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Abstract

Anecdotally, social connections made in university have life-
long impact. Yet knowledge of social networks formed in
college remains episodic, due in large part to the difficulty
and expense involved in collecting a suitable dataset for com-
prehensive analysis. To advance and systematize insight into
college social networks, we describe a dataset of the largest
online social network platform used by college students in
the United States. We combine de-identified and aggregated
Facebook data with College Scorecard data, campus-level in-
formation provided by U.S. Department of Education, to pro-
duce a dataset covering the 2008-2015 entry year cohorts for
1,159 U.S. colleges and universities, spanning 7.6 million stu-
dents. To perform the difficult task of comparing these net-
works of different sizes we develop a new methodology. We
compute features over sampled ego-graphs, train binary clas-
sifiers for every pair of graphs, and operationalize distance
between graphs as predictive accuracy. Social networks of
different year cohorts at the same school are structurally more
similar to one another than to cohorts at other schools. Net-
works from similar schools have similar structures, with the
public/private and graduation rate dimensions being the most
distinguishable. We also relate school types to specific out-
comes. For example, students at private schools have larger
networks that are more clustered and with higher homophily
by year. Our findings may help illuminate the role that col-
leges play in shaping social networks which partly persist
throughout people’s lives.

Introduction

In the United States, more than half of the adult population
has attended an institution of higher education (Ryan and
Bauman 2016). The time spent there is commonly perceived
to be formative for life. For one, colleges are thought of as
engines of social mobility (Chetty et al. 2017). For many,
college is the first exposure to a larger and more diverse so-
cial environment than where they grew up, which supports
the finding of work (Granovetter 1973). It is common for
people to find their partners or close friends during college
(Arum, Roksa, and Budig 2008), which contributes to so-
cial stratification in U.S. society more generally (Gerber and
Cheung 2008).
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Although college students are perhaps the most intensely
studied population by social scientists, it has proven hard
to base claims on comprehensive data of actual social net-
works at scale (Biancani and McFarland 2013). Probably
the most important reason for this is the complexity of the
data involved. Investigating the social networks even within
a single class is a daunting task (McFarland 2001). There
are many relevant actors and social contexts to consider,
and the data is expensive to collect, error prone, and often
changes rapidly. These difficulties have led to most studies
being focused on limited settings, and often using at most
few static snapshots of data. Data from online social net-
works helps address some of these limitations, especially
around scale and temporal dynamics. Because Facebook has
historically been popular with college students (the platform
having originally only been available on US college cam-
puses), it provides a natural context to study the social net-
works of college students for this period of time. However,
most prior work based on Facebook data has been limited to
a small number of mostly elite institutions and/or relied on
a single static snapshot of the social connections.

In this work, we present a population-level descriptive
overview of the structure of online social networks formed
in college, based on de-identified and aggregated data from
Facebook. Within this scope we study 7,660 distinct class
cohorts associated with 1,159 U.S. institutions of higher ed-
ucation who began their studies during the period 2008-
2015. Covered are a total of 7.6 million students, with 552.6
million edges between them. We connect the structural fea-
tures of the resulting school networks with data on school
characteristics as provided by the U.S. Department of Edu-
cation. This dataset allows us to characterize how the online
social networks of college students vary by the school they
attend, and to do so for a wide range of institution types.

We do so in two ways. First, we compute similarities be-
tween school graphs, and relate them to differences in school
types. Comparing graphs of different sizes is a hard problem
(Shalizi and Rinaldo 2013), so we employ a new method-
ology for doing so. We measure the distance between two
graphs of different sizes as the predictive accuracy of a bi-
nary classifier trained on features over sampled ego-graphs.
The structure of the resulting pairwise distance matrix is cor-
related with school characteristics, such as whether the insti-
tution is public or private, the graduation rate, and Greek life



participation. This indicates that students at different kinds
of schools form consistently different social networks.

Next, we look at how structural features of the social net-
works, like average degree, clustering and homophily, relate
to characteristics of schools. For example, we find that, ac-
counting for size, graduation rate, and admission rate, stu-
dents at private schools have a larger network than those at
similar public schools. Their networks are also more clus-
tered and more segregated by year. Similarly, students at
schools with high Greek participation have larger networks,
with more clustering, more mixing across years, and more
gender homophily. Students at Historically Black Colleges
and Universities make significantly more connections within
their college, while those at women’s-only institutions have
fewer, perhaps because cross-gender friendships occur out-
side of the college. We make the summary statistics of the
class graphs available to be downloaded for future study.

Our work provides the first population-level overview of
the online social networks of U.S. college students. We aim
to help fill the gap between the anecdotally important role
that college plays in people’s lives, and comprehensive data
to help study this important social setting. While our find-
ings are observational, they provide a first opportunity to
study a population of college networks, thus allowing us
to tease apart different aspects of network ecology. Since
heterogeneity in colleges gives rise to heterogeneity in net-
work structure, and network structure has been tied to so-
cial and economic outcomes, understanding the structure is
a step toward understanding how the college environment
helps shape an important part of people’s lives, their social
networks.

Related Work

Social networks in schools and their relation to outcomes
have long preoccupied education researchers and sociol-
ogists (Hanifan 1916; French and Mensh 1948; Moreno
1934). The role of the mechanisms of propinquity and ho-
mophily in network formation are often recurring themes.
Propinquity is the tendency for social networks to be spa-
tially organized, with proximity a key factor influencing the
likelihood of social tie formation. This is relevant with re-
spect to shared foci, like dormitories (Festinger, Back, and
Schachter 1950), classes (Kossinets and Watts 2006), and
extracurricular activities (Van Duijn et al. 2003). Homophily
is the tendency to associate with others who are similar
(McPherson, Smith-Lovin, and Cook 2001; Currarini, Jack-
son, and Pin 2009), and in educational settings can occur
along dimensions like race, gender, and socio-economic sta-
tus (Marmaros and Sacerdote 2006; Godley 2008; Wimmer
and Lewis 2010). However, as pointed out by Biancani and
McFarland (2013), the literature still lacks a comprehen-
sive descriptive account of university social networks. In
contrast, the comparative study of social networks in high
schools has advanced more thanks to the longitudinal “Add
Health” dataset (Harris and Udry 2008), which collected
data from over 90,000 individuals who were enrolled in mid-
dle school or high school in the US during the 1994-95 aca-
demic year. This includes research on homophily (Joyner
and Kao 2000), the propinquity of extra-curricular activi-
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ties (Schaefer et al. 2011), and the relation of various behav-
iors to network structure. One particular work takes a sim-
ilar approach to ours, in that they relate structural elements
of school networks to school covariates (McFarland et al.
2014).

Because of the natural connection between Facebook and
higher education, it has been used as a data source for mul-
tiple small- and medium-scale studies of college social net-
works. This work has highlighted the strong role of race ho-
mophily (Mayer and Puller 2008; Wimmer and Lewis 2010),
as well as homophily by high school (Traud et al. 2011)
and student residences (Traud, Mucha, and Porter 2012). By
measuring Facebook “likes” as a proxy for taste, researchers
have identified taste-similarity among friends (Lewis et al.
2008), and that this is more likely due to homophily rather
than social influence (Lewis, Gonzalez, and Kaufman 2012).
However, due to limited data availability, these works have
generally been focused on either a single institution or relied
on a single static snapshot of the social graphs. This has pre-
vented insight into patterns over time, as well as variation
across schools.

Data construction

In this section, we describe the construction of the college
networks dataset. We combined data from two sources: self-
reported demographic information and information from the
Facebook platform, and external information related to in-
stitutions of higher education in the United States. All data
were de-identified and analyzed in aggregate.

Self-reported demographic information about age,
hometown, and school attendance may optionally be
provided by users of the Facebook platform. For school at-
tendance, this minimally includes the name of the institution
of higher education attended by the individual. Information
about the class (graduation year), major (academic special-
ization) and location of the institution may also be provided.
Example self-reports are shown in Figure 1. Self-reports of
higher education attendance are assumed to be generally
trustworthy, if they can be resolved against a known U.S.
institution of higher education, and if a sufficient number
(n = 10) of one’s Facebook friends have likewise been
identified as attending the same institution. This preserves
75.4% of the population, on average, across schools. Since
our analysis relies in part on the place of residence before
going to college, we also use self-reported information
about one’s “hometown”. If no hometown was reported,
we use the city associated with the most recent high school
attended as a proxy. Of those that report attending a known
college, 98% also report a hometown or high school.

Facebook friendships represent our measure of social tie
formation. Ordinarily, it is difficult to make the assumption
that two individuals forming a new Facebook tie have just
met. Existing friends may “add” one another after being on
the platform for some time, potentially after seeing Face-
book’s “People you may know” recommendations. How-
ever, in the restricted context of college, this interpretation
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of a Facebook friendship as indicative of a newly formed
tie becomes more viable. As Figure 2 (left) shows, most
Facebook ties with fellow university students are formed
during the early days of one’s college career. Other spikes
happen at the beginning of each consecutive academic year
and term, which are likely driven by the influx of new stu-
dents into the school and meeting new people when classes
start. These patterns support the assumption that in the set-
ting U.S. higher education the formation of new Facebook
ties closely follow the creation of offline social ties.

Institutions of higher education in the United States are
enumerated in the College Scorecard dataset released by the
U.S. Department of Education.! We only consider public
and private non-profit institutions with an average entry co-
hort size of at least 100 students. Additionally, only institu-
tions which appeared in the College Scorecard for at least
4 years during the period 2008-2015 were considered. For
schools with some missing data, we imputed missing covari-
ates as the average of the available years. The focus of our
study is the social networks of undergraduate 4-year higher-
education establishments in the United States. Institutions
providing only graduate-level instruction (as of 2015) were
removed from our analysis. All school covariates, includ-
ing admission and graduation rates, school type and minor-
ity status, come from this data.? Additionally, we extract a
number of school characteristics from the IPEDS system
maintained by the NCES. Yearly class sizes and composition
come from the Fall Enrollment dataset.> We classify schools
as dormitory schools, if the school has the capacity to house

"Data  retrieved from the College Scorecard web-
site, https://ed-public-download.app.cloud.gov/downloads/
CollegeScorecard_Raw_Data.zip.

2School covariates were constructed as follows. Admit rate
comes from ADM_RATE. Graduation rates are based on the C150_4
field, which represents the share of students that graduate within 6
years after starting. The school type (public/private) comes from
the CONTROL field. Some schools are designated as primarily
serving minority populations, including historically Black colleges
and universities (HBCU), Hispanic-serving institutions (HST) and
women’s-only institutions (WOMENS). Schools with a religious af-
filiation are labeled with RELAFFIL.

SRetrieved  from  https://nces.ed.gov/ipeds/datacenter/data/
EF20**.zip
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Figure 2: Left: Distribution of the timing of new edges
(grouped by starting month) within the same college. Shown
is the average distribution over all schools, aligned by start
date. Most new ties are created right around the start of col-
lege, with additional spikes at the beginning of each new
school year and academic term. Right: Distribution of the
matching rate of individual classes. The matching rate is the
ratio between the number of people we assigned to a class,
and the number of people enrolled at the beginning of the
academic school year according to College Scorecard. The
x-axis is censored at 2.0. The vertical lines represent the
range of 0.5 and 1.25, to which we limit our analysis.

at least 50% of its students, according to the IC dataset,* and
we classify them as commuter schools otherwise.

Matching of Facebook pages and canonical entities pro-
vided in the College Scorecard dataset was done as fol-
lows. First, multiple Facebook pages judged to represent the
same institution are combined into a single “metapage”, for
which a representative page is chosen. The name of this rep-
resentative page was matched against names of canonical
higher education institutions provided in the College Score-
card dataset. Before matching, both sets of name strings
were normalized using a set of heuristics (e.g. text was
lower cased, “the university of” was rewritten as “univer-
sity of”, etc.) and some matches had to be manually fixed.?
Finally, we restricted our analysis to matched institutions
with at least 100 self-reported students, as well as institu-
tions where 50% or more of the self-reports come from U.S.
users. This procedure produces a total of 1,342 U.S. institu-
tions of higher education, which will get further reduced in
the next step.

Entry-year cohorts (or the “class of”) are an important
organizing structure for social life during college. Only 18%
of self-reports contain the graduating class so we assign peo-
ple to classes with the following approach. First, we as-
sume that students who report their class year are other-
wise similar to those who do not. To support this assump-
tion, we report summary statistics on the two populations
in Table 1. All statistics are computed at the time when the

*Retrieved
1C20%*.zip

>This procedure did not work for all institutions. For example
the College of Saint Benedict and Saint John’s University are con-
sidered as separate institutions by the College Scorecard dataset,
but as a single Facebook Page.

from  https://nces.ed.gov/ipeds/datacenter/data/



Statistic Year Provided  Year Imputed
Age (years) 19.2 (2.6) 18.2 (0.9)
Profile age (years) 2.96 (1.93) 2.87 (1.74)
Number of friends  624.4 (568.8) 589.3 (461.8)
Share male 0.414 (0.50) 0.443 (0.50)

Table 1: Comparison of summary statistics of the popu-
lation of students that provided a starting year and those
for whom a year was imputed. Reported are the means and
standard deviations across years. The statistics are computed
at the time when school started. Students who do not pro-
vide a starting year are on average one year younger, have
6% fewer Facebook friends, and are slightly more likely to
be male.

student started college, according to our year assignment.
Students who do not provide a starting year are on average
one year younger and are slightly more likely to be male.
Though their profile age does not differ much, they did have
6% fewer Facebook friends when they started college which
could be due to them being less active on Facebook at that
time. With this assumption, we treat the assignment process
as a multi-class classification problem, with the people who
report their year as labeled training examples, and those who
do not as instances to be labeled. We combine features per-
taining to the individual, the timing of their friending ac-
tivity, and of the institution. We include the institution type
as different institutions have different student populations.
For example, age is more strongly correlated with starting
class for smaller private schools, so excluding school type
would lead to a higher error rate for larger public schools.
For befriending, we include the month with the most new
within-school friendships, and the 5th percentile (in terms
of time) of new friendships forming. We hypothesize that
both of these features are correlated with starting to attend a
college.

We use the generally well-performing method of gradient
boosting machines, a variant of Random Forest. The target
classes include the entry-year classes starting in 2008-2015,
and years 2007 and 2016 as bookend classes to capture those
outside our range. The average year-specific cross-validated
training accuracy is 69.5%. We assign those who do not self-
report a class to the most likely predicted class, but only
when the predicted class probability for that individual is
larger than 0.75. We do not include individuals whom we
cannot assign to a specific class. For every class, we find
the week with the most new within-class friendships form-
ing and take that to be the start of the school year. We manu-
ally inspected these values for a number of schools, and they
were generally within one to two weeks of the actual start of
the academic school year, as taken from the institution’s of-
ficial website.

We construct a school-level statistic to measure the rate
of participation in Greek life. First, we identify Facebook
groups where at least 75% of the members are from the
same college. We label as “Greek groups” those groups with
Greek letters in the name, but excluding known religious
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and honor societies. Then we count the share of people in
each college that are a member of a Greek group, as a share
of those that are a member of any college-related group (to
make the measure less confounded by Facebook usage).

The IPEDS data provides for each entry year cohort, the
number of full-time, first-time undergraduates. We compare
this to the number of people in our dataset that we assigned
to that year, to get a match rate for each class. As can be seen
in Figure 2 (right), the majority of classes in our constructed
dataset are slightly smaller in size to those according to the
College Scorecard data. We consider a class in our study to
have a satisfactory match if we could assign between 0.5 and
1.25 times the average entry cohort size (as derived from the
College Scorecard dataset). Classes that fall outside of this
range are excluded from our analysis.® After this step, 7,660
entry-year classes remain from a total of 1,159 schools, as
for some schools there are no classes for which the matching
rate is between 0.5 and 1.25.

Given that our sample is biased towards people who use
Facebook, one may question how representative the people
in our dataset are, when compared to the actual student pop-
ulations. Both with respect to the gender of students and
whether students are predominantly from within-state, the
classes in our data have a similar composition as those as
reported by IPEDS.”

Data description

The resulting dataset contains 232.5 million within-cohort
Facebook friendship ties between 7.6 million users assigned
to 7,660 entry year cohorts in 1,159 U.S. institutions of
higher education. A further 320.1 million edges occur be-
tween cohorts but at the same institution. 756.5 million
edges connect users assigned to different institutions in our
study. Of the 1,159 institutions in our sample, according
to the Carnegie Classification®, 64 are Historically Black
Colleges and Universities, 31 are women’s-only institutions,
125 are classified as Hispanic-Serving Institutions, and 221
are undergraduate-only institutions.

The 1,159 school graphs vary by size and density, both
of which have a mechanical effect on other structural mea-
sures. We plot various aggregate network statistics as com-
pared to the size of the school graph in Figure 3. Networks
are logarithmically binned by network size. Note that this
comparison is similar to the one done for the FB100 data
(Jacobs et al. 2015). People in larger school graphs have a
higher average degree. However, this trend stops at an aver-
age degree of 150, which is in line with prior observations
of there being a soft upper limit to the size of social net-
works (Hill and Dunbar 2003). Though not shown, the de-

®As a robustness check, we also performed the analyses in this
paper using alternative confidence thresholds. Doing so did not
meaningfully change any results.

"Actual class compositions computed based on the Fall-
Enrollment reports as released by the IPEDS. For share males, the
correlation coefficient is p = 0.947. For share in-state, the correla-
tion coefficient is p = 0.843.

8(Indiana University Center for Postsecondary Research 2015),
retrieved from http://carnegieclassifications.iu.edu
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Figure 3: Structural features of the school graphs, as com-
pared to graph size. Graphs are binned logarithmically by
the number of nodes in the graph, and for each group we
computed the median of the statistic. Clockwise from the
top-left: degree, local clustering coefficient, average short-
est path length, and edge density. Average degree increases
by graph size, up to about 150. Edge density and cluster-
ing decrease by graph size. Average path length increases
by graph size.

gree distributions are not as skewed as is commonly found
in social networks. Since degree grows slower than graph
size, edge density also decreases by graph size. Similarly the
average local clustering coefficient also decreases in larger
networks, as your friends are less likely to be friends. This is
true, even when accounting for the decreased density. This
relationship between network size and clustering coefficient
has been identified in other empirical social networks as
well (Leskovec et al. 2008; Leskovec and Horvitz 2008;
Jacobs et al. 2015). The average shortest path length in-
creases approximately by O(log n) with the size of the graph
n, as is expected from random graph theory.

Schools also display significant heterogeneity with re-
spect to how much mixing there is between students of dif-
ferent entry-year classes. For example, students in a specific
small private liberal-arts college have a higher proportion
of within-class friendships than students at a similarly sized
public school. This is shown visually in Figure 4, where
both schools’ networks are presented with a Fruchterman—
Reingold projection (Fruchterman and Reingold 1991) of
the connections. Both schools have a similar structure where
adjacent class years are placed next to each other, but the
students at the private school are more clearly separated by
year. More formally, the modularity score () (Newman and
Girvan 2004) for the labeled partition by year is 0.309 for
the private school and 0.133 for for the public school.
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Small Public School

Small Private School

Figure 4: The school networks of a small private school and
a similarly sized public one. Only nodes are shown, colored
by each individual’s entry-year class. The nodes are posi-
tioned by the Fruchterman—Reingold projection of their con-
nections. The classes of the public school are more mixed
than the ones of the private one.

Graph similarity as separability
We want to construct a more formal way to represent struc-
tural similarities between networks. In brief, we look at how
hard it is to tell apart sampled ego-graphs from two schools.
To do so, we train a random forest classifier on each pair of
schools, and interpret this pairwise classification accuracy as
distance. Now we go over these steps in detail.

We represent each network by samples of its ego-graphs.
For each entry-year class graph, we construct n = 250
ego-graphs by sampling (with replacement) a seed node
each time and taking its direct (1-hop) neighbors (within
the school) and the edges between them. We only consider
edges (and thus neighbors) that existed 4 years after the start
of college, so the ego-graph approximates what a student’s
immediate social network looked like when they left college.
This removes the bias where individuals from earlier years
have had more time to grow their Facebook networks dur-
ing college and after. However, it is a coarse approximation,
since less than half of U.S. college students actually gradu-
ate within four years.® For each ego-graph we construct the
following features:

e size — the number of nodes

e the mean and variance of the degree distribution

e edge density — the share of node pairs that are connected
e share of nodes from the same year as the ego node

e degree assortivity (Newman 2003)

e algebraic connectivity (Fiedler 1973)

e average clustering coefficient (Watts and Strogatz 1998)

e modularity of the modularity-maximizing partition
(Clauset, Newman, and Moore 2004)

e cigenvector and betweenness centralization (Freeman
1978)

e number of connected components of k-Cores (Bollobds
2001) and k-Brace (Ugander et al. 2012) for k € {8, 16}

“NCES Digest of Education Statistics 2017, Table 326.10.



The ego-graphs represent samples from the network that
the seed node was drawn from. This approach is similar in
spirit to the NetSimile framework (Berlingerio et al. 2012),
in that we characterize graphs by computing statistics over
sampled subgraphs. However, we use a different set of statis-
tics, relevant to our particular domain, and rather than aggre-
gating them, we use them as features in a classifier. We mea-
sure similarity between two graphs as the difficulty of telling
which one produced what sample. If a classifier cannot sep-
arate two groups of samples, so if the predictive accuracy
is low, we think of the graphs that produced them as simi-
lar. This way of measuring similarity with a prediction task
has some precedents in social science, see for example work
by Gentzkow, Shapiro and Toddy (2016) and Bertrand and
Kamenica (2018).

For each pair of classes (starting cohorts), as well as for
each pair of schools, we train a separate random forest model
where the class/school is the binary outcome label, the ego-
graphs are the training examples, and the listed structural
characteristics are the features. The features thus play a dif-
ferent role to distinguish each pair of classes. Because fea-
tures may be correlated with one another, the datasets gen-
erated for each school pair may suffer from the problem of
multicollinearity. This is an important reason for our choice
of a random forest, a non-linear model which typically does
well in settings that contain features of varying quality and
with potentially redundant information. One potential limi-
tation of this approach is that the distance measure is sensi-
tive to the most characteristic statistic. If one feature is sig-
nificantly different, but the others are all similar, then the
two graphs will seem very distinguishable, even though they
could otherwise be considered very similar. This could be
an issue with size, for example, as we know that students
at larger schools have a higher average degree and share
other characteristics (Figure 3). To investigate whether this
happens, we plot the average feature importance for each
feature, over all trained models, in Figure 5. Edge density,
which is correlated with graph size, is indeed among the
most important features, but not uniquely so. Eigenvector
centralization and degree assortivity are almost as important
on average. Clustering, which is more correlated with size
than density, is close to the bottom of the list.

For every pair of graphs (schools or classes), the cross-
validated area under the curve (AUC) of the model for that
pair is then taken to be a measure of distance between the
graphs.'? If the AUC is low (close to 0.5), then the two
graphs cannot be easily distinguished, and are thus consid-
ered to be similar. If the AUC is high (close to 1.0), then the
two graphs are very easy to distinguish, and thus different.

Graph similarity by school covariates

A sample of the resulting pairwise AUC values are displayed
in Figure 6. We sampled five schools from four groups that
cross the public/private and low/high admit rate categories
(indicated by color) for a total of 20 schools. For each com-

1"Note that our method is technically not a distance function, as
it is not symmetric due to the randomness involved in making the
cross-validation sets.
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Figure 5: Aggregate feature importance for the pairwise ego-
graph classifiers, sorted by the median. The features that are
most often the most distinguishing are eigenvector central-
ization, degree assortativity, and algebraic connectivity.

bination of schools, we plot the AUC for the class graph
of 2011, and sort them by by hierarchical clustering. The
schools are mostly organized by similar types, with some ex-
ceptions. The University of Virginia (UVA) is more similar
to the selective private schools. Ego-graphs from George-
town University and Tufts University are very hard to dis-
tinguish. Bowdoin College has the most uniquely structured
ego-graphs. High-admit private schools have a lower inter-
nal similarity than the other groupings, potentially due to
more heterogeneity in this group.

As a sanity check to confirm the difference between
classes within and across schools, we plot the population-
wide average AUC’s of classes from both groups in Figure
7. As expected, classes from the same school (left panel)
are on average harder to distinguish than those taken from
different schools (right panel). This is unsurprising, as sam-
pled ego-graphs from the same school are going to partially
overlap and will thus share structural similarities. Within the
same school, classes from years that are closer together are
harder to distinguish than those further away in time, sug-
gesting that network characteristics of schools graphs drift
over time. This pattern is not evident in the right panel. The
mechanism behind this finding is unclear, however. It may
be that we are witnessing a slow change in social behavior
across successive cohorts of students at the same institution.
Alternatively, cohorts many years apart may use the Face-
book platform in different ways, given the evolution of the
website’s design over time.

Next, we look at the average distance between schools,
rather than classes. Now, we bin together all ego-graphs
taken from the same school, and compute the average cross-
validated test AUC for every pair of schools. We project
this pairwise distance matrix to two dimensions with t-
SNE ' (Maaten and Hinton 2008). The resulting projection
is shown Figure 9, highlighting different covariates of the
individual schools.

A few patterns are immediately apparent. The schools are
distributed by class size on the horizontal axis. The verti-

""'We use the Rt sne R library, with perplexity = 40, § = 0.2,
although the visual result is similar under different parameters.
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Figure 6: Cross-validated AUC of classifiers separating the
classes of 2011 for a sample of colleges. A high AUC indi-
cates that the graphs are easier to distinguish, and less sim-
ilar. The schools are grouped into four types: public/low-
admit (red), public/high-admit (blue), private/low-admit
(green), and private/high-admit (purple). The rows and
columns are identical, and sorted by hierarchical clustering
(complete linkage). The clustering mostly puts school types
together, with some exceptions.

cal axis similarly corresponds to selectivity, as displayed by
the distribution of schools by graduation rate and admit rate
(not shown). It makes sense that these are the major organiz-
ing factors. Students at bigger schools have a higher degree
(Figure 3), and a number of other network statistics move ac-
cordingly. Similarly, selectivity is correlated with graduation
rates, which affect the number of available people to connect
to. The schools with a low graduation rate are separated into
two areas, which corresponds to there being fewer middle-
sized schools with a low graduation rate. The public/private
and commuter/dormitory distinctions are both clearly visible
as diagonal cuts. There are some exceptions to this separa-
tion, such as Northeastern being placed among mostly pub-
lic schools and St. Mary’s college being placed in the private
school region. The commuter/dormitory distinction is not as
clear as the public/private one, which is likely related to it
being a discretization of the underlying continuous variable
of residential capacity. The curve on the top left contains
mostly small liberal arts schools and the right-most line of
schools are all big state schools. There are pockets of schools
with a higher share of Greek life participation, mostly in the
very large schools and schools with a very high graduation
rate, but overall they are not highly clustered in this projec-
tion. Minority-serving institutions are also not particularly
clustered, except for HSIs.

Finally, to formalize the relationship between differences
in network structure and differences in school types, we ran
a linear regression with AUC as the dependent variable, and
differences between schools as the covariates. For discrete
variables, such as whether the school is private, a commuter
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Figure 7: Average cross-validated AUC of classifiers sep-
arating entry-year classes. A high AUC indicates that the
graphs are easier to distinguish, and less similar. Classes
from the same school are harder to distinguish than those
from different schools. Within the same school, classes that
are closer together in time are harder to distinguish than
those further in time.
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Figure 8: Coefficients of AUC regression. Data points are
individual random forest models, the AUC is the dependent
variable, and the differences between the two schools are the
independents variables. The intercept of the model is 0.5.
The standard errors are clustered by school.

school, and a minority-serving institution, we construct a
binary variable set to 1 when the schools have a different
value. For continuous variables, we take the absolute differ-
ence between the schools. The coefficients of the resulting fit
are shown in Figure 8, with the standard errors clustered by
schools to account for the repeated involvement of the same
school across samples. The raw difference in AUC between
same-school classes (AUC 0.5) and classes from different
schools is 30%. Accounting for the other school covariates,
the baseline difference between these two groups goes to
10.5%. Size and the school type are the next biggest dis-
tinctive factors. The average difference between public and
private schools is 4.1%, as is the difference between schools
that differ an order of magnitude in log-scale. Commuter and
dormitory schools have a 4.7% remaining difference. The
differences in other covariates are smaller, but still have a
significant effect on how similar the networks are. An in-
teresting case is the difference between HBCU’s and other
schools — according to our model, the difference between
these two is negative, which implies that for these schools
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being different means that they are more similar in terms of
network structure. The R? for this fit is relatively high at
0.480 (0.707 when adding school fixed effects), which indi-
cates that school characteristics indeed capture a substantial
part of the variance in predictive accuracy.

Modeling the network structures

So far we have established that students attending similar
kinds of schools have consistently similar social networks
on Facebook. In this last section, we directly relate school
characteristics to structural outcomes. We illustrate the need
for this with an example. If one relates the average degree of
a student to some school characteristics, the resulting struc-
tural deviations are well-explained by the covariates that are
left out. We show this in Figure 10, where we ran a regres-
sion on the class graphs of 2011, where we relate degree to
school covariates (excluding whether the school is a HBCU
or women’s college) and plot the predicted versus the ob-
served degree. HBCU’s tend to have higher, and women’s
colleges tend to have lower degree, perhaps because cross-
gender friendships occur outside of the college.

Next we formalize this insight through a regression model
where we include all school covariates we have used to
far. For each entry year class, we take the state of the net-
work four years after school started, to capture the net-
work structure when people leave their college due to finish-
ing their undergraduate studies. This method is admittedly
based on an approximation, given that people frequently
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leave their college earlier (due to dropping out, moving,
or transferring), or later (due taking more time to finish,
staying for graduate school, or post-undergraduate employ-
ment). We compute the following structural features over the
year graphs: log average degree, the Gini coefficient of the
degree, the average clustering coefficient, and homophily by
year, gender, and hometown. We chose these outcomes as
they are likely to actually affect an individual’s experience.
For example, leaving school with more and more diverse
social connections may facilitate the finding of work (Gra-
novetter 1973), whereas a higher inequality in social struc-
ture may in turn represent an inequality of opportunity.

We are interested in characterizing the class graphs, but
the nodes are embedded in larger school graphs. Therefore
we adjust the network statistics as averages over the nodes
in the class graph, but compute them over the whole school
graph. We then run a linear regression model with each
structural outcome as the dependent variable, and the school
characteristics as covariates. For all but the average degree
outcome, we add degree as a covariate (but omit it from the
results) to account for the effect that degree has on the other
structural measures. For example, the clustering coefficient
is always lower in networks with a lower average degree.
The units of analysis are social networks by class (entry year
cohorts), and standard errors are clustered by school. The re-
sults are presented in Table 2. Note that the sample size of
7,168 is lower than the 7,660 classes we mentioned before.
This is due to missing values in the school covariates as pro-
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Figure 10: Actual average degree by school, as compared
to the predicted average degree based on school character-
istics. The average degree of the 2011 entering classes at
colleges is only partly explained by school size, admit rate,
public/private, etc. Students at Historically Black Colleges
and Universities tend to have higher than predicted average
degree based on other school attributes, while women’s col-
leges have lower degree.

vided in the Scorecard data, most prominently the admission
rate is missing for some schools.'?

Degree. First, we look at the (log transformed) average de-
gree of people from the entry year cohort, taking into con-
sideration all edges within the school graph. This can be in-
terpreted as a measure of popularity or gregariousness. As
can be seen in the first column of Table 2, there are a num-
ber of clear patterns. The first three effects are likely due to
availability. Students at schools with larger classes have a
higher average degree. However, as was shown in Figure 3,
this relationship stabilizes for large classes, hence the log-
transformation. Students at schools with lower graduation
rates on average have a lower degree, perhaps because of less
time during which friendships can form for those students
who leave early. Commuter schools have a lower average de-
gree within, possibly because their students spend less time
with each other, and them having more active friends outside
of schools. Accounting for this, private schools, HBCU’s,
and schools with more Greek participation have higher av-
erage degrees. This suggests that attending an institution of
these types may lead to greater social connectedness online.
Women’s-only institutions have a significantly lower degree,
perhaps because all opposite-gender connections are made
out-of-college at a gender-segregated institution, whereas at
least some opposite-gender connections will be created be-
tween students at a co-educational institution.

Next we look at inequality in degree, using the Gini co-
efficient as computed over the degree distribution. Schools
with similar average degrees can nevertheless have very dif-
ferent variances. For example, students at Haverford College

2The dataset of cohort-level aggregated summary statistics is
available for academic use. Applications for use (a 1-page research
proposal) should be sent to college_networks@£fb.com.
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log Gini  Avg.  Year Gender Town
Degree Degree Clust. H. H. H.
Classsize .078" .029* —.078* .033* .016*  .014*
(log) (.014) (.002) (.002) (.003) (.005) (.001)
Graduation 1.763* —.168* —.041* 313" .154* —.043*
Rate (.073) (.008) (.010) (.017) (.034) (.006)
Admit 025 .005 .003 —.001 .055 016"
Rate (.051) (.005) (.006) (.010) (.017) (.004)
Commuter —.287* .027* —-.015* —.013 —-.009 .005*
(.021) (.002) (.003) (.004) (.008) (.001)
Private 182011 .021* 059 —.0003 —.023*
(.031) (.003) (.004) (.007) (.011) (.002)
Religious ~ .028  .003  .002 —.013 .037* —.0003
(.020) (.002) (.003) (.005) (.010) (.001)
Womens  —.352* .004 .004 —.014 .800* —.00004
(.057) (.007) (.010) (.012) (.065) (.002)
HBCU 315 .002 021 118 —.137  .003
(.057) (.007) (.008) (.017) (.043) (.004)
Greek 723 .079*  .062F  —.141% 138*  —.011
particip. ~ (.063) (.008) (.008) (.013) (.024) (.004)
log Degree —.042% .014* —.071* —.007  .003
(.003) (.003) (.003) (.010) (.002)
Constant ~ 2.977* .498* .760* 341" —.185* —.060*
(.101) (.014) (.018) (.028) (.047) (.010)
N 7,168 7,168 7,066 7,168 7,168 7,168
Adj. R? 643 785 786 285 557 573
Note: *p<0.001

Table 2: Linear regression relating post-college network
features to school covariates. We fit a separate model with
each network statistic as the dependent variable, including
(log) average degree, Gini degree, average clustering, and
Newman homophily by year, gender, and hometown . The
units of analysis are social networks by class (entry year co-
horts), and standard errors are clustered by school. Network
features are computed four years after the estimated start of
school. Per class, the network features are computed for the
people in that class, but considering the full school graph at
that time (see text). We account for (log) average degree in
the models where it is not the outcome.

and University of Tennessee both have on average about 200
Facebook friends from their school when they leave college,
but the Gini coefficient of the former (0.28) is just over half
that of the latter (0.48). Bigger schools, commuter schools,
and schools with more Greek participation have a larger
Gini coefficient on average, and thus more inequality in de-
gree. Schools with a higher graduation rate have more de-
gree equality. However, from this model it is not clear what
mechanisms drive these differences.

Clustering. A distinguishing feature of social networks is
the extent to which edges are clustered (Watts and Stro-
gatz 1998). We measure clustering using the standard av-
erage clustering coefficient of nodes of a certain class, but
taking into account edges to and between all nodes in the
school graph. The intercept indicates that the population-
wide average of the clustering coefficient of the class graphs
is very high. Schools with bigger classes have lower clus-
tering, even when accounting for average degree. Private



schools and schools with more Greek life have more clus-
tering, as these kinds of schools likely have more on campus
meeting points. For the three non-homophily outcomes, the
R? values are quite high, again indicating that school char-
acteristics explain a lot of the variance in the outcomes.

Homophily. Social networks are often characterized by
homophily, the tendency to connect to similar others
(McPherson, Smith-Lovin, and Cook 2001). We measure
homophily across three dimensions: year, gender, and home-
town. For gender and hometown homophily, we use a ver-
sion of Newman’s assortativity coefficient H (Newman
2003). However, we again only consider edges involving at
least one person from a specific class.!® This measure is de-
fined between -1 (only connect with others that are different)
and 1. In practice, the actual range of the measure depends
on the relative size and degree distributions of the subgroups,
which makes it hard to compare between different networks
(Cinelli et al. 2019). Luckily for our use case, most com-
pared groups are of similar size, except for some bigger
home towns and some schools with highly skewed gender
ratios. Our adjusted version of A does not work for year
homophily, as the out-group share in our embedded class
graphs would always be 0. Therefore, for year homophily
we simply count the share of edges between people of the
same entry year, which is defined between 0 and 1.

Year homophily is high across the board, and is highest
in bigger schools with a higher graduation rate, as well as
in private schools and HBCU’s. Greek life is correlated with
more mixing across years, which is intuitive as fraternities
and sororities by their very structure offer opportunities for
cross-cohort mixing. Commuter schools also see more mix-
ing across years, which could be because of a more flexible
progression throughout school, more pre-college ties, or less
dorm life. In contrast to year homophily, gender homophily
is relatively low. Schools with more Greek life participa-
tion have a relatively high degree of gender homophily, pre-
sumably as there is more same-gender contact. Finally, ho-
mophily by hometown is also low, an outcome of the large
cardinality of the set of potential hometowns. Hometown ho-
mophily is, however, slightly higher in bigger and less selec-
tive schools, likely a result of larger groups of students from
some hometowns being found at the same institution in these
categories.

Limitations and future work

We hope this paper helps advance social scientists’ under-
standing of the network structure of U.S. colleges and uni-
versities by presenting a comprehensive overview of these
networks’ characteristics. At the same time, there are im-
portant limitations that must be acknowledged in discussing

BFor example, in our measure the term e;; from the formula
2
H — ZL e”’_Zi %
=) 0t
people in a class, where both connected nodes are in group %, nor-
malized by the total number of edges containing people from that
class.

refers to the number of edges coming from
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this study’s contributions. For one, we do not model the for-
mation of social ties, which means we can only speculate
on the underlying mechanisms behind the patterns we ob-
serve. Furthermore, there are many student characteristics
that have been shown to be instrumental in network forma-
tion in schools, including classes that they took, their ethnic-
ity, socio-economic status, and, where relevant, their dormi-
tory, which are not studied in this paper.

Our analysis is likely affected by the need to approximate,
for those individuals who did not specify their years in col-
lege, when they started and stopped attending. Both the ac-
curacy of our year assignment procedure and the four-year
graduation rate, are correlated with college characteristics,
which affects how we construct our network data.

More generally, all our analysis applies to social net-
works on Facebook only. While some have argued that Face-
book networks mirror offline networks, at least structurally
(Jones et al. 2013; Dunbar et al. 2015; Arnaboldi et al. 2012;
Bailey et al. 2018), others have observed that the amount
of activity on Facebook is correlated with the number of
Facebook friends (Lewis et al. 2008; Viswanath et al. 2009),
which would introduce a selection bias. While we were un-
able to find public statistics on the usage of Facebook for
college-age people for the time frame of our analysis, a sur-
vey in 2014 found that 87% of U.S. people between the ages
of 18 and 29 used Facebook (Duggan et al. 2015).

The networks we presented in this paper are snapshots
at the end of college. However, future work may examine
the chronological sequence of edges forming and dissolving
(Overgoor, Benson, and Ugander 2019). Or it might examine
the role of pre-college ties in college choice for the forma-
tion of college ties. One could also study the properties of
ties originating in college after college ends and potentially
compare structural measures to known measures of social
mobility, like the ones prepared by (Chetty et al. 2017).

Finally, all analysis in this work is observational and we
do not identify any causal effects. We leave the mechanisms
behind any correlations, and the extent to which they are
confounded by other factors, like Facebook activity, for fu-
ture work.

Conclusion

Despite the afore-mentioned limitations, we find it encour-
aging that it is currently possible to provide a descriptive
overview of a class of social networks, as we attempt to
do in this study. Universities are a major locus of social in-
teraction, with ties formed in college having reverberations
well beyond the campus and into the broader structures of a
society. Despite their evident importance, logistical reasons
have prevented the comprehensive study of college friend-
ship networks. A particular gap we have sought to address
concerns limited knowledge of the network diversity of U.S.
higher-education institutions, as well as a lack of insight into
variation across years.

In this paper we present a first large-scale analysis of on-
line social networks of U.S. college students across a multi-
year timespan. And while some of the conclusions must be
tentative, they are also intriguing. We found that, while so-
cial networks of different classes within the same institution



tend to be structurally similar, same-year networks from dif-
ferent institutions tend to be differentiable. We also showed
that these structural differences between social networks
formed at different colleges can in part be explained by the
attributes of the schools themselves. Larger and public in-
stitutions are associated with a smaller number of Facebook
friends attending the same college. Graduation rate also cor-
relates with the density of networks. If students are likely to
stay and graduate within four years at the school, they are
also likely to add more Facebook friends during that period.
We also identified a number of structural differences in spe-
cific network attributes across school types.

It has been close to thirty years since James Coleman
(1990) famously identified the glaring gap in the middle
of sociology, the lack of “micro-to-macro” explanations for
how mundane interactions accrete into large scale structures
that underpin social life. Social networks have been put forth
as a potential solution to this problem, having shown their
potential to connect disparate strands of knowledge into a
science of society. But for this intellectual project to live up
to its full potential, it must be possible for scientists to ask
questions across the broad diversity of social networks. Be-
fore these questions can be asked, the world of social net-
works must itself be described — our goal for this compara-
tively narrow, yet consequential set of networks. We hope
that this description will aid future researchers in under-
standing the innumerable processes that these networks me-
diate.
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