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Abstract

A comprehensive understanding of data quality is the cor-
nerstone of measurement studies in social media research.
This paper presents in-depth measurements on the effects of
Twitter data sampling across different timescales and differ-
ent subjects (entities, networks, and cascades). By construct-
ing complete tweet streams, we show that Twitter rate limit
message is an accurate indicator for the volume of missing
tweets. Sampling also differs significantly across timescales.
While the hourly sampling rate is influenced by the diurnal
rhythm in different time zones, the millisecond level sampling
is heavily affected by the implementation choices. For Twit-
ter entities such as users, we find the Bernoulli process with a
uniform rate approximates the empirical distributions well. It
also allows us to estimate the true ranking with the observed
sample data. For networks on Twitter, their structures are al-
tered significantly and some components are more likely to be
preserved. For retweet cascades, we observe changes in dis-
tributions of tweet inter-arrival time and user influence, which
will affect models that rely on these features. This work calls
attention to noises and potential biases in social data, and pro-
vides a few tools to measure Twitter sampling effects.

1 Introduction

“Polls are just a collection of statistics that reflect what
people are thinking in ‘reality’. And reality has a well-
known liberal bias.” – Stephen Colbert1

Data quality is a timely topic that receives broad attention.
The data noises and biases particularly affect data-driven
studies in social media (Tufekci 2014; Olteanu et al. 2019).
Overrepresented or underrepresented data may mislead re-
searchers to spurious claims (Ruths and Pfeffer 2014). For
example, opinion polls wrongly predicted the U.S. presiden-
tial election results in 1936 and 1948 because of unrepre-
sentative samples (Mosteller 1949). In the era of machine
learning, the data biases can be amplified by the subsequent
models. For example, models overly classify agents doing
cooking activity as female due to overrepresented correla-
tions (Zhao et al. 2017), or lack the capacity to identify dark-
skinned women due to underrepresented data (Buolamwini
and Gebru 2018). Hence, researchers must be aware and take

Copyright c© 2020, Association for the Advancement of Artificial
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1At the 2006 White House Correspondents’ Dinner.

account of the hidden biases in their datasets for drawing rig-
orous scientific conclusions.

Twitter is the most prominent data source in ICWSM – 82
(31%) out of 265 full papers in the past 5 years (2015-2019)
used Twitter data (listed in Section A of (Appendix 2020)),
in part because Twitter has relatively open data policies,
and in part because Twitter offers a range of public applica-
tion programming interfaces (APIs). Researchers have used
Twitter data as a lens to understand political elections (Bovet
and Makse 2019), social movements (De Choudhury et al.
2016), information diffusion (Zhao et al. 2015), and many
other social phenomena. Twitter offers two streaming APIs
for free, namely sampled stream and filtered stream. The
filtered stream tracks a set of keywords, users, languages,
and locations. When the matched tweet volume is above a
threshold, Twitter subsamples the stream, which compro-
mises the completeness of the collected data. In this paper,
we focus on empirically quantifying the data noises resulted
from the sampling in the filtered stream and its impacts on
common measurements.

This work addresses two open questions related to Twitter
data sampling. Firstly, how are the tweets missing in the
filtered stream? The sampling mechanism of the sampled
stream has been extensively investigated (Kergl, Roedler,
and Seeber 2014; Pfeffer, Mayer, and Morstatter 2018), but
relatively little is said about the filtered stream. Since the two
streaming APIs are designed to be used in different scenar-
ios, it is pivotal for researchers who use the filtered stream
to understand what, when, and how much data is missing.
Secondly, what are the sampling effects on common mea-
surements? Our work is inspired by Morstatter et al. (2013),
who measured the discrepancies of topical, network, and ge-
ographic metrics. We extend the measurements to entity fre-
quency, entity ranking, bipartite graph, retweet network, and
retweet cascades. The answers to these questions not only
help researchers shape appropriate questions, but also help
platforms improve their data services.

We address the first question by curating two datasets that
track suggested keywords in previous studies. Without lever-
aging the costly Twitter Firehose service, we construct the
complete tweet streams by splitting the keywords and lan-
guages into multiple subcrawlers. We study the Twitter rate
limit messages. Contradicting observations made by Samp-
son et al. (2015), our results show that the rate limit mes-
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sages closely approximate the volume of missing data. We
also find that tweets are not missing at random since the sam-
pling rates have distinct temporal variations across different
timescales, especially at the level of hour and millisecond.

Addressing the second question, we measure the effects of
Twitter data sampling across different subjects, e.g., the en-
tity frequency, entity ranking, user-hashtag bipartite graph,
retweet network, and retweet cascades. We find that (1) the
Bernoulli process with a uniform rate can approximate the
empirical entity distribution well; (2) the ranks of top entities
are distorted; (3) the true entity frequency and ranking can
be inferred based on sampled observations; (4) the network
structures change significantly with some components more
likely to be preserved; (5) sampling compromises the quality
of diffusion models as the distributions of tweet inter-arrival
time and user influence are substantially skewed. We remark
that this work only studies the effects of Twitter sampling
mechanism, but does not intend to reverse engineer it.

The main contributions of this work include:

• We show that Twitter rate limit message is an accurate
indicator for the volume of missing tweets.

• A set of measurements on the Twitter data sampling ef-
fects across different timescales and different subjects.

• We show how to estimate the entity frequency and ranking
of the complete data using only the sample data.

• We release a software package “Twitter-intact-stream” for
constructing the complete data streams on Twitter2.

2 Related work

Studies on Twitter APIs. Twitter has different levels of ac-
cess (Firehose, Gardenhose, Spritzer) and different ways to
access (search API, sampled stream, filtered stream). As the
complete data service (Firehose) incurs excessive costs and
requires severe storage loads, we only discuss the free APIs.

• Twitter search API returns relevant tweets for a given
query, but it only fetches results published in the past
7 days (Twitter.com 2020d). The search API also bears
the issue of data attrition. Research using this API to
construct a “complete” dataset would inevitably miss
parts of desired tweets (Wang, Callan, and Zheng 2015)
since tweet creation and deletion are highly dynamic (Al-
muhimedi et al. 2013). To overcome this limitation, re-
searchers can pivot to the streaming APIs.

• Twitter sampled streaming API returns roughly 1% of
all public tweets in realtime (Twitter.com 2020c). Pfef-
fer, Mayer, and Morstatter (2018) detailed its sampling
mechanism and identified potential tampering behaviors.
González-Bailón et al. (2014) examined the biases in the
retweet network from the 1% sample and the search API.
While the 1% sample may be treated as a representative
sample of overall Twitter activities (Morstatter, Pfeffer,
and Liu 2014; Kergl, Roedler, and Seeber 2014), data fil-
tering can only be conducted post data collection. There-

2The package, collected data, and analysis code are publicly
available at https://github.com/avalanchesiqi/twitter-sampling

fore, it is not suitable to create ad hoc datasets, e.g., track-
ing all tweets that contain the hashtag #metoo.

• Twitter filtered streaming API collects tweets matching
a set of prescribed predicates in realtime (Twitter.com
2020a). Suppose that the streaming rate is below Twitter
limit, the pre-filtering makes the filtered stream possible
to construct the complete datasets without using the costly
Firehose stream, e.g., on social movements (De Choud-
hury et al. 2016) and on news outlets (Mishra, Rizoiu,
and Xie 2016). We focus on the scenes where the data
streams are sampled. The most relevant work is done by
Morstatter et al. (2013), in which they compared the fil-
tered stream to the Firehose, and measured the discrepan-
cies in various metrics. We extend the scope of measured
subjects. Furthermore, we take a step to correct the sam-
pling effects on entity measures.

Twitter sampling is deterministic (Joseph, Landwehr, and
Carley 2014), therefore, simply stacking crawlers with the
same predicates will not yield more data. However, users
can improve the sample coverage by splitting the keyword
set into multiple disjoint predicate sets, and monitoring each
set with a distinct subcrawler (Sampson et al. 2015).
Effects of missing social data. Social data, which records
ubiquitous human activities in digital form, plays a fun-
damental role in social media research. Researchers have
pointed out the necessity to interrogate the assumptions and
biases in data (Boyd and Crawford 2012; Ruths and Pfef-
fer 2014). Tufekci (2014) outlined four issues on data repre-
sentativeness and validity. The hidden data biases may alter
some research conclusions and even impact human decision
making (Olteanu et al. 2019).

Gaffney and Matias (2018) identified gaps where data is
unevenly missing in a widely used Reddit corpus. They sug-
gested strong risks in research that concerns user history
or network information, and moderate risks in research that
uses aggregate counts. In this work, we use these qualitative
observations as starting points and present a set of in-depth
quantitative measurements. We corroborate the risks in user
history study and network analysis. And we show how the
complete counting statistics can be estimated.
Sampling from graphs and cascades. Leskovec and
Faloutsos (2006) studied different graph sampling strategies
for drawing representative samples. Wagner et al. (2017)
considered how sampling impacts the relative ranking of
groups in the attributed graphs. The effects of graph sam-
pling has been extensively discussed by Kossinets (2006).
In this work, the missing tweets can cause edge weights to
decrease, and some edges to even disappear. On sampling a
cascade, De Choudhury et al. (2010) found that combining
network topology and contextual attributes distorts less the
observed metrics. Sadikov et al. (2011) proposed a k-tree
model to uncover some properties from the sampled data.
They both sampled the cascades via different techniques
(e.g., random, forest fire) and varying ratios. In contrast, the
sampling in this work is an artifact of proprietary Twitter
sampling mechanisms, and beyond the control of the users.
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Figure 1: (a) Collected and missing tweets in an 11-second interval. blue circle: collected tweet; black cross: missing tweet;
black vertical line: rate limit message. green number: estimated missing volume from rate limit messages; black number: count
of missing tweets compared to the complete set. (b) MAPE of estimating the missing volumes in the rate limit segments.

3 Datasets and Twitter rate limit messages

We collect two datasets, using two sets of keywords em-
ployed in recent large-scale studies that use Twitter. We
choose these works because they are high volume and infor-
mative for important social science problems (cyberbullying
and online content sharing). We use ρ to denote the sampling
rate – i.e., the probability that a tweet is present in the col-
lected (sampled) dataset. We use subscripts to differentiate
sampling rates that vary over time ρt, users ρu, networks ρn,
and cascades ρc. The datasets are collected using the Twitter
filtered streaming API and are summarized in Table 1.

• CYBERBULLYING (Nand, Perera, and Kasture 2016):
This dataset tracks all tweets that mention any of the 25
recommended keywords from psychology literature (e.g.,
gay, slut, loser). The collection period is from 2019-
10-13 to 2019-10-26.

• YOUTUBE (Rizoiu et al. 2017): This dataset tracks all
tweets that contain at least one YouTube video URL by
using the rule “youtube” OR (“youtu” AND “be”).
The collection period is from 2019-11-06 to 2019-11-19.

The streaming client is a program that receives streaming
data via Twitter API. The client will be rate limited if the
number of matching tweets exceeds a preset threshold – 50
tweets per second as of 2020-03 (Twitter.com 2020b). When
we use only one client to track all keywords, we find that
both datasets trigger rate limiting. We refer to the crawling
results from a single client as the sample set.

We develop a software package “Twitter-intact-stream”3

for constructing the complete data streams on Twitter. The
package splits the filtering predicates into multiple subsets,
and tracks each set with a distinct streaming client. The
CYBERBULLYING and YOUTUBE datasets are respectively
crawled by 8 and 12 clients based on different combinations
of keywords and languages. We remove the duplicate tweets
and sort the distinct tweets chronologically. We refer to the
crawling results from multiple clients as the complete set.

In very occasional cases, the complete sets also encounter
rate limiting. Estimated from the rate limit messages (de-
tailed next), 0.04% and 0.14% tweets in the complete sets
are missing, which are negligible comparing to the volumes
of missing tweets in the sample sets (47.28% and 8.47%,
respectively). For rigorous comparison, we obtain a 30 min-
utes complete sample from Twitter Firehose and find the dif-
ference with our collected data is trivial (detailed in Section

3https://github.com/avalanchesiqi/twitter-intact-stream

CYBERBULLYING YOUTUBE
complete sample complete sample

Nc 114,488,537 60,400,257 53,557,950 49,087,406
Nr 3,047 1,201,315 3,061 320,751
N̂m 42,623 54,175,503 77,055 4,542,397

ρ̄ 99.96% 52.72% 99.86% 91.53%

Table 1: Summary of two datasets. Nc: #collected tweets;
Nr: #rate limit messages; N̂m: #estimated missing tweets;
ρ̄: mean sampling rate. Full specifications for all streaming
clients are listed in Section B of (Appendix 2020).

C of (Appendix 2020)). Hence, for the rest of this work, we
treat the complete sets as if they contain no missing tweets.
Validating Twitter rate limit messages. When the stream-
ing rate exceeds the threshold, Twitter API emits a rate limit
message that consists of a timestamp and an integer. The in-
teger is designed to indicate the cumulative number of miss-
ing tweets since the connection starts (Twitter.com 2020e).
Therefore, the difference between 2 consecutive rate limit
messages should estimate the missing volume in between.

We empirically validate the rate limit messages. We di-
vide the datasets into a list of segments where (a) they con-
tain no rate limit message in the complete set; (b) they are
bounded by 2 rate limit messages in the sample set. This
yields 1,871 and 253 segments in the CYBERBULLYING and
YOUTUBE datasets, respectively. The lengths of segments
range from a few seconds to several hours, and collectively
cover 13.5 days out of the 14-day crawling windows. In this
way, we assure that the segments in the complete set have
no tweet missing since no rate limit message is received.
Consequently, for each segment we can compute the vol-
ume of missing tweets in the sample set by either comput-
ing the difference of the two rate limit messages bordering
the segment, or by comparing the collected tweets with the
complete set. Figure 1(a) illustrates the collected and miss-
ing tweets in an 11-second interval. The estimated missing
volumes from rate limit messages closely match the counts
of the missing tweets in the complete set. Overall, the me-
dian error in estimating the missing volume using rate limit
messages is less than 0.0005, measured by mean absolute
percentage error (MAPE) and shown in Figure 1(b). We thus
conclude that the rate limit message is an accurate indicator
for the number of missing tweets. Note that it only approxi-
mates the volume of missing tweets, but not the content.

Our observations contradict those from Sampson et
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Figure 2: Sampling rates are uneven (a) in different hours
or (b) in different milliseconds. black line: temporal mean
sampling rates; color shades: 95% confidence interval.

al. (2015), who used the same keyword-splitting approach,
yet found that the rate limit messages give inaccurate estima-
tions. They consistently retrieved more distinct tweets (up to
2 times) than the estimated total volume, i.e., the number of
collected tweets plus the estimated missing tweets. In con-
trast, our datasets only have a small deviation (0.08% and
0.13%, comparing Nc of the complete set to Nc+N̂m of the
sample set in Table 1). This discrepancy is due to a different
implementation choice back in 2015 – instead of having 1
rate limit message for each second, the rate limit messages
were spawned across 4 threads, resulting in up to 4 messages
per second. We provide a detailed analysis in Section C of
(Appendix 2020).

4 Are tweets missing at random?

In this section, we study the randomness of Twitter sampling
– do all tweets share the same probability of missing? This is
relevant because uniform random sampling creates represen-
tative samples. When the sampling is not uniform, the sam-
pled set may suffer from systematic biases, e.g., some tweets
have a higher chance of being observed. Consequently, some
users or hashtags may appear more often than their cohorts.
We tackle the uniformity of the sampling when accounting
for the tweet timestamp, language, and type.
Tweet timestamps. Figure 2(a) plots the hourly sam-
pling rates. CYBERBULLYING dataset has the highest sam-
pling rate (ρt=78%) at UTC-8. The lowest sampling rate
(ρt=41%) occurs at UTC-15, about half of the highest value.
YOUTUBE dataset is almost complete (ρt=100%) apart
from UTC-8 to UTC-17. The lowest sampling rate is 76% at
UTC-12. We posit that the hourly variation is related to the
overall tweeting dynamics and the rate limit threshold (i.e.,
50 tweets per second): higher tweet volumes yield lower
sampling rates. Figure 2(b) shows the sampling rate at the
millisecond level, which curiously exhibits a periodicity of
one second. In CYBERBULLYING dataset, the sampling rate
peaks at millisecond 657 (ρt=100%) and drops monoton-
ically till millisecond 550 (ρt=6%) before bouncing back.
YOUTUBE dataset follows a similar trend with the lowest
value (ρt=76%) at millisecond 615. This artifact leaves the
sample set vulnerable to automation tools. Users can deliber-
ately schedule tweet posting time within the high sampling
rate period for inflating their representativeness, or within
the low sampling rate period for masking their content in
the public API. The minutely and secondly sampling rates
are included in Section D of (Appendix 2020).

Figure 3: Hourly tweet volumes in YOUTUBE dataset. (a)
Japanese+Korean; (b) other languages. black line: temporal
mean tweet volumes; color shades: 95% confidence interval.

CYBERBULLYING YOUTUBE
complete sample complete sample

%root tweets 14.28% 14.26% 25.90% 26.19%
%retweets 64.40% 64.80% 62.92% 62.51%

%quotes 7.37% 7.18% 3.44% 3.40%
%replies 13.94% 13.76% 7.74% 7.90%

Table 2: The ratios of the 4 tweet types (root tweet, retweet,
quote, and reply) in the complete and the sample sets.

Tweet languages. Some languages are mostly used within
one particular timezone, e.g., Japanese and Korean4. The
temporal tweet volumes for these languages are related to
the daily activity patterns in the corresponding countries. We
break down the hourly tweet volumes of YOUTUBE dataset
into Japanese+Korean and other languages. The results are
shown in Figure 3. Altogether, Japanese and Korean account
for 31.4% tweets mentioning YouTube URLs. The temporal
variations are visually different – 48.3% of Japanese and Ko-
rean tweets are posted in the evening of local time (JST-6pm
to 12am), while tweets in other languages disperse more
evenly. Because of the high volume of tweets in this period,
sampling rates within UTC-9 to UTC-15 are lower (see Fig-
ure 2(a)). Consequently, “ja+ko” tweets are less likely to be
observed (89.0% in average, 80.9% between JST-6pm and
12am) than others (92.9% in average).
Tweet types. Twitter allows the creation of 4 types of tweets.
The users create a root tweet when they post new con-
tent from their home timelines. The other 3 types are in-
teractions with existing tweets: retweets (when users click
on the “Retweet” button); quotes (when users click on
the “Retweet with comment” button); replies (when users
click on the “Reply” button). The relative ratios of differ-
ent types of tweets are distinct for the two datasets (see
Table 2). CYBERBULLYING has higher ratios of retweets,
quotes, and replies than YOUTUBE, implying more interac-
tions among users. However, the ratios of different types are
very similar in the sampled versions of both datasets (max
deviation=0.41%, retweets in YOUTUBE dataset). We con-
clude that Twitter data sampling is not biased towards any
tweet type.

4Japanese Standard Time (JST) and Korean Standard Time
(KST) are the same.
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complete sample %miss est. %miss

#users 19,802,506 14,649,558 26.02% 26.12%
#hashtags 1,166,483 880,096 24.55% 24.31%

#URLs 467,941 283,729 39.37% 38.99%

Table 3: Statistics of entities in CYBERBULLYING dataset,
mean sampling rate ρ̄=52.72%.

Figure 4: The frequency distributions of (a) user posting and
(b) hashtag. The x-axis starts at 0 rather than 1, as the sample
set and uniform random sample both have missing entities.

5 Impacts on Twitter entities

In this section, we study how the data sampling affects the
observed frequency and relative ranking of Twitter entities,
e.g., users, hashtags, and URLs. We first use a Bernoulli pro-
cess to model the Twitter data sampling (Section 5.1). Next,
we show how the entity statistics for one set (e.g., the com-
plete) can be estimated using the other set (the sample, Sec-
tion 5.2). Finally, we measure the distortions introduced in
entity ranking by sampling and how to correct them (Sec-
tion 5.3). The basic statistics of entities are listed in Table 3.
The analyses in this section, Section 6, and Section 7, are
done with CYBERBULLYING dataset since its sampling ef-
fects are more prominent.

5.1 Twitter sampling as a Bernoulli process

We examine how well we can use a Bernoulli process to
approximate the Twitter sampling process. Assuming that
tweets are sampled identically and independently, the Twit-
ter sampling can be be seen as a simple Bernoulli process
with the mean sampling rate ρ̄. We empirically validate this
assumption by plotting the complementary cumulative den-
sity functions (CCDFs) of user posting frequency (the num-
ber of times a user posts) and hashtag frequency (the number
of times a hashtag appears) in Figure 4. The black and blue
solid lines respectively show the CCDFs of the complete
and the sample sets, while the black dashed line shows the
CCDF in a synthetic dataset constructed from the complete
set using a Bernoulli process with rate ρ̄=52.72%. Firstly,
we observe that the CCDF of the sample set is shifted left,
towards the lower frequency end. Visually, the distributions
for the synthetic (black dashed line) and for the observed
sample set (blue solid line) overlap each other. Furthermore,
following the practices in (Leskovec and Faloutsos 2006),
we measure the agreement between these distributions with
Kolmogorov-Smirnov D-statistic, which is defined as

D(G,G′) = maxx{|G(x)−G′(x)|} (1)

Figure 5: (a) D-statistic between empirical distribution and
binomial distribution for the number of tweets a user posts.
(b) The probability distribution of observing ns times in the
sample set when nc=20.

where G and G′ are the cumulative distribution functions
(CDFs) of two distributions. With a value between 0 and 1,
a smaller D-statistic implies more agreement between two
measured distributions. The results show high agreement be-
tween entity distributions in the synthetic and the observed
sample sets (0.0006 for user posting and 0.002 for hashtag).
This suggests that despite the empirical sampling rates not
being unique over time, a Bernoulli process of constant rate
can model the observed entity frequency distribution well5.

5.2 Entity frequency

We investigate whether the statistics on one set (complete
or sample) can be estimated using only the statistics of the
other set and the Bernoulli process model. We use nc to de-
note the frequency in the complete set, and ns the frequency
in the sample set (nc≥ns). More precisely, we ask these
three questions: What is the distribution of ns given nc=k?
What is the distribution of nc given ns=k? How many enti-
ties are missing altogether given the distribution of ns?
Modeling sample frequency from the complete set. For a
user who posts nc times in the complete set, their sample fre-
quency under the Bernoulli process follows a binomial dis-
tribution B(nc, ρ̄). Specifically, the probability of observing
the user ns times in the sample set is

Pr(ns|nc, ρ̄) =

(
nc

ns

)
ρ̄ns(1−ρ̄)nc−ns (2)

We compute the empirical distribution and binomial dis-
tribution for nc from 1 to 100. This covers more than 99%
users in our dataset. Figure 5(a) shows the D-statistic be-
tween two distributions as a function of complete frequency
nc. The binomial distribution models the empirical data bet-
ter when nc is smaller. Figure 5(b) illustrates an example
of nc=20. The binomial distribution closely approximates
the empirical distribution. Their mean sample frequencies
(dashed vertical lines) are also identical (10.54).
Inferring complete frequency from the sample set. Under
the Bernoulli process, for users who are observed ns times

5We do not choose the goodness of fit test (e.g., Kolmogorov-
Smirnov test) because our sample sizes are in the order of mil-
lions. And trivial effects can be found to be significant with very
large sample sizes. Instead we report the effect sizes (e.g., D-
statistic). Alternative distance metrics (e.g., Bhattacharyya distance
or Hellinger distance) yield qualitatively similar results.
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Figure 6: (a) D-statistic between empirical distribution and
negative binomial distribution for the number of tweets a
user posts. (b) The probability distribution of posting nc

times in the complete set when ns=13.

in the sample set, their complete frequencies follows a neg-
ative binomial distribution NB(ns, ρ̄). The negative bino-
mial distribution models the discrete probability distribution
of the number of Bernoulli trials before a predefined number
of successes occurs. In our context, given ns tweets (ns≥1)
are successfully sampled, the probability of having nc tweets
in the complete set is

Pr(nc|ns, ρ̄) =

(
nc−1

ns−1

)
ρ̄ns(1−ρ̄)nc−ns (3)

We compute the empirical distribution and negative bino-
mial distribution for ns from 1 to 100. Figure 6(a) shows
the D-statistic as a function of sample frequency ns. Nega-
tive binomial distributions models the best when the number
of observed tweets is between 9 and 15 (D-statistic<0.02).
Figure 6(b) shows both distributions for ns=13, where the
minimal D-statistic is reached. The negative binomial distri-
bution closely resembles the empirical distribution. Their es-
timated mean complete frequencies are very similar (23.60
vs. 23.72, shown as dashed vertical lines).
Estimating missing volume from the sample set. In data
collection pipelines, the obtained entities from the filtered
stream are sometimes used as seeds for the second step
crawling, such as constructing user timelines based on user
IDs (Wang, Callan, and Zheng 2015), or querying YouTube
statistics based on video URLs (Wu, Rizoiu, and Xie 2018).
However, some entities may be completely missing due to
Twitter sampling. We thus ask: can we estimate the total
number of missing entities given the entity frequency dis-
tribution of the sample set?

We formulate the problem as solving a matrix equation
with constraints. We use the symbol F to denote the entity
frequency vector. F[ns] represents the number of entities that
occurs ns times in the sample set. We want to estimate the
frequency vector F̂ of the complete set. For any ns, its sam-
ple frequency F[ns] satisfies

F[ns] =

∞∑
k=ns

Pr(ns|k, ρ̄) ∗ F̂[k] (4)

We constrain F̂ to be non-negative numbers and de-
crease monotonically since the frequency distribution is
usually heavy-tailed in practice (see Figure 4). We use
the frequency vector for ns∈[1, 100]. The above ma-
trix equation can be solved as a constrained optimiza-

tion task. For users who post nc times in the complete
set, the probability of their tweets completely missing is
Pr(ns=0;nc, ρ̄)=(1−ρ̄)nc . Altogether, the estimated miss-
ing volume is

∑∞
nc=1 (1−ρ̄)nc F̂[nc] for the whole dataset.

We show the estimated results in the rightmost column of
Table 3. The relative errors (MAPE) are smaller than 0.5%
for all entities. This suggests that the volume of missing enti-
ties can be accurately estimated if the frequency distribution
of the sample set is observed.
Summary. Although the empirical sample rates have clear
temporal variations, we show that we can use the mean sam-
pling rate to estimate some entity statistics, including the
frequency distribution and the missing volume. This reduces
the concerns on assuming the observed data stream is a result
of uniform random sampling (Joseph, Landwehr, and Carley
2014; Morstatter, Pfeffer, and Liu 2014; Pfeffer, Mayer, and
Morstatter 2018).

5.3 Entity ranking

Entity ranking is important for many social media studies.
One of the most common strategies in data filtering is to
keep entities that rank within the top x, e.g., most active
users or most mentioned hashtags (Morstatter et al. 2013;
González-Bailón et al. 2014). We measure how the Twit-
ter data sampling distorts entity ranking for the most ac-
tive users, and whether the ground-truth ranking in the com-
plete set can be inferred from the sample ranking. Note that
in this subsection, we allow the sampling rates to be time-
dependent ρt and user-dependent ρu – as the sampling with
a constant rate would preserve the ranking between the com-
plete and the sample sets. For the universal ranking (consid-
ering all entities), we use percentile to measure it and find
the higher ranked entities have smaller deviations (detailed
in Section E of (Appendix 2020)).
Detecting rank distortion. Figure 7(a) plots the most active
100 users in the sample set on the x-axis, and their ranks in
the complete set on the y-axis. Each circle is colored based
on the corresponding user sampling rate ρu. The diagonal
line indicates uniform random sampling, in which the two
sets of ranks should be preserved. The users above the di-
agonal line improve their ranks in the sample set, while the
ones below lose their positions. Figure 7(c) highlights a user
WeltRadio, who benefits the most from the sampling: it ranks
50th in the complete set, but it is boosted to 15th place in the
sample set. Comparing the complete tweet volume, its vol-
ume (4,529) is only 67% relative to the user who actually
ranks 15th in the complete set (6,728, user thirdbrainfx). We
also find that WeltRadio tweets mostly in the very high sam-
pling rate secondly period (millisecond 657 to 1,000), result-
ing in a high user sampling rate (ρu=79.1%). On the con-
trary, Figure 7(d) shows a user bensonbersk with decreased
rank in the sample set and low sampling rate (ρu=36.5%).
Examining his posting pattern, this user mainly tweets in the
low sampling rate hours (UTC-12 to 19).
Estimating true ranking from the sample set. Apart from
measuring the rank distortion between the complete and
the sample sets, we investigate the possibility of estimat-
ing the ground-truth ranks by using the observations from
the sample set. From the rate limit messages, we extract
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Figure 7: (a) Observed ranks in the sample set (x-axis) vs.
true ranks in the complete set (y-axis). (b) Estimated ranks
improve the agreement with the ground-truth ranks. (c) user
WeltRadio, observed/true/estimated ranks: 15/50/50. (d)
user bensonbersk, observed/true/estimated ranks: 66/42/52.
blue/red shades: sample tweet volume; grey shades: com-
plete tweet volume; black line: estimated tweet volume.

the temporal sampling rates that are associated with dif-
ferent timescales (hour, minute, second, and millisecond),
i.e., ρt(h,m, s,ms). Based on the negative binomial dis-
tribution, for a user who we observe ns times at times-
tamp κ=(h,m, s,ms), the expected volume is ns/ρt(κ).
We compute the estimated tweet volumes for all users and
select the most active 100 users. Figure 7(b) shows the es-
timated ranks on the x-axis and the true ranks on the y-
axis. We quantify the degree of agreement using Kendall’s τ ,
which computes the difference of concordant and discordant
pairs between two ranked lists. With value between 0 and 1,
a larger value implies more agreement. The Kendall’s τ is
improved from 0.7349 to 0.8485 with our estimated ranks.
The rank correction is important since it allows researchers
to mitigate the rank distortion without constructing a com-
plete data stream.

6 Impacts on networks

In this section, we measure the effects of data sampling
on two commonly studied networks on Twitter: the user-
hashtag bipartite graph, and the user-user retweet network.

6.1 User-hashtag bipartite graph

The bipartite graph maps the affiliation between two dis-
joint sets of entities. No two entities within the same set are
linked. Bipartite graphs have been used in many social appli-
cations, e.g., mining the relation between scholars and pub-
lished papers (Newman 2001), or between artists and con-
cert venues (Arakelyan et al. 2018). Here we construct the

complete sample ratio

#tweets with hashtags 24,539,003 13,149,980 53.59%
#users with hashtags 6,964,076 4,758,161 68.32%

avg. hashtags per user 9.23 7.29 78.97%
#hashtags 1,166,483 880,096 75.45%

avg. users per hashtags 55.09 39.40 71.51%

Table 4: Statistics of user-hashtag bipartite graph in CYBER-
BULLYING dataset. Ratio (rightmost column) compares the
value of the sample set against that of the complete set, mean
sampling rate ρ̄=52.72%.

Figure 8: The change of clusters from complete set to sample
set. Each cell denotes the volume (top number) and the ratio
(bottom percentage) of entities (users and hashtags) that tra-
verse from a complete cluster to a sample cluster. Clusters
are ordered to achieve maximal ratios along the diagonal.

user-hashtag bipartite graphs for both the complete and the
sample sets. This graph links users to their used hashtags.
Each edge has a weight – the number of tweets between its
associated user and hashtag. The basic statistics for the bi-
partite graphs are summarized in Table 4.

Clustering techniques are often used to detect commu-
nities in such bipartite graphs. We apply spectral cluster-
ing (Stella and Shi 2003) on the user-hashtag bipartite graph,
with the number of clusters set at 6. The resulted clusters are
summarized in Table 5, together with the most used 5 hash-
tags and a manually-assigned category. Apart from the cy-
berbullying keywords, there are significant amount of hash-
tags related to politics, live streaming, and Korean pop cul-
ture, which are considered as some of the most discussed
topics on Twitter. We further quantify how the clusters tra-
verse from the complete set to the sample set in Figure 8.
Three of the complete clusters (CC1, CC2, and CC3) are
maintained in the sample set (mapping to SC1, SC2, and
SC3 respectively), since more than half of the entities pre-
serve. The remaining three complete clusters disperse. In-
vestigating the statistics for the complete clusters, the pre-
served ones have a larger average weighted degree, meaning

721



co
m

pl
et

e
se

t
CC1 CC2 CC3 CC4 CC5 CC6

size 1,925,520 986,262 742,263 1,289,086 1,389,829 1,562,503
#users 1,606,450 939,288 602,845 1,080,359 1,227,127 1,390,276

#hashtags 319,070 46,974 139,418 208,727 162,702 172,227
avg. degree 8.03 7.64 22.19 3.46 4.74 4.07

category politics Korean pop cyberbullying Southeast Asia pop politics streaming

hashtags

brexit bts gay peckpalitchoke(th) kamleshtiwari ps4live
demdebate mamavote pussy peckpalitchoke standwithhongkong bigolive

afd blackpink sex vixx hongkong 10tv
cdnpoli pcas horny wemadeit bigil mixch.tv(ja)
elxn43 exo porn mayward lebanon twitch

sa
m

pl
e

se
t

SC1 SC2 SC3 SC4 SC5 SC6
size 1,880,247 823,232 551,219 822,436 549,589 805,852

#users 1,600,579 767,183 446,303 686,609 465,339 688,922
#hashtags 279,668 56,049 104,916 135,827 84,250 116,930

avg. degree 5.58 5.75 14.98 3.06 3.51 3.28
category politics Korean pop cyberbullying mixed mixed mixed

hashtags

ps4live bts gay mixch.tv(ja) bigolive Idolish7(ja)
10tv mamavote pussy bigil kamleshtiwari reunion

brexit blackpink sex peckpalitchoke(th) bb13 Idolish7(ja)
afd pcas horny reality about islam(hi) biggboss13 vixx

demdebate bts(ko) porn doki.live(ja) execution rajeh mahmoud(ar) vixx(ko)

Table 5: Statistics and the most used 5 hashtags in the 6 clusters of the user-hashtag bipartite graph. Three complete clusters
maintain their structure in the sample set (boldfaced). The language code within brackets is the original language for the
hashtag. ja: Japanese; ko: Korean; th: Thai; hi: Hinda; ar: Arabic.

Figure 9: Visualization of bow-tie structure in complete set.
The black number indicates the relative size of component
in the complete set, blue number indicates the relative size
in the sample set.

more tweets between the users and hashtags in these clus-
ters. Another notable observation is that albeit the entities
traverse to the sample clusters differently, all complete clus-
ters have similar missing rates (28% to 34%). It suggests
that Twitter data sampling impacts the community structure.
Denser structures are more resilient to sampling.

6.2 User-user retweet network

Retweet network describes the information sharing between
users. We build a user-user retweet network by following
the “@RT” relation.. Each node is a user, and each edge
is a directed link weighted by the number of retweets be-
tween two users. The user-user retweet network has been
extensively investigated in literature (Sadikov et al. 2011;
Morstatter et al. 2013; González-Bailón et al. 2014).

We choose to characterize the retweet network using the
bow-tie structure. Initially proposed to measure the World
Wide Web (Broder et al. 2000), the bow-tie structure was
also used to measure the QA community (Zhang, Acker-
man, and Adamic 2007) or YouTube video networks (Wu,
Rizoiu, and Xie 2019). The bow-tie structure characterizes
a network into 6 components: (a) the largest strongly con-
nected component (LSCC) as the central part; (b) the IN
component contains nodes pointing to LSCC but not reach-
able from LSCC; (c) the OUT component contains nodes
that can be reached by LSCC but not pointing back to LSCC;
(d) the Tubes component connects the IN and OUT compo-
nents; (e) the Tendrils component contains nodes pointing
from In component or pointing to OUT component; (f) the
Disconnected component includes nodes not in the above 5
components. Figure 9 visualizes the bow-tie structure of the
user-user retweet network, alongside with the relative size
for each component in the complete and sample sets. The
LSCC and IN components, which make up the majority part
of the bow-tie, reduce the most in both absolute size and
relative ratio due to sampling. OUT and Tubes are relatively
small in both complete and sample sets. Tendrils and discon-
nected components enlarge 39% and 32% after sampling.

Figure 10 shows the node flow of each components from
the complete set to the sample set. About a quarter of LSCC
component shift to the IN component. For the OUT, Tubes,
Tendrils, and Disconnected components, 20% to 31% nodes
move into the Tendrils component, resulting in a slight in-
crease of absolute size for Tendrils. Most notably, nodes
in the LSCC has a much smaller chance of missing (2.2%,
other components are with 19% to 38% missing rates).
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Figure 10: The change of bow-tie components from com-
plete set to sample set. Each cell denotes the volume (top)
and the ratio (bottom) of users that traverse from a compo-
nent in complete set to a component in sample set.

7 Impacts on retweet cascades

Information diffusion is perhaps the most studied social phe-
nomenon on Twitter. A retweet cascade consists of two
parts: a root tweet and its subsequent retweets. A num-
ber of models have been proposed for modeling and pre-
dicting retweet cascades (Zhao et al. 2015; Mishra, Rizoiu,
and Xie 2016; Martin et al. 2016). However, these usually
make the assumption of observing all the retweets in cas-
cades. In this section, we analyze the impacts of Twitter
sampling on retweet cascades and identify risks for existing
models. We first construct cascades without missing tweets
from the complete set. Next, we measure the sampling ef-
fects for some commonly used features in modeling retweet
cascades, e.g., inter-arrival time and potential reach.
Constructing complete cascades. When using the filtered
streaming API, if a root tweet is observed, the API should
return all its retweets. This is because the API also tracks the
keywords in the retweeted status field of a tweet (i.e.,
the root tweet), which allows us to construct a set of com-
plete cascades from the complete set. In the sample set, both
the root tweet and any of its retweets could be missing. If the
root tweet is missing, we miss the entire cascade. If some
retweets are missing, we observe a partial cascade. Table 6
lists the obtained cascades in the complete and the sample
sets. Notably, there are 3M cascades in the complete set, but
only 1.17M in the sample set (38.85%), out of which only
508k (16.88%) cascades are complete and their sizes are rel-
atively small (i.e., they don’t miss any retweet, max cascade
size: 23, mean size: 1.37). Prior literature (Zhao et al. 2015)
often concentrates on retweet cascades with more than 50
retweets. There are 99,952 such cascades in the complete
set, but only 29,577 in the sample set, out of which none is
complete.
Inter-arrival time. One line of work models the informa-
tion diffusion as point processes (Zhao et al. 2015; Mishra,

complete sample ratio

#cascades 3,008,572 1,168,896 38.9%
#cascades (≥50 retweets) 99,952 29,577 29.6%
avg. retweets per cascade 15.6 11.0 70.2%
med. inter-arrival time (s) 22.9 105.7 461.6%

Table 6: Statistics of cascades in CYBERBULLYING dataset.

Figure 11: CCDFs of (a) inter-arrival time and (b) relative
potential reach.

Rizoiu, and Xie 2016). These models use a memory ker-
nel as a function of the time gap Δt between two consecu-
tive events, which is also known as inter-arrival time. Fig-
ure 11(a) plots the CCDFs of inter-arrival times in the com-
plete and the sample sets. The distribution shifts right, to-
wards larger values. This is expected as the missing tweets
increase the time gap between two observed tweets. The me-
dian inter-arrival time is 22.9 seconds in the complete set
(black dashed line), meaning 50% retweets happen within
23 seconds from last retweet. After sampling, the median
increases almost 5-fold to 105.7 seconds (blue dashed line).
For research that uses tweet inter-arrival time, this presents
the risk of miss-calibrating models and of underestimating
the virality of the cascades.
Potential reach. Online influence is another well-studied
phenomenon on Twitter, and one of its proxies is the num-
ber of followers of a user. We define potential reach as the
total number of all observed retweeters’ followers. This ap-
proximates the size of the potential audience for the root
tweet. We compute the relative potential reach as the ratio
of potential reach in the sample cascade against that in the
complete cascade, and we plot the CCDFs in Figure 11(b).
When observing cascades for as much as 14 days, 50% of
the cascades have the relative potential reach below 0.544.
This indicates that when using the sampled Twitter data, re-
searchers can severely underestimate the size of the potential
audience. Another common setting is to perform early pre-
diction, i.e., after observing 10 minutes or 1 hour of each
retweet cascade. Figure 11(b) shows that the relative poten-
tial reach is more evenly distribution for shorter time win-
dows – 21.0% cascades have relative potential reach be-
low 0.25 and 33.7% cascades above 0.75 within 10 minutes
span – comparing to the observation over 14 days (5.1% and
11.3%, respectively).

8 Conclusion

This work presents a set of in-depth measurements on the ef-
fects of Twitter data sampling. We validate that Twitter rate
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limit messages closely approximate the volume of missing
tweets. Across different timescales (hour, minute, second,
millisecond), we find that the sampling rates have distinct
temporal variations at each scale. We show the effects of
sampling across different subjects (entities, networks, cas-
cades), which may in turn distort the results and interpre-
tations of measurement and modeling studies. For counting
statistics such as number of tweets per user and per hash-
tag, we find that the Bernoulli process with a uniform rate
is a reasonable approximation for Twitter data sampling. We
also show how to estimate ground-truth statistics in the com-
plete data by using only the sample data.
Limitations. These observations in this paper apply to cur-
rent Twitter APIs (as of 2020-03) and are subject to the
changes of Twitter’s proprietary sampling mechanisms. We
are aware of that Twitter plans to release a new set of APIs in
near future. Consistent with the current streaming APIs, the
rate limit threshold for the new APIs is also set to 50 tweets
per second (Twitter.com 2020b). Therefore, we believe the
observations of this paper will hold.
Practical implications and future work. This work calls
attention to the hidden biases in social media data. We have
shown effective methods for estimating ground-truth statis-
tics, which allows researchers to mitigate the risks in their
datasets without collecting the complete data. Our research
also provides methods and toolkits for collecting sampled
and complete data streams on Twitter. Our findings provide
foundations to many other research topics using sampled
data, such as community detection and information diffu-
sion algorithms that are robust to data subsampling. Future
works include measuring a larger set of activity and network
measurements under data sampling, generalizing the results
of this work to other social media platforms and data for-
mats, and quantifying the robustness of existing network and
diffusion models against data sampling.
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