two Different Positions, 
with the Corresponding Sensor Fields of View.

To simulate the image transformation that would result from such a change in position and 
orientation of the vehicle, the overlap between the two field-of-view trapezoids is computed 

and utilized to direct resampling of the original image. 

Camera

Original
Field of
  View

Transformed
Field of View

Original
Vehicle
Position

Transformed
    Vehicle
    Position

     Road
Boundaries

Figure 5. A Schematic Example of an Original Image and a Transformed Image in Which the Vehicle
Appears One Meter to the Right of Its Initial Position.

The black region on the right of the transformed image corresponds to an unseen area in the original image.
These pixels must be extrapolated from the information in the original image.
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mined distance along the person’s current
steering arc would bring the vehicle to a tar-
get point T, which is assumed to be in the
center of the road.

After transforming the image with a hori-
zontal shift s and rotation u to make it appear
that the vehicle is at point B, the appropriate
steering direction according to the pure-pur-
suit model would also bring the vehicle to tar-
get point T. Mathematically, the formula to
compute the radius of the steering arc that
will take the vehicle from point B to point T is

r = (l2 + d2)/2d  ,

where r is the steering radius, l is the look-
ahead distance, and d is the distance from
point T that the vehicle would end up if driv-
en straight ahead from point B for distance l.
The displacement d can be determined using
the following formula:

d = cos(u) * [dp + s + l*tan(u)]  ,

where dp is the distance from point T that the
vehicle would end up if it drove straight
ahead from point A for the look-ahead dis-
tance l, s is the horizontal distance from
point A to point B, and u is the vehicle rota-
tion from point A to point B. The quantity dp

extrapolate a value for the unknown pixel A
in figure 6, the appropriate ground-plane
point to sample from the original image’s
viewing trapezoid is not the closest point
(point B); it is the nearest point in the origi-
nal image’s viewing trapezoid along the line
that runs through point A and is parallel to
the vehicle’s original heading (point C). See
Pomerleau (1993) for more complete details
of this technique and the driving perfor-
mance improvement it led to.

Transforming the Steering Direction
As important as the technique to transform
the input images is the method used to deter-
mine the correct steering direction for each of
the transformed images. The correct steering
direction, as dictated by the driver, for the
original image must be altered for each of the
transformed images to account for the altered
vehicle placement. This is done using a sim-
ple model called pure-pursuit steering (Wallace
et al. 1985). In the pure-pursuit model, the
“correct” steering direction is the one that
will bring the vehicle to a desired location
(usually the center of the road) a fixed dis-
tance ahead. The idea underlying pure-pur-
suit steering is illustrated in figure 7. With the
vehicle at position A, driving for a predeter-
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Figure 6. An Aerial View (left) and an Image-Based View (right) of the Two Techniques Used to Extrapolate the
Values for Unknown Pixels.
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can be calculated using the following
equation:

dp = rp – sqrt(rp2 – l2)  ,

where rp is the radius of the arc the person
was steering along when the image was tak-
en. The only remaining unspecified parame-
ter in the pure-pursuit model is l, the distance
ahead of the vehicle to select a point to steer
toward. Empirically, we have found that over
the speed range of 5 to 55 mph, accurate and
stable vehicle control can be achieved using
the following rule: Look ahead the distance
that the vehicle will travel in 2 to 3 seconds.

Interestingly, with this empirically deter-
mined rule for choosing the look-ahead dis-
tance, the pure-pursuit model of steering is a
fairly good approximation of how people
actually steer. Research has found that at 50
kilometers/hour, human subjects responded
to a 1-meter lateral vehicle displacement,
with a steering radius ranging from 511 to
1194 meters (Reid, Solowka, and Billing
1981). With a look ahead equal to the dis-
tance that the vehicle will travel in 2.3 sec-
onds, the pure-pursuit model dictates a steer-
ing radius of 594 meters, within the range of
human responses. Similarly, human subjects
reacted to a 1-degree heading error relative to
the current road direction, with a steering
radius ranging from 719 to 970 meters.
Again, using the 2.3-second travel distance
for look ahead, the pure-pursuit steering
model’s dictated radius of 945 meters falls
within the range of human responses.

Like the image-transformation scheme, the
steering-direction transformation technique
uses a simple model to determine how a
change in the vehicle’s position or orienta-
tion would affect the situation. In the image-
transformation scheme, a planar-world hy-
pothesis and rules of perspective projection
are used to determine how changing the
vehicle’s position or orientation would affect
the sensor image of the scene ahead of the
vehicle. In the steering-direction transforma-
tion technique, a model of how people drive
is used to determine how a particular vehicle
transformation should alter the correct steer-
ing direction. In both cases, the transforma-
tion techniques are independent of the driv-
ing situation. The person could be driving on
a single-lane dirt road or a multilane high-
way: The transformation techniques would
be the same.

Anthropomorphically speaking, transform-
ing the sensor image to create more training
images is equivalent to telling the network
that “I don’t know what features in the image
are important for determining the correct
direction to steer, but whatever they are, here
are some other positions and orientations
you might see them in.” Similarly, the tech-
nique for transforming the steering direction
for each of these new training images is
equivalent to telling the network that “what-
ever the important features are, if you see
them in this new position and orientation,
here is how your response should change.”
Because it does not rely on a strong model of
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Figure 7. Illustration of the “Pure-Pursuit” Model of Steering.
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training buffer for a long time because the
network will have trouble learning a steering
response to match the person’s incorrect
steering command. In fact, with this replace-
ment technique, the only way the pattern
would be removed from the training set
would be if the network learned to duplicate
the incorrect steering response—obviously,
not a desired outcome. We considered replac-
ing both the patterns with the lowest error
and the patterns with the highest error but
decided against it because high network error
on a pattern might also result in novel input
image with a correct response associated with
it. A better method to eliminate this problem
is to add a random replacement probability to
all patterns in the training buffer. This
method ensures that even if the network nev-
er learns to produce the same steering re-
sponse as the person on an image, the image
will eventually be eliminated from the train-
ing set.

Although this augmented lowest-error
replacement technique did a reasonable job
of maintaining diversity in the training set,
we found a more straightforward way of
achieving the same result. To make sure the
buffer of training patterns does not become
biased toward one steering direction, we
added a constraint to ensure that the mean
steering direction of all the patterns in the
buffer remains as close to straight ahead as
possible. When choosing the pattern to
replace, we selected the pattern whose
replacement will bring the average steering
direction closest to straight. For example, if
the training-pattern buffer had more right
turns than left, and a left-turn image was just
collected, one of the right-turn images in the
buffer would be chosen for replacement to
move the average steering direction toward
straight ahead. If the buffer already had a
straight-ahead average steering direction,
then an old pattern requiring a steering direc-
tion similar to the new one would be re-
placed to maintain the buffer’s unbiased
nature. By actively compensating for steering
bias in the training buffer, the network never
learns to consistently favor one steering
direction over another. This active bias com-
pensation is a way to build into the network
a known constraint about steering: In the
long run, right and left turns occur with
equal frequency.

Details
The final details required to specify the train-
ing on-the-fly process are the number and
magnitude of transformations to use for

what important image features look like,
instead acquiring this knowledge through
training, the system is able to drive in a wide
variety of circumstances, as is seen later. 

These weak models are enough to solve the
two problems associated with training in real
time on sensor data. Specifically, using trans-
formed training patterns allows the network
to learn how to recover from driving mistakes
that it would not otherwise encounter as the
person drives. Also, overtraining on repetitive
images is less a problem because the trans-
formed training exemplars maintain variety
in the training set.

Adding Diversity through Buffering
As additional insurance against the effects of
repetitive exemplars, the training-set diversity
is further increased by maintaining a buffer
of previously encountered training patterns.
When new training patterns are acquired
through digitizing and transforming the cur-
rent sensor image, they are added to the
buffer, and older patterns are removed. We
experimented with four techniques for deter-
mining which patterns to replace. The first is
to replace oldest patterns first. With this
scheme, the training pattern buffer represents
a history of the driving situations encoun-
tered recently. However, if the driving situa-
tion remains unchanged for a period of time,
such as during an extended right turn, the
buffer will lose its diversity and become filled
with right-turn patterns. The second tech-
nique is to randomly choose old patterns to
be replaced by new ones. With this tech-
nique, the laws of probability help ensure
somewhat more diversity than the oldest pat-
tern-replacement scheme, but the buffer will
still become biased during monotonous
stretches.

The next solution we developed to encour-
age diversity in the training set was to replace
the patterns on which the network was mak-
ing the lowest error, as measured by the sum-
squared difference between the network’s
output and the desired output. The idea was
to eliminate from the training set the pat-
terns the network was performing best on
and to leave in the training set the images the
network was still having trouble with. The
problem with this technique is that the
human driver doesn’t always steer in the cor-
rect direction. Occasionally, he or she might
have a momentary lapse of attention and
steer in an incorrect direction for the current
situation. If a training exemplar was collected
during this momentary lapse, under this
replacement scheme, it will remain in the
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training the network. The following quanti-
ties were determined empirically to provide
sufficient diversity to allow networks to learn
to drive in a wide variety of situations. The
original sensor image is shifted and rotated
14 times using the technique described earlier
to create 14 training exemplars. The size of
the shift for each of the transformed exem-
plars is chosen randomly from the range –0.6
to +0.6 meters, and the amount of rotation is
chosen from the range –6.0 to +6.0 degrees.
In the image formed by the camera on the
Navlab, which has a 42-degree horizontal
field of view, an image with a maximum shift
of 0.6 meters results in the road shifting
approximately one-third the way across the
input image at the bottom.

Before the randomly selected shift and
rotation are performed on the original image,
the steering direction that would be appropri-
ate for the resulting transformed image is
computed using the formulas given previous-
ly. If the resulting steering direction is sharper
than the sharpest turn representable by the
network’s output (usually a turn with a 20-
meter radius), then the transformation is dis-
allowed, and a new shift distance and rota-
tion magnitude are randomly chosen. By
eliminating extreme and unlikely conditions
from the training set, such as when the road
is shifted far to the right and the vehicle is
heading sharply to the left, the network is
able to devote more of its representation
capacity to handling plausible scenarios. 

The 14 transformed training patterns,
along with the single pattern created by pair-
ing the current sensor image with the current
steering direction, are inserted into the buffer
of 200 patterns using the replacement strate-
gy described earlier. After this replacement
process, one iteration of the back-propagation
algorithm are performed on the 200 exem-
plars to update the network’s weights, using a
learning rate of 0.01 and a momentum of 0.8.
The entire process is then repeated. The net-
work requires approximately 100 iterations
through this digitize-replace-train cycle to
learn to drive in the domains that have been
tested. At 2.5 seconds a cycle, training takes
approximately 4 minutes of human driving
over a sample stretch of road. During the
training phase, the person drives at approxi-
mately the speed at which the network will
be tested, which ranges from 5 to 55 mph.

Performance Improvement Using
Transformations
The performance advantage that this tech-
nique of transforming and buffering training

patterns offers over the more naive methods
of training on real sensor data is illustrated
in figure 8. This graph shows the vehicle’s
displacement from the road center that was
measured as three different networks drove
at 4 mph over a 100-meter section of a sin-
gle-lane paved bike path that included a
straight stretch and turns to the left and
right. The three networks were trained on a
150-meter stretch of the path that was dis-
joint from the test section and that ended in
an extended right turn. 

The first network, labeled -trans -buff, was
trained using just the images coming from
the video camera. That is, during the training
phase, an image was digitized from the cam-
era and fed into the network. One iteration of
back propagation was performed on the train-
ing exemplar and then the process was
repeated. The second network, labeled +trans
-buff, was trained using an image that was
digitized from the camera and then trans-
formed 14 times to create 15 new training
patterns, as described earlier. One iteration of
back propagation was performed on each of
these 15 training patterns, and then the pro-
cess was repeated. The third network, labeled
+trans +buff, was trained using the same
transformation scheme as the second net-
work but with the addition of the image-
buffering technique described earlier to pre-
vent overtraining on recent images. 

Note that all three networks were presented
with the same number of images. The trans-
formation and buffering schemes did not
influence the quantity of data that the net-
works were trained on, only their distribution.
The -trans -buff network was trained on close-
ly spaced actual video images. The +trans -
buff network was presented with 15 times
fewer actual images, but its training set also
contained 14 transformed images for every
“real” one. The +trans +buff network collected
even fewer live images because it performed a
training iteration through its buffer of 200
patterns before digitizing a new one.

The accuracy of each of the three networks
was determined by manually measuring the
vehicle’s lateral displacement relative to the
road center as each network drove. The net-
work trained on only the current video image
quickly drove off the right side of the road, as
indicated by its rapidly increasing displace-
ment from the road center. The problem was
that the network overlearned the right turn
at the end of training and became biased
toward turning right. Because of the in-
creased diversity provided by the image-trans-
formation scheme, the second network per-
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with the steering accuracy of a human driver.
This test was performed over the same stretch
of road as the previous test, but the road was
less obscured by fallen leaves in this test,
resulting in better network performance.
Over three runs, with the network driving at
5 mph along the 100-meter test section of
road, the average position of the vehicle was
1.6 centimeters right of center, with a stan-
dard deviation of 7.2 centimeters. Under
human control, the average position of the
vehicle was 4.0 centimeters right of center,
with a standard deviation of 5.47 centime-
ters. The average distance the vehicle was
from the road center while the person drove
was 5.70 centimeters. It appears that the
human driver, although more consistent than
the network, had an inaccurate estimate of
the vehicle’s center line; therefore, it drove
slightly right of the road center. Studies of
human driving performance have found simi-
lar steady-state errors and variances in vehicle
lateral position. Researchers have found that
consistent displacements of as much as 7 cen-
timeters were not uncommon when people
drove on highways (Blaaum 1982). Also for
highway driving, standard deviations in later-
al error as great as 16.6 centimeters have been
reported.

formed much better than the first. It was able
to follow the entire test stretch of road. How-
ever, it still had a tendency to steer too much
to the right, as illustrated in figure 8 by the
vehicle’s positive displacement over most of
the test run. In fact, the mean position of the
vehicle was 28.9 centimeters right of the road
center during the test. The variability of the
errors made by this network was also quite
large, as illustrated by the wide range of vehi-
cle displacement in the +trans -buff graph in
figure 8. Quantitatively, the standard devia-
tion of this network’s displacement was 62.7
centimeters. 

The addition of buffering previously en-
countered training patterns eliminated the
right bias in the third network and also
greatly reduced the magnitude of the vehi-
cle’s displacement from the road center, as
evidenced by the +trans +buff graph in
figure 8.  When the third network drove, the
average position of the vehicle was 2.7 cen-
timeters right of center, with a standard
deviation of only 14.8 centimeters. This
vehicle position error represents a 423-per-
cent improvement in driving accuracy.

A separate test was performed to compare
the steering accuracy of the network trained
using both transformations and buffering
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Figure 8. Vehicle Displacement from the Road Center as the Navlab Was Driven by Networks Trained
Using Three Different Techniques.

150

100

50

0

-50

-100

-150

0 25 50 75 100

Distance Travelled (meters)

D
is

pl
ac

em
en

t 
fr

om
 R

oa
d 

C
en

te
r 

(c
m

)

- trans   -buff

+ trans  -buff

+ trans  +buff



Network Confidence
In addition to learning to produce the cor-
rect output steering direction, ALVINN can also
estimate its confidence in the steering out-
put. This ability is important because it gives
outside, typically symbolic, knowledge
sources insight into how the neural system is
performing. Because the confidence value is a
measure of ALVINN’s familiarity with the cur-
rent road, it can be used to determine if
proper driving performance is possible. In
another context, this same information can
be used as a metric to determine the exis-
tence of roads in input images. This ability
becomes especially important if tactical driv-
ing maneuvers, like those described in Tacti-
cal Driving, are to be executed.

The confidence metric that is primarily
used is called input reconstruction reliability
estimation (IRRE). IRRE is a measure of the
familiarity of the input image to the neural
network. In IRRE, the network’s internal rep-
resentation is used to reconstruct the input
pattern being presented. The more closely the
reconstructed input matches the actual input,
the more familiar the input and, hence, the
more reliable the network’s response.

IRRE utilizes an additional set of output
units to perform input reconstruction, as
depicted in figure 1. This second set of output
units is half the size of the input retina—15
rows by 16 columns. The desired activation
for each of these additional output units is
the average of the activation on four corre-
sponding input units. For example, IRRE unit
(0,0) contains the average activation of input
units (0,0), (0,1), (1,0), and (1,1). In essence,
these additional output units turn the net-
work into an autoencoder.

The network is trained using back propaga-
tion to produce both the correct steering
response on the steering output units and
reconstruct the input image as accurately as
possible on the reconstruction output. Dur-
ing testing, images are presented to the net-
work, and activation is propagated forward
through the network to produce a steering
response and a reconstructed input image.
The reliability of the steering response is esti-
mated by computing the correlation co-
efficient between the activation levels of
units in the actual input image and the
reconstructed input image. The higher the
correlation between the two images, the more
reliable the network’s steering response is
estimated to be.

Results and Comparison
The success of the ALVINN system is demon-

strated by the range of situations in which it
has successfully driven. The training on-the-
fly scheme gives ALVINN a flexibility that is
novel among autonomous navigation sys-
tems. It has allowed us to successfully train
individual networks to drive in a variety of
situations, including a single-lane dirt access
road, a single-lane paved bicycle path, a two-
lane suburban neighborhood street, and a
lined two-lane highway (figure 9). Using oth-
er sensor modalities as input, including laser
range images and laser reflectance images,
individual ALVINN networks have been trained
to follow roads in total darkness, avoid colli-
sions in obstacle-rich environments, and fol-
low alongside railroad tracks. ALVINN networks
have driven without intervention for dis-
tances as great as 90 miles. In addition, be-
cause determining the steering direction from
the input image merely involves a forward
sweep through the network, the system is
able to process 15 images a second, allowing
it to drive as fast as 55 mph.

The level of flexibility across driving situa-
tions exhibited by ALVINN would be difficult to
achieve without learning. It would require the
programmer to (1) determine what features
are important for the particular driving
domain, (2) program detectors (using statisti-
cal or symbolic techniques) for finding these
important features, and (3) develop an algo-
rithm for determining which direction to
steer from the location of the detected fea-
tures. As a result, although hand-programmed
systems have been developed to drive in some
of the individual domains that ALVINN can
handle (Kluge 1993; Crisman 1990; Turk et al.
1988; Dichmanns and Zapp 1987), none have
duplicated ALVINN’s flexibility.

ALVINN is able to learn, for each new
domain, what image features are important,
how to detect them, and how to use their
position to steer the vehicle. Analysis of the
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Figure 9. Video Images Taken on Three of the Road Types ALVINN Modules
Have Been Trained to Handle.

They are, from left to right, a single-lane dirt access road, a single-lane paved
bicycle path, and a lined two-lane highway.



free of obstructions. The arbitration rule gave
priority to the road-following network when
determining the steering direction, except
when the obstacle-avoidance network out-
puts a sharp steering command. In this case,
the urgency of avoiding an imminent colli-
sion takes precedence over road following,
and the steering direction was determined by
the obstacle-avoidance network. Together, the
two networks and the arbitration rule made
up a system capable of staying on the road
and swerving to prevent collisions.

To facilitate other rule-based arbitration
techniques, we added a nonconnectionist
module to ALVINN that maintains the vehicle’s
position on a map (Pomerleau, Gowdy, and
Thorpe 1992). Knowing its map position
allows ALVINN to use arbitration rules such as
“when on a stretch of two-lane highway, rely
primarily on the two-lane highway network.”
This symbolic mapping module also allows
ALVINN to make high-level, goal-oriented deci-
sions such as which way to turn at intersec-
tions and when to stop at a predetermined
destination.

ALVINN Discussion
A truly autonomous mobile vehicle must cope
with a wide variety of driving situations and
environmental conditions. As a result, it is
crucial that an autonomous navigation sys-
tem possess the ability to adapt to novel
domains. Supervised training of a connection-
ist network is one means of achieving this
adaptability. However, teaching an artificial
neural network to drive based on a person’s
driving behavior presents a number of chal-
lenges. Prominent among these challenges is
the need to maintain sufficient variety in the
training set to ensure that the network devel-
ops a sufficiently general representation of the
task. Two characteristics of real sensor data
collected as a person drives that make train-
ing-set variety difficult to maintain are (1)
temporal correlations and (2) the limited
range of situations encountered. Extended
intervals of nearly identical sensor input can
bias a network’s internal representation and
reduce driving accuracy. The human trainer’s
high degree of driving accuracy severely
restricts the variety of situations covered by
the raw sensor data.

The techniques for training on the fly
described earlier solve these difficulties. The
key idea underlying training on the fly is that
a model of the process generating the live
training data can be used to augment the
training set with additional realistic patterns.
By modeling both the imaging process and

hidden unit representations developed in dif-
ferent driving situations shows that the net-
work forms detectors for the image features
that correlate with the correct steering direc-
tion. When trained on multilane roads, the
network develops hidden-unit feature detec-
tors for the lines painted on the road, but in
single-lane driving situations, the detectors
developed are sensitive to road edges and
road-shaped regions of similar intensity in
the image.

This ability to use arbitrary image features
can be problematic, for example, when ALVINN

was trained to drive on a poorly defined dirt
road with a distinct ditch on its right side.
The network had no problem learning and
then driving autonomously in one direction,
but when driving the other way, the network
was erratic, swerving from one side of the
road to the other. After analyzing the net-
work’s hidden representation, the reason for
its difficulty became clear. Because of the
poor distinction between the road and the
nonroad, the network had developed only
weak detectors for the road itself and instead
relied heavily on the position of the ditch to
determine the direction to steer. When tested
in the opposite direction, the network was
able to keep the vehicle on the road using its
weak road detectors but was unstable because
the ditch it had learned to look for on the
right side was now on the left. Individual
ALVINN networks have a tendency to rely on
any image feature consistently correlated
with the correct steering direction. Therefore,
it is important to expose them to a wide
enough variety of situations during training
to minimize the effects of transient image
features.

Experience has shown that it is more
efficient to train several domain-specific net-
works for circumstances such as one-lane ver-
sus two-lane driving than to train a single
network for all situations. To prevent this net-
work specificity from reducing ALVINN’s gener-
ality, we have implemented connectionist
and nonconnectionist techniques for com-
bining networks trained for different driving
situations. Using a simple rule-based priority
system similar to the subsumption architec-
ture, we combined a road-following network
and an obstacle-avoidance network (Brooks
1986). The road-following network used
video camera input to follow a single-lane
road. The obstacle-avoidance network used
laser range-finder images as input. It was
trained to swerve appropriately to prevent a
collision when confronted with obstacles and
to drive straight when the terrain ahead was
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the steering behavior of the human driver,
training on the fly generates patterns with
sufficient variety to allow artificial neural
networks to learn a robust representation of
individual driving domains. The resulting
networks are capable of driving accurately in
a wide range of situations.

Tactical Driving
The basic ALVINN system described earlier was
initially used as just a stand-alone lane-keep-
ing, or lane-departure warning, system. How-
ever, beginning in early 1994, when Jochem
began his Ph.D. dissertation, the system
began to evolve into more. Jochem’s goal was
to use a robust lane-keeping system to
explore tactical driving. The challenge was to
create a system that maintained the perfor-
mance of the existing lane-keeping system
and added the ability to execute tactical driv-
ing tasks such as changing lanes and negoti-
ating intersections.

The ability to execute tactical actions was
becoming important for several reasons: First,
lane-keeping systems had matured to a level
where tactical control algorithms, previously
demonstrated only in simulation, could real-
istically be tested on vehicles that operate in
the real world. Second, tactical reasoning
algorithms had improved to the point where
operation in the real world was becoming fea-
sible. Finally, specifications and concepts of
new intelligent-vehicle programs in Europe,
Asia, and the United States required the abili-
ty to execute tactical actions.

Although there are many ways to add tacti-
cal functions to an autonomous navigation
system, the most desirable solution is to
develop a robust, lane-keeper–independent
control scheme that provides the functions to
execute tactical actions. These functions can
be provided through intelligent control of the
visual information presented to the lane-
keeping system. Specifically, the techniques
described in the following sections use the
inherent lane-keeping ability of ALVINN to per-
form tactical driving tasks.

Although ALVINN has demonstrated robust
lane-keeping performance in a wide variety of
situations, it is generally limited to this task
because of its lack of geometric models,
which are typically required to execute tacti-
cal actions. Grafting geometric reasoning
onto a nongeometric base would be difficult
and would dilute ALVINN’s capabilities. A
much better approach was to leave the basic
neural network intact, preserving its real-time
performance and generalization capabilities,

and apply geometric transformations to the
input image and the output steering vector.
These transformations form a new set of tools
and techniques called virtual active vision. Vir-
tual because all the techniques use artificially
created imaging sensors that can be manipu-
lated to suit the needs of the task and active
because the techniques move sensors to loca-
tions where the images they create will
enhance system performance. The idea of vir-
tual active vision—and, specifically, the virtu-
al camera—became the basis for Jochem’s dis-
sertation (1996) and served as the tool that
allowed ALVINN to evolve into more than just
a lane-keeping system.

A virtual camera is simply an artificial
imaging sensor that can be placed at any
location and orientation in the world-refer-
ence frame. It creates images using a tech-
nique similar to the one used to create trans-
formed images during ALVINN’s training—
resampling the actual camera image to make
it appear as if the camera is situated at a dif-
ferent position or orientation. By knowing
the location of both the actual and the virtu-
al camera and assuming a flat-world model,
accurate image reconstructions can be created
from the virtual camera location.

For a particular tactical driving task, the
location of the virtual camera is chosen so
that it creates images from relevant parts of
the scene and from the same vantage as the
images that were used to train the network.
Because the images look familiar, the network
will respond properly. Virtual camera views
from many orientations have been created
using images from several different actual
cameras. The images produced by these views
have proven to be accurate enough for the
ALVINN system to navigate successfully. Figure
10 shows some typical virtual camera views
and the images that they create.

Descriptions of the application of virtual
active vision tools to two tactical driving
tasks—(1) lane changing and (2) intersection
navigation—are presented in the next subsec-
tions. For both tasks, the basic ALVINN system
is used, but by intelligently controlling its
input and interpreting its output, enhanced
tactical functions were possible.

Lane Changing
There has been a significant amount of
research published describing how people
change lanes as well as identifying theoreti-
cally optimal control strategies that could be
used to autonomously control a vehicle in a
lane-change maneuver (Grupen et al. 1995;
Hatipoglu, Ozguner, and Unyelioglu 1995;
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presenting techniques for lane changing, this
section introduces algorithms for exit-ramp
detection and traversal and short-distance
obstacle-avoidance maneuvering.

Technically, these tasks are important
because they represent tactical driving tasks
that have not been studied as closely as low-
level tasks such as lane keeping and obstacle
detection. To be successfully accomplished,
all the tasks require a sequence of actions to
be taken—a plan. This type of behavior is
difficult to coax from low-level, reactive sys-

Nelson 1989). Unfortunately, only a few of
these researchers had the facilities or equip-
ment to test their results outside the lab
(Jochem 1996; Rosenblum 1995; Behringer,
Holt, and Dickmanns 1992).

It is obvious to think about lane changing
only in terms of moving a vehicle from one
driving lane to another, adjacent lane.
Although this task is the most evident, there
are others similar in nature that require a sub-
set of, or a minor extension to, the capabili-
ties required for lane changing. In addition to
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Figure 10. Typical Virtual Camera Scenes.
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tems such as ALVINN, which are characterized
by fast response to features in their surround-
ings. Additionally, plans are often rigid and
difficult to integrate into autonomous sys-
tems that function in the real world. The
algorithms presented in this section circum-
vent these problems by framing the task plan
in a way that preserves the flexibility and
robustness of the low-level lane-keeping sys-
tem yet exhibits enough control to permit
successful execution.

Lane change and related functions are
implemented using active placement and
control of virtual cameras, intelligent inter-
pretation of the lane-keeping system’s
response to the images created from the virtu-
al cameras, and a simple road model that
guides virtual camera placement and vehicle
control. The algorithms are not strictly tied to
any specific lane-keeping system; they only
require that the system take images as input
and produce a point on the road to drive over
and a measure of its internal confidence in
this point as output. When implemented
using ALVINN, the techniques have been able
to autonomously navigate one of our test-bed
vehicles, the Navlab 5 (Jochem et al. 1995),
between lanes of a rural interstate highway,
onto exit ramps, and around obstacles.

As mentioned earlier, a simple road model
is needed to guide the lane-change maneu-
vers. The model that the techniques use is
that the centers of adjacent lanes of the road
have constant separation, implying that the
lanes are parallel and have a constant width.

The most successful method Jochem devel-
oped to change lanes is called the dual-view
lane-transition method (DVLT) (Jochem 1996).
In the DVLT algorithm, ALVINN is presented
with images from two virtual cameras, one
tracking each lane. ALVINN’s responses to the
images from these two views are smoothly
merged to move the vehicle from one lane to
the next. The placement of the views is con-
trolled by ALVINN’s response on the two virtual
images as well as by a high-level control algo-
rithm that biases the system to transition
from one lane to the other.

This technique is a bottom-up approach to
lane changing. Although it can use input
from high-level modules to initiate the
maneuver, the geometry of the situation is
what drives this method: The system locates
the center of both lanes and then moves the
vehicle based on these locations.

The DVLT method requires networks that
are trained for the driving and destination
lanes. Initially, only one view, called the
source-lane view (SLV), and the associated net-

work, are used to control the vehicle in the
driving lane. When a DVLT is initiated, the
road model is used to laterally offset a second
view, called the destination-lane view (DLV), so
that it is centered over the destination lane.
The network that was trained to drive in the
destination lane is associated with the DLV
(figure 11).

After the DLV has been created, images are
generated from both the SLV and the DLV
and are passed to their respective networks,
which produce an output steering displace-
ment along with an IRRE confidence value.
Both output displacements are converted to
vehicle-relative points. These points, called
lane center points (LCPs), specify where ALVINN

believes the center of each lane is located in
front of the vehicle.

The LCPs are used to calculate the modified
look-ahead point (MLP). The MLP is the point
that the vehicle will actually drive toward.
The MLP is between the two LCPs, along the
line connecting them. The distance between
the MLP and either LCPs is related to the step
in the DVLT process. For example, in DVLT
experiments that used 16 iterations to transi-
tion between lanes, the first MLP would be
1/16 the total distance (along the line con-
necting the LCPs) away from the driving lane
LCP and 15/16 from the destination LCP. On
the second step, the MLP would be 2/16 and
14/16 away, respectively.

Because the vehicle is instructed to steer
toward the MLP, the virtual views become
misaligned with their respective lanes, and
their position must be updated. If the vehicle
is moving to the left, both views are reposi-
tioned to the right. This process is continued
until the vehicle has transitioned completely
into the destination lane (figure 12). The
black dot in each of the diagrams in figure 12
is the MLP. The combination of moving
toward an MLP that is continually closer to
the destination lane center and updating the
location of the virtual camera views results in
a smooth, controlled transition.

During the lane transition, the IRRE
confidence metric and the constant lane-sep-
aration constraint are used to determine if
the system is confident in its current driving
ability. For the transition to continue, the
IRRE confidence measure for each image
must be above a threshold value, typically
0.40, and the distance between the LCPs is
required to be within 40 percent of the lane-
separation distance, specified by the lane
model.

Figure 13 shows two images taken at the
beginning and the end of a left-to-right
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this image, the DLV footprint is almost cen-
tered in front of the vehicle, and the original
SLV is offset to the left. The preprocessed
images are shown in the same location, along
with ALVINN’s driving responses and IRRE con-
fidence values. The responses and confidence
values are similar to those in the top image,
even though the vehicle is now in the desti-
nation lane.

All 42 DVLTs that were logged to verify this
lane-transition method were successfully
completed. One-half the transitions were left
lane–to–right lane transitions; the rest were
right to left. The results of the experiments
are shown in figure 14. (The average distance
for completion of a DVLT was 138 meters,
and the average vehicle speed was about 21.9
meters/second.) 

There are two characteristics to notice in
figure 14. First, the lane transitions are sym-
metric across the center line of the road as
well as with respect to the time in the lane
transition. Second, the DVLT method doesn’t

DVLT. In the top image, the vehicle is still in
the initial driving lane. The SLV footprint is
the darker trapezoid immediately in front of
the vehicle. The preprocessed image associat-
ed with the SLV is shown in the lower left
corner. The DLV footprint is also visible as
the lighter trapezoid, offset to the right of the
SLV footprint. The preprocessed image associ-
ated with it is shown to the right of the pre-
processed image from the SLV. Just above
each preprocessed image is ALVINN’s driving
response to the image. For each view, the
driving response is almost the same, indicat-
ing that the constant separation distance
road model and virtual camera imaging were
accurate. Also shown in front of the vehicle is
a grey dot that represents the MLP. Next to
each preprocessed image is a bar graph repre-
sentation of the IRRE confidence value associ-
ated with each. For both the SLV and the
DLV, the confidence is high—above 0.70. 

The image on the bottom was taken as the
vehicle approached the destination lane. In
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Source Lane View

Destination Lane View

Figure 11. Initial Virtual View Placement for the Dual-View Lane-Transition Technique.



relinquish control until the vehicle is at the
proper driving position in the destination
lane. Also notice, however, that at the end of
the transition, the vehicle trajectory is still
moving somewhat outward. A small amount
of overshoot did occur and can be attributed
to the existing lateral movement of the vehi-
cle coupled with the moderately long
response time that results from the large
look-ahead distance required for highway
driving. Empirically, the DVLT method yield-
ed smooth and realistic lane changes.

Figure 15 shows the average IRRE
confidence values for the right- and left-lane
ALVINN networks during right-to-left and left-
to-right DVLTs. The IRRE confidence values
produced by an ALVINN network increase as
the vehicle moves into the lane for which it
was trained and decrease as the vehicle moves
out of it. In both graphs, though, the IRRE
values remain well above the low-confidence

threshold. One cause of the increasing or
decreasing confidence values is the extreme
location of the SLV and the DLV. Near the
start and the end of the transition, because
each view remains centered over the proper
lane, the actual camera viewing field might
not overlay with the virtual camera viewing
field. Although the missing virtual camera
pixels are filled with the best actual camera
pixel, the image is not quite consistent with
what the network was trained with.

Exit-Ramp Detection and Traversal
A scenario that requires a vehicle-control
scheme similar to that of lane changing is
exit-ramp detection and traversal. A key dif-
ference is that the exact location of the exit
ramp is not usually known with enough
precision to blindly move the vehicle onto
it; therefore, it must first be located. To
accomplish this task using the ALVINN sys-
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Figure 12. Movement of the Vehicle and the Views in the Dual-View Lane-Transition Method.



virtual camera view, the exit view, and associ-
ate the correct network with it. In addition to
being laterally offset from the current view
being used to drive, the exit view is also shift-
ed forward by 10 meters. This shift is made so
that the exit lane can be detected before the
vehicle is adjacent to it; this shift is impor-
tant because in some situations, the driving-

tem, the following algorithm was developed.
Some distance before the exit lane begins,

ALVINN receives a signal from another knowl-
edge source, such as a map, informing it that
the exit is approaching. Information about
the exit lane’s location relative to the vehicle
and the lane type is passed to ALVINN. The
information is used to create an appropriate
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Figure 13. Dual-View Lane-Transition Processing.
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Figure 15. Input Reconstruction Reliability Estimation Values during Dual-View Lane Transitions.
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front of the vehicle. The lateral component of
each shift results in an image in which it
appears that the vehicle is offset to the left of
its proper driving position in the exit lane. To
recenter the vehicle, the network produces an
output indicating that the vehicle should
steer to the right, recentering it with respect
to the image and moving it further into the
exit lane. The network confidence for each
new virtual view is required to be above a
threshold for two iterations before the view is
shifted again. This process continues until
the exit view has reached its standard posi-
tion, and the vehicle has completely transi-
tioned into the exit lane.

Typical road scenes, both before and after
an exit lane is present, are shown in figure
17. In each image, the driving view is out-
lined in black, and the preprocessed image
created from it, along with its associated out-
put-displacement vector and bar graph repre-
sentation of its IRRE measure, is shown in
the lower left corner of each image. The exit
view is outlined in white, and the items asso-
ciated with it are to the right of those for the
driving view. In the top image, the IRRE
confidence value for the exit view is low, and
the output-displacement vector does not
match that of the driving view. However, in

lane network learns to key off features, such
as the shoulder-to-road boundary, that
change significantly when the exit lane
appears. To maintain proper control in these
situations it is important to detect the exit
lane before it is imaged by the driving view. A
diagram of the roadway near the exit and vir-
tual camera view locations is depicted in
figure 16. 

While the system uses the driving view to
keep the vehicle in its lane, images are created
from the exit view and passed to the associat-
ed ALVINN network, which creates an output
steering displacement and IRRE confidence
measure. By monitoring these values, the sys-
tem is able to determine when the exit lane
begins. The IRRE confidence in the exit-lane
network will become high, and its output dis-
placement will match that of the driving
view when the exit ramp is present. (The dis-
placements will match because the driving
and exit lanes are parallel, and the exit view
is not rotated with respect to the road.

After the exit lane has been detected, the
driving-lane network is no longer used, and
the vehicle is controlled using only the out-
put of the exit-lane network. The exit view is
incrementally shifted both laterally and lon-
gitudinally toward its standard location in
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Driving View

Exit View

Figure 16. Exit-Ramp Detection Diagram.



the lower image where the exit lane is pre-
sent, the IRRE response of both networks is
high, and their output displacements are
nearly identical.

Of the 20 logged attempts to detect and
traverse exit lanes on a rural interstate high-
way, 19 were successful. The attempts were
approximately evenly spread across three dif-

ferent ramps. The same driving- and exit-lane
networks were used for every attempt except
for the single failure, where a different exit-
lane network was used (thus causing the fail-
ure). Exit-ramp detection occurred at approxi-
mately 55 mph, and traversal was done at
speeds between 35 and 50 mph.

The system was instructed to begin looking
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Figure 17. Exit-Ramp Detection Images.
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capability of a lane-keeping system.
First, the current state of automotive obsta-

cle-detection technology precludes the detec-
tion of typical highway obstacles at distances
significantly greater than the minimum stop-
ping distance for vehicles traveling at the
legal highway speed. If the systems do not
detect the obstacle immediately and begin
braking, the vehicle will not be able to avoid
hitting the obstacle by stopping.

Second, many obstacles will enter the driv-
ing lane at a distance closer than the mini-
mum stopping distance of the vehicle. In this
case, even immediate detection will not allow
the vehicle to avoid a collision by stopping.
The only way to miss the obstacle is to
swerve from the current driving lane.

The final reason relates not to the capabili-
ties of the vehicle equipped with the obstacle-
detection system but rather to following vehi-
cles that are not equipped with it. In these
situations, even if the detection system finds
an upcoming obstacle in time to slow the
vehicle to a stop, it might not be the safest
maneuver because following vehicles might
not have similar stopping ability. Thus, to
avoid being rear ended by following vehicles,
it might be necessary to swerve from the driv-
ing lane to avoid hitting an obstacle.

A separate swerve system is not necessary
to implement an obstacle-avoidance maneu-
ver. Active control of virtual camera views,
similar to the techniques used for lane chang-
ing, can be used with ALVINN to accomplish

for the exit lane between 100 and 800 meters
before it actually occurred and begin transi-
tioning onto it as soon as it was found. Detec-
tion was robust and consistent, occurring
immediately after the lane appeared centered
in the exit view. Finally, there were no false
positives, where the system incorrectly
believed that the exit lane was present.

The system performance differed the most
in the traversal part of the task because of the
exit-lane network and the view that was used.
This view was positioned so that the network
would learn the most visible feature in the
scene—the shoulder-to–off road lane bound-
ary. (The white lines on the concrete roadway
were not a large enough feature, and the exit
lane was too lightly traveled for noticeable oil
spots to be created.) Choosing this view
meant that when the shoulder width
changed, navigation performance would suf-
fer. In practice, this led to consistent over-
shoot during navigation of the particular exit,
which had a wider shoulder than that on
which the network trained.

Obstacle-Avoidance Maneuvers
Although most systems are designed to keep
the vehicle in the center of the driving lane,
there are times when this behavior is not
desirable. Obstacle avoidance is one such sce-
nario. At least three reasons, besides avoiding
a collision, can be given why moving the
vehicle from the center of the driving lane
when an obstacle is detected is an important
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Figure 18. Vehicle Movement While Avoiding an Obstacle.



this maneuver.
To execute this maneuver, the lane-chang-

ing control algorithm was modified into what
is called the swerve and offset driving algorithm
(SODA). Instead of moving the vehicle com-
pletely into the destination lane, SODA only
offsets the vehicle from the center of the driv-
ing lane by a prespecified amount and then
returns it to the normal driving position. This
maneuver effectively allows the vehicle to
swerve to miss an obstacle in the driving
lane. This maneuver is shown in figure 18.

Key points of the SODA maneuver are as
follows: First, IRRE confidence and road-mod-
el constraints are not enforced so that the
maneuver takes place as quickly as possible.
Although there is some lag between the virtu-
al camera view location and the expected
vehicle location because of the decoupling
from the lack of constraints, the vehicle exe-
cutes a smooth, stable maneuver. Second,
after the vehicle has reached the apex of the
maneuver, it does not begin to return to the
destination lane immediately but, rather,
drives with the specified offset for a predeter-
mined distance. This hold time allows for
some margin of error with respect to the actu-
al location of the obstacle.

Approximately 10 left-to-right and 10
right-to-left swerves were logged. All were
successfully completed. The obstacle was
detected at distances between 40 and 60
meters by the test driver. After the test driver
indicated an obstacle was present, the system
moved the vehicle to an offset of 2.25 meters
from the driving-lane position using 8 virtual
camera views. The system held the vehicle at
this position for 0.5 seconds and then
returned it to its normal position in the driv-
ing lane.

Intersection Navigation
Another step in the evolution of autonomous
driving systems is the intelligent handling of
road junctions and intersections (Muller and
Baten 1995; Kluge and Thorpe 1993; Pomer-
leau 1993; Rossle, Kruger, and Gengenbach
1993; Struck et al. 1993; Siegle et al. 1992;
Ulmer 1992; Crisman 1990; Kushner and Puri
1987). The techniques presented in this sec-
tion are based on a data-driven, active philos-
ophy of vision-based intersection detection
and traversal (Jochem 1996). This section
describes the application of virtual active
vision tools to this area and presents the algo-
rithms that make autonomous detection and
traversal of intersections possible. The capa-
bility is based on geometrically modeling the
world: This model is utilized to accurately

image interesting and relevant parts of the
intersection using virtual cameras and active
camera control and by monitoring ALVINN’s
response to the created images.

ALVINN, enhanced with virtual active vision
tools, can be used to detect and traverse road
junctions and intersections in two different
scenarios: In the first scenario, the system
only has knowledge that an intersection is
present in front of the vehicle. The system
does not know the orientation of road
branches that are intersecting at this road
junction. In this scenario, the goal is to locate
each intersection branch.

In the second scenario, ALVINN has a priori
knowledge about an upcoming intersection.
The information does not specify where the
intersection is actually located, only that it is
approaching. With this information, appro-
priate virtual camera views can be created,
and correct networks can be associated with
each. The location and orientation of each
virtual camera, and the type of network used
with each, is dependent on the type of road
that is expected to be encountered. When the
road or intersection to be detected is present,
the virtual cameras will image it in a way that
is meaningful to ALVINN’s neural network. By
continually monitoring the network’s con-
fidence for each virtual camera image, the
system can determine when the intersection
is present.

Two sets of experiments were conducted to
assess the usefulness of virtual cameras for
autonomously detecting roads and intersec-
tions. The goal of the first set of experiments,
which were performed on the Navlab 2, was
to test the basic ability of virtual cameras to
create images that were usable by ALVINN for
intersection branch detection. The second set
of experiments used the Navlab 5 vehicle,
which was equipped with a roof-mounted
pan-tilt platform instead of a fixed camera. In
this set of experiments, the goal was to use
active camera control to enhance the perfor-
mance of the detection and traversal algo-
rithms.

Experiment 1: Intersection 
Branch Detection
For this experimental set, the vehicle was
positioned approximately 35 meters off the
road that was to be detected and aligned per-
pendicularly to it. A virtual view rotated 90
degrees to the right of straight ahead was cre-
ated. This view was placed 20 meters in front
of the vehicle (figure 19). The vehicle was
instructed to move along its current heading
until the system detected the road.
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that the metric will be low for images that do
not contain roads and distinctly higher for
those that do. For this assumption to hold,
two things must occur: First, ALVINN’s neural
network must not be able to accurately recon-
struct images that do not contain roads, lead-
ing to a low IRRE measure. Second, images
created by the virtual camera when a road is
present must look sufficiently similar to ones
seen during training, thus leading to an accu-
rate reconstruction and a high IRRE response.

To test these assumptions, several images
were taken at various distances from the road
as the vehicle approached. In each of these
images, the location of the virtual camera was
moved so that it imaged areas between the
vehicle and the road, on the road, and
beyond the road. Specifically, actual images
were taken when the vehicle was at distances
of 25, 20, 15, and 10 meters from the center

To accomplish detection, every 0.3 seconds
as the vehicle approached the road at a speed
of about 5 mph, a virtual image was created
and passed to the system’s neural network.
The network produced an output-displace-
ment vector and an IRRE confidence value.
To determine when the system had actually
located the road, the IRRE metric was moni-
tored. When this metric increased above a
user-defined threshold value, which was typi-
cally 0.8 out of 1.0, ALVINN reported that it
had located the road.

Application of IRRE to Road Detection
Because the IRRE metric is the key to the
intersection branch-detection process,
emphasis was placed on evaluating the metric
in typical branch-detection scenarios. Using
the IRRE metric to indicate when roads are
present in the input virtual image assumes
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Figure 19. Road-Detection Scenario.
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of the road. Virtual camera images were creat-
ed at one-meter intervals on either side of the
expected road location. For example, using
the actual image taken 20 meters from the
road center, virtual views were created every
meter between the distances of 14 meters and
29 meters.

For each of the actual images, virtual cam-
era images were created at the interval
specified earlier and shown to a network pre-
viously trained to drive on the road. The out-
put road location and the IRRE confidence
metric were computed. The results of this
experiment are shown in figure 20. This
figure shows the IRRE response as a function
of the virtual camera distance in front of the
vehicle for several actual images taken at dif-
ferent distances from the road. (Data from
the different actual images are represented by
different curves in the graph.) For each actual
image, the network’s IRRE response clearly
peaks near the expected road distance. As the

virtual view moves closer to the road, the
IRRE response increases, peaking when the
virtual view is directly over the road.
Response quickly falls again after the view
passes over the road. The peaks in all the
curves have IRRE values greater than 0.80. For
comparison, when the system is driving on a
familiar road, the IRRE response is typically
between 0.65 and 0.95. The peaks in each
IRRE curve actually occur about two meters
past the actual road center. This error results
from three causes: (1) a violation of the flat-
world assumption, (2) errors in camera cali-
bration, and (3) improper initial alignment to
the road.

This graph shows that both assumptions
stated previously are basically correct: The
IRRE response is low when the network is not
being presented road images, and the IRRE
response is high when the network is being
presented accurately imaged virtual views.

The relationship between the input virtual
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era problem, which limits the effective field of
view of the system, was overcome by simply
placing the camera on a pan-tilt mount locat-
ed on the roof of the vehicle. The geometric
constraint-violation problem, which caused
poor traversal performance in prior experi-
ments, was resolved by using image-derived
information to continually update the esti-
mate of the branch location and orientation.
Adding these capabilities allowed the system
to reliably detect and navigate two test inter-
sections. The first was a Y intersection in a
park near campus, and the other was a T junc-
tion from a driveway onto a rural road outside
Pittsburgh. Although not exhaustive, these
two locations are typical of intersection
geometries encountered in everyday driving.

Detection with Known Geometry and
Unknown Location
In this experiment, the goal was to move
along a single-lane road, search for and detect
a branch of Y intersection, and drive onto it.

image and the IRRE value associated with the
image can be better seen in figure 21. It
shows virtual images created at different dis-
tances in front of the vehicle along with the
IRRE response they solicit. In figure 21a, the
road is barely visible in the top left corner,
and as expected, the IRRE response is very
low. As the virtual view is moved forward, it
begins to image more of the road, as shown
in figure 21b. The IRRE value increases corre-
spondingly. The trend continues until the vir-
tual view is centered over the road, as shown
in figure 21d. At this location, the IRRE value
is at its peak.

Experiment 2: Intersection-Traversal
Experiments on the Navlab 5
After the intersection branches have been
detected, traversal can begin. A robust traver-
sal algorithm must overcome two potential
problems: (1) a fixed-camera location and (2)
violations of the assumptions about the
geometry of the road branch. The fixed-cam-
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Figure 21. Input Reconstruction Reliability Estimation Values for Typical Detection Images.
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Figure 22. Intersection Branch Detection from a Moving Vehicle.
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To accomplish this set of tasks, the moveable
camera was required. This camera could be
positioned so that the road, as well as a sub-
stantial portion of the anticipated road-
branch location, could be imaged. If a fixed
camera had been used, the number of branch
locations and the amount of actual and virtu-
al camera-view overlap that was possible
would have been limited.

Initially in this scenario, ALVINN controlled
the vehicle in normal lane-keeping mode. See
figure 22a. While driving, the system received
a message that an intersection was approach-
ing. Although the exact location of the
branch was not known, its orientation with
respect to the current road segment was giv-
en. Using this information, the system creat-
ed the appropriate virtual camera view, called
the detection view, which would properly
image the branch when it appeared. For this
experiment, the target road branch was ori-
ented approximately 40 degrees left of
straight ahead. In addition to being angled 40
degrees, the detection view was typically
located 7 meters in front of the vehicle. This
distance was selected so that the branch
would be detected enough in advance to per-
form the traversal maneuver but close
enough so that violations in the flat-world
assumption would not become significant.

After creating the detection view, the sys-
tem determined if the current pan location of
the actual camera was sufficient to image
both views completely. If not, which was typ-
ically the case, the system automatically
panned the camera so that the largest portion
of the detection view was in the field of view
of the actual camera while it maintained the
entire driving view in the actual camera’s
field of view. See figure 22b. Note that after
the actual camera has been panned, it is no
longer in the same orientation as when the
ALVINN network was trained. However, because
the virtual camera is at a fixed location with
respect to the vehicle and is independent of
the actual camera location, the images it cre-
ated allowed ALVINN to continue driving reli-
ably.

New images from the detection view were
created approximately four times a second
and passed to ALVINN’s neural network for pro-
cessing. The intersection branch was consid-
ered detected when the IRRE confidence val-
ue of the network, in response to a
detection-view image, became greater than a
predetermined threshold value. See figure
22c. The threshold value was typically set to
0.75. When detection occurred, the system
indicated this to the safety driver who

RALPH

Although ALVINN was very successful, it was not without
drawbacks. The biggest was its relatively long training
time because of the quick changes in road appearance.

A better system would be able to adapt to different road
appearances very quickly and do so before the vehicle actual-
ly reached the new road type. To resolve this problem,
Pomerleau developed RALPH (rapidly adapting lateral position
handler) in early 1995. Like ALVINN, RALPH is a vision-based
adaptive system that can learn the current road features.
Instead of using a neural network to learn, it uses a weak
model of road geometry and image reprojection to extract
and adapt to the relevant features for driving.

To locate the road ahead, RALPH first resamples a trapezoid-
shaped area in the video image, much like a bird’s-eye virtual
camera, to eliminate the effect of perspective. RALPH then uses
a template-based matching technique to find parallel image
features in this perspective-free image. These features can be
as distinct as lane markings or as subtle as the diffuse oil
spots from previous vehicles down the center of the lane.
RALPH rapidly adapts to varying road appearance and chang-
ing environmental conditions by altering the features it uses
to find the road. This rapid adaptation is accomplished in
under one second without human intervention. 

Because RALPH can exploit any visible features running par-
allel to the lane, instead of relying exclusively on the presence
of distinct lane markings, it can operate in a wider variety of
situations than previous road-following systems. In one
experiment, called No Hands across America, RALPH drove the
Carnegie Mellon University Navlab 5 test-bed vehicle 98 per-
cent of the 2850-mile journey from Washington, D.C., to San
Diego, California (Pomerleau and Jochem 1996). During the
trip, RALPH drove at an average speed of 63 mph in conditions
including bright sunlight, dusk, rain, and nighttime. During
one stretch in Kansas, RALPH drove continuously for 69 miles
without the safety driver touching the steering wheel.

The 2 percent of the trip during which manual intervention
was required included a nighttime encounter with a 10-mile
stretch of freshly paved highway that had not yet been paint-
ed with lane markings. Other difficult situations included driv-
ing directly into the setting sun and driving through cities.

Near-term applications for the RALPH system include using
it as a warning system to alert drowsy or inattentive drivers
when they begin to drift off the road. Every year, this type of
accident results in nearly 15,000 deaths on U.S. highways.
RALPH might also play a role in the automated highway sys-
tem, where it could automatically steer to keep the vehicle in
its lane.

For more information about No Hands across America and
RALPH, see the web page http://www.cs.cmu.edu/~pomerlea
/nhaa.html. 
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Figure 23. Searching for T-Intersection Branches.



that do not.
After the branch orientations had been

established, the system waited for the safety
driver (or other knowledge source) to indicate
which branch should be taken.

Intersection Localization and Traver-
sal Using Active Camera Control
Before traversal takes place, the road branch
must be localized to a greater degree of accu-
racy than was done for detection because of
ALVINN’s ability to correctly respond to images
in which the vehicle appears misaligned with
the road. Thus, the exact location and orien-
tation of the road branch with respect to the
vehicle is not precisely known. Because later-
al translation and orientation errors in virtu-
al-view alignment to the road cannot be
determined from a single road image and its
associated output, the following two-step
branch-localization process must take place.

The first step in localizing the branch fur-
ther is to use the output displacement of the
network to update the position of the virtual
camera imaging the road branch. Localization
is done by moving the view laterally, perpen-
dicular to the hypothesis branch direction,
for a distance equal to the output displace-
ment of the network. After the view has been
moved, an image is created from this new
location and passed through ALVINN’s net-
work, producing another output displace-
ment that is again used to adjust the view.
This process is continued until the output
displacement of the network changes sign,
meaning that the current and last view have
“bracketed” the view location that will pro-
duce zero output displacement. In this last
step, the final displacement from straight
ahead is very small.

Figure 25a to 25d shows the progression of
view locations during this portion of the
localization algorithm. The input image and
associated output are shown in the lower left
portion of the image. Note how the output
displacement from straight ahead, shown
above the preprocessed image, decreases as
the virtual view becomes better aligned with
the road branch.

Although the first phase of road-branch
localization causes the output displacement
of the network to become nearly zero, the ori-
entation of the view with respect to the road
branch cannot be assumed correct. Figure 26
illustrates this concept. In this figure, the pre-
processed image, along with ALVINN’s output
displacement created using each image (when
the vehicle is in both the left and the right
configurations with respect to the road), is

stopped the vehicle. At this point, the system
began to localize the intersection branch and
navigate through the intersection. This pro-
cess is described in detail in later sections.

Detection with Unknown Geometry
and Known Location
This intersection-detection scenario is the
opposite of the previous. In this case, the
location of the intersection was known, but
the geometry of the intersection was not.
Specifically, ALVINN had knowledge about
where the center of the intersection was
located with respect to the vehicle but did
not know the orientation of any of the inter-
section’s branches. The goal was to find each
branch and pass its location to a higher-level
knowledge source that could request that one
of the branches be taken or store the informa-
tion for later use.

The branch-detection process began with
the vehicle located a known distance from
the intersection center. The detection algo-
rithm uses a radial search technique to create
virtual camera views that image different
hypothesis branch locations. Virtual views are
created a fixed distance from the intersection
center at varying orientations. For this experi-
ment, the angular change between hypothe-
sis views was 45 degrees, and the vehicle’s dis-
tance from the intersection center ranged
between 7 and 10 meters. Images taken at
each of these hypothesis branch locations are
shown for the T intersection in figure 23. Fig-
ure 23f shows which hypothesis intersection
branches the system believes are likely to be
actual branches, as determined by the simple
detection method described in the next para-
graph.

As before, the basis for signaling detection
is a high IRRE value. If the hypothesis view
images an actual road branch, the corre-
sponding IRRE confidence metric will be
high, and the orientation of the branch being
examined can be saved for further processing.
Figure 24 shows enlarged versions of the pre-
processed ALVINN image from each of the first
five images of figure 23. Along with the pre-
processed image is the IRRE confidence value
that ALVINN’s network produced when shown
the image. For preprocessed images created
from virtual cameras that did not image actu-
al road branches, the IRRE value is very low,
but for the images that were of actual road
branches, the confidence value is significant-
ly higher. From this examination, it is evident
that by thresholding based on the IRRE value,
hypothesis views that image actual road
branches can be discriminated from those
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Figure 24. Images and Input Reconstruction Reliability Estimation Values for the T Intersection.
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Figure 25. Lateral and Angular Branch Localization.



shown. Note that in each case, the displace-
ment is near zero although the vehicle is only
properly aligned with the road in the right
example. This discrepancy occurs because
ALVINN is trained to produce the displacement
required to return the vehicle to the center of
the road the look-ahead distance in front of
the vehicle. In both cases, the requisite dis-
placement is near zero.

To accurately determine the intersection
branch orientation, a second view is required.
This view, called the projection view, is typical-
ly created between three and five meters in
the direction of the current estimated road-
branch orientation. Figure 27 shows the actu-
al road scene (figure 25e) along with a dia-
gram of the original and projection-view
arrangement. 

If the original view is properly aligned with
the intersection branch and accurately
reflects the branch’s location and orientation,
creating an image using the projection view
and passing it through ALVINN’s network
should yield an output displacement close to
zero. This is because the previous alignment
step reduced the lateral offset of the original

view to near zero, in effect centering the orig-
inal view over the longitudinal axis of the
road branch. If the original view is at the cor-
rect orientation, projecting 5 meters along
the branch orientation should also create a
view that is centered over the longitudinal
axis of the intersection branch. As shown in
figure 27, the projection view is not centered.
Although the original view has zero dis-
placement, indicated by the centered Gaus-
sian hump of activation over the prepro-
cessed image, it was not aligned correctly
with the intersection branch. Because the
original view was misaligned, the projection
view is also misaligned, resulting in a nonze-
ro output displacement. In figure 27, the
Gaussian hump indicating the network out-
put displacement created from the projec-
tion-view image is shifted right to reflect this
misalignment.

The output-displacement difference from
zero that the projection-view image produces
is a measure of the misalignment in orienta-
tion between the original view and the inter-
section branch. By using the output displace-
ment from the projection view, the
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Figure 26. Possible Alignments with Zero Output Displacement.



its correct orientation, its lateral position
must also be corrected; the rotation correc-
tion was made about the original view’s loca-
tion, not about a point on the longitudinal

projection distance, and the location of the
original and projection views, the amount of
this angular misalignment can be computed
(figure 28). After rotating the original view to
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Figure 27. Orientation Localization.
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Figure 28. Orientation and Lateral Offset Error Correction.
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rithm shown in figure 30 was developed. This
algorithm takes into account the branch ori-
entation as determined by the localization
algorithm.

The vehicle control algorithm finds tan-
gent points on two lines representing the
vehicle’s current heading and the intersection
branch orientation. The first tangent point,
P1, is defined to be the current vehicle posi-
tion, and the second point, P2, is on the
intersection-branch axis. The distance along
the branch that P2 is located, measured from
the intersection center point, C, is defined to
be equal to the distance from P1 to C. After
being computed, this distance is held fixed
throughout the intersection traversal. C is
computed before traversal begins by finding
the intersection point of the branch axis and
the line representing the vehicle heading. As
mentioned earlier, the orientation of the
branch axis is not fixed at the hypothesis
view orientation but, rather, is the refined
branch orientation derived during the branch
localization phase.

This construction ensures that a circle can
be found that will intersect P1 and P2 tangen-
tially. The radius of the circle that intersects
these tangent points is the arc that the vehi-
cle uses to drive through the intersection. For
each new image, the tangent point, P2, and
the arc to drive are recalculated based on the
new location of the intersection branch so
that any errors in vehicle control, position-
ing, pan angle, or nonlinear branch geome-
tries are considered.

Intersection Navigation Results and
Discussion
Using simple thresholding as the discriminat-
ing technique, the system was able to success-
fully detect each intersection branch in 33 of
the 35 cases on the Y and T intersections.
These trials were distributed about evenly
over the moving vehicle Y and the stationary
Y and T detection scenarios. In no cases did
the system detect a branch that was not pre-
sent.

Both failure cases were in the T scenario. In
one case, the system successfully detected one
of the two branches. The other branch’s
confidence value fell just below the threshold
but was still much higher than any of the
other three hypothesis locations. In the other
failure case, neither branch was detected. For
this case, of the two real branches that should
have been detected, one did have a notice-
ably higher IRRE value, but it was still below
the detection threshold. The other branch’s
IRRE value was not significantly different

axis of the intersection branch. From the
same information used to compute the orien-
tation error, the lateral offset error, which is a
result of the orientation error correction, can
also be computed (figure 28). After both error
values have been computed, they can be used
to update the original view location and ori-
entation so that it more closely matches the
intersection branch geometry. Figure 25f
shows the original and projection views after
the entire localization procedure has been
completed. The original view and the projec-
tion view are both producing output displace-
ments near zero, indicating that they are
aligned with the longitudinal axis of the
intersection branch. Once this localization
step is finished, traversal of the intersection
can begin.

Traversal
Two issues must be considered and resolved
for intersection traversal to be successful: (1)
tracking the branch as the vehicle moves
through the intersection and (2) computing
the correct steering arc to execute.

The branch-tracking problem was solved
by adapting the branch-localization algo-
rithm presented in the previous section. Dur-
ing traversal, the system continually updated
the location and orientation of the original
virtual camera view by repeating the align-
ment procedure presented in the previous
section. In addition, when the original view
was about to move out of the field of view of
the actual camera, the system automatically
panned the actual camera appropriately. The
ability of the system to correctly orient and
localize the intersection branch during traver-
sal is shown for the T intersection in figure
29. Note that a camera pan occurs before
figure 29b, 29c, 29e, and 29f.

Creating an acceptable vehicle-control
algorithm for navigating intersections was
one of the most difficult tasks in this work.
The majority of the methods tried caused the
vehicle to either severely cut corners, over-
shoot, or generally become misaligned with
the road. A contributing factor to these prob-
lems was the lack of accurate geometric infor-
mation about the intersection branch as the
vehicle turned.

As shown in the traversal figures, this prob-
lem was alleviated by tracking the intersec-
tion branch using a combination of tradition-
al and virtual active vision techniques.
However, many of the vehicle-control algo-
rithms still had difficulty matching the vehi-
cle heading to the road orientation. Based on
this observation, the vehicle-control algo-
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Figure 29. T-Intersection Traversal Images.
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advantage over other road- and intersection-
detection systems that require the researcher
to program in new detection methods when
new road types are encountered.

Conclusions
The ALVINN system has changed dramatically
over the past nine years. From its beginning
as a fragile system tied to the resources of a
supercomputer, it has evolved into a reliable
system capable of driving vehicles at highway
speeds for long distances using modest com-
puting resources. Enhancements to ALVINN

have produced advances in the areas of neu-
ral network training, autonomous on-road
navigation, and computer vision. With the
recent addition of a simple model of lane
geometry, ALVINN now forms the core of a tac-
tical driving system capable of changing lanes
and navigating through intersections.

ALVINN’s success can be attributed to a sin-
gle design principle—build in the well-under-
stood aspects of the autonomous navigation

than any of the other branches. In this case,
the problem can be attributed to a change in
the ambient lighting, from overcast skies to
sunshine, to which the camera was not able
to properly adjust. In any case, although
detection is robust, it is not foolproof, and
redundant branch-verification procedures are
necessary.

In all 34 scenarios in which the system
detected at least 1 branch, it was able to prop-
erly move the vehicle onto the branch and
continue driving. The system was able to
drive the vehicle onto the left and right
branches of the T intersection as well as navi-
gate onto the 45-degree branch of the Y inter-
section. Although the control algorithm dur-
ing traversal is simple, having a moving
camera and tracking the road branch
throughout the maneuver allowed it to work
reliably over the experimental domain.

It is reasonable to assume that the detec-
tion method will work for any road branch
type that ALVINN can learn to drive on. If this
assumption is true, this system will have an
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Figure 30. Traversal-Turn Radius Determination.
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task, and learn the remainder. Our a priori
knowledge of the geometry involved in driv-
ing forms the core of ALVINN’s built-in func-
tions, freeing the neural network to learn the
more difficult aspects of image processing.
We continue to search for new methods of
incorporating geometric information into
autonomous driving systems while maintain-
ing the ability to adapt to the changing situa-
tions encountered in the real world. One
such method, which we believe might have
several advantages over the ALVINN neural net-
work approach, is described in the sidebar on
RALPH (Pomerleau and Jochem 1996).
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