Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Guidelines for Action Space Definition in
Reinforcement Learning-Based Traffic Signal Control Systems

Maxime Treca,'? Julian Garbiso,! Dominique Barth?
nstitut Vedecom, Versailles, France, 2David Lab, UVSAQ, Versailles, France
{maxime.treca, julian.garbiso } @ vedecom.fr, dominique.barth @uvsq.fr

Abstract

Previous works in the field of reinforcement learning applied
to traffic signal control (RL-TSC) have focused on optimizing
state and reward definitions, leaving the impact of the agent’s
action space definition largely unexplored. In this paper, we
compare different types of TSC controllers — phase-based and
step-based — in a simulated network featuring different traffic
demand patterns in order to provide guidelines for optimally
defining RL-TSC actions. Our results show that an agent’s
performance and convergence speed both increase with its
interaction frequency with the environment. However, cer-
tain methods with lower observation frequencies — that can
be achieved with realistic sensing technologies — have rea-
sonably similar performance compared to higher frequency
ones in all scenarios, and even outperform them under spe-
cific traffic conditions.

Introduction

Traffic signal control (TSC) is a popular topic of study in
the field of applicated reinforcement learning and real-time
scheduling. On top of being an urban planning tool with
important economic, social and environmental implications,
TSC systems also provide a feedback loop decision frame-
work that is very well suited to the study of reinforcement
learning problems.

All TSC methods using reinforcement learning share a
similar pattern (Mannion, Duggan, and Howley 2016): the
agent first observes the current traffic and encodes it into a
state using local information such as queue length, vehicle
waiting time or traffic signal information. Given the current
traffic state, the agent chooses an action that determines fu-
ture traffic signals. Once the traffic signals are applied, the
agent receives a reward denoting the quality of the previous
action given the traffic state.

While most papers of the literature claim — rightfully so
— that state and reward definitions are crucial in designing
a reinforcement-learning-based controller for traffic signal
control, only a few acknowledge the equally important role
of action definitions, which are usually given as-is.

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

585

The aim of this paper is to study the impact of action
definition in the performance of RL-TSC methods using Q-
learning to route traffic. More particularly, the study focuses
on the time interval between two successive decision points
by comparing step-based actions — in which an agent can
decide to switch or stay in the current traffic phase every
n € N seconds — and phase-based action in which an agent
decides the entire phase duration before applying it. Simu-
lation results show that step-based actions are more efficient
than phase-based actions, but that this efficiency decreases
as traffic heterogeneity increases within the network. These
results also suggest that very small values of n do not yield
better results than higher ones for step-based actions.

Related Works

Traffic signal control methods use traffic lights to ensure the
safety and efficiency of a road network. These methods were
traditionally divided in 3 generations (Gartner, Stamatiadis,
and Tarnoff 1995), ranging from fixed methods dating from
the 1950s to modern traffic flow prevision systems.

Reinforcement learning-based TSC methods (RL-TSC) —
which are part of a newer, fourth generation of methods (EI-
Tantawy and Abdulhai 2012) — use machine learning algo-
rithms to continuously learn from previous traffic signal de-
cisions in an on-line fashion. Even though they have not yet
been applied in real-world traffic control systems, learning-
based methods are consistently outperforming fixed meth-
ods from previous generations in simulated environments
(Yau et al. 2017).

Q-Learning (Watkins and Dayan 1992) is a on-line and
off-policy reinforcement learning method that searches for
an optimal agent policy by storing discounted state/action
value estimates in a tabular fashion. Q-Learning, and RL-
TSC methods more generally, have gained gradual popu-
larity in the TSC literature since the early 2000s and the
application of Q-Learning in a multi-agent setting (Wier-
ing 2000). Most RL-TSC methods use Q-Learning as their
learning algorithm, even though alternative methods such
as Deep Q-Learning (Van der Pol and Oliehoek 2016) and
actor-critic (Prashanth and Bhatnagar 2011) models have
been investigated in the literature.

Apart from traditional issues arising from reinforcement

learning problems (such as convergence, function approxi-
mation and the exploration/exploitation trade-off), the role
of state (Genders and Razavi 2018) and reward (Touhbi et
al. 2017) definitions has been studied in detail for RL-TSC
methods. The role of action definitions has also been partly
studied in MARLIN (El-Tantawy and Abdulhai 2012) which
introduces a performance comparison for two different types
of signal cycle definitions: fixed phasing scheme (FPS) — in
which the controller decides whether to stay in or switch the
current phase in a predefined cycle — and variable phasing
scheme (VPS) in which the controller decides what phase
to apply at the next decision point without any phase or-
dering constraints. Results showed that FPS yielded better
performances under uniform traffic demands while VPS per-
formed better under variable demands. Our paper tackles ac-
tion definition in a more general sense as we do not con-
sider whether phases are ordered or not within a signal cy-
cle, but rather the time interval between two successive deci-
sion points. Indeed, current RL-TSC models either consider
phase-based actions (Abdoos, Mozayani, and Bazzan 2011)
or step-based actions (Prashanth and Bhatnagar 2011) with-
out discussing the influence of these action intervals nor the
respective strengths and weaknesses of both approaches.

Model

We consider a single intersection composed of 4 two-lanes
approaches and of a traffic signal controller. Our model is in
discrete time, where ¢t € N denotes the current system step.

Traffic Signals

The intersection features a traffic controller using a signal
cycle composed of multiple phases, giving a right of way to
specific approaches (i.e. roads) of the intersection.

Phases We consider a set of phases U = {1, v9, 01}
that the controller can implement. The phase ¢y provides
green lights to the northern and southern approaches of
the intersection, allowing them to reach any other approach
within the intersection. Similarly, the phase 2 provides
green lights to the eastern and western approaches of the in-
tersection. Finally, a transition phase 7 is only composed
of red lights and is used as a transition phases between green
light phases 11 and 1)s.

Signal Cycle The controller routes traffic on the intersec-
tion using a signal cycle ®, repeating phases in an end-
less pattern ® = 1, ¥, 2, %1, 11,. .. in a fixed phasing
scheme (FPS) fashion. Hence, all even-numbered phases of
 are transition phases and green light phases 1/, and 15 are
alternating on all odd-numbered phases.

Phase Duration Each phase ¢; of ® has an associated du-
ration d; in number of steps. This duration is bounded by
minimum d,,;, and maximum values d,,,, ensuring safety
and waiting requirements of the road network.

Controller Types

Given that the signal cycle uses a fixed phasing scheme, the
controller can only influence traffic by repeatedly defining

586

the lengths of green phases ¢); and 1. There are two main
ways phase durations can be set.

Phase-based controller A phase-based controller sets the
entire phase duration at once. Upon giving a duration d; to
phase ¢;, the controller runs phase ¢; for d; steps before
automatically switching to phase ¢; 1.

Step-based controller A step-based (or n-step) controller
chooses whether to extend the current phase by an additional
n steps or whether to switch to the next phase of the sig-
nal cycle. The value of n is a fixed parameter depending on
the controller. Hence, a n-step controller can extend a single
phase multiple times as long as it satisfies the phase duration
constraints stated above.

Learning Framework

Most reinforcement learning methods feature the same fol-
lowing learning pattern. An agent first observes a state s,
and then selects an action a; depending on this state. Af-
ter the action is applied, the system transitions to a new state
s¢+a. The agent then receives a reward r; denoting the qual-
ity of its previous action selection. These three definitions —
state, action and rewards — are fundamental in RL models.

Agent While most RL-TSC models often feature multi-
ple agents learning concurrently (MARL), ours focuses on a
single agent over a single intersection. This design decision
ensures that our study of the effect of action definition on a
RL-TSC controller learning and traffic routing abilities does
not suffer from network topology or non-stationarity issues
(Busoniu, Babuska, and De Schutter 2010).

State The traffic state at step ¢ is defined by a 4-tuple
sy = (¢;,di,c1,,c2,) composed of the active phase, ¢;,
the duration d; for which it has been active, and the con-
gestion of the approaches associated with phases 1)1 and).
For n,_+ the number of vehicles on approach a at time ¢, the
congestion value ¢; ; is given by

Cit = (Z Ng¢) mod 3

acy;

Action For a phase-based controller, the agent’s action
space is the [0, dyaz — dimin] interval, which represents the
set of possible phase durations under time constraints. For a
step-based controller, the agent’s action space is [0, 1], where
0 represents a phase extension of n steps and 1 represents a
switch to the next phase of the signal cycle.

Reward The agent’s reward at a given step ¢ is equal to
the difference between the cumulated waiting time of vehi-
cles on its approaches during the last decision point and the
cumulated waiting time at time ¢.

Learning Method Agents of our model use Q-Learning
(Watkins and Dayan 1992) as a learning algorithm. The
agent stores the quality of all the state/action couples it en-
counters in a Q-table. Given « € [0, 1] and v € [0, 1] which
represent the learning rate and discount factor of the agent
each couple of the Q-table is updated according to the fol-
lowing rule:

Q(s1,ar) <= (L—=r)Qst, ar) + s (re +y max Q(ss41, a))

We use a learning rate is & = max(1/v(s¢, at),0.05)
where v(s;, a;) is the number of times the agent visited the
state/action couple (s, a;). On top of giving less weight to
new observations of often visited couples, this value of «
ensures that the convergence properties of Q-Learning are
respected (Sutton and Barto 1998).

Agent Policy The agent follows a e-greedy policy. During
a decision point, the agent will choose the action associated
with the highest Q-table value with probability (1 — ¢), or a
random action with probability €. For a simulation iteration
i, the parameter is set to ¢ = max(e~%%5% 0.05), which en-
sures high exploration during the first simulation iterations
and high exploitation of good actions later on.

Results

Our aim is to compare different action definitions in order to
provide guidelines for RL-TSC models. In order to do so, we
compare different controllers — a phase-based agent, multi-
ple n-step agents as well as a fixed controller — in a simulated
traffic environment featuring different traffic situations.

Experimental Setup

The TSC methods and learning algorithms are implemented
in Python, and communicate with the SUMO simulator (Kra-
jzewicz et al. 2012) through the TRACI API. The results
presented in this paper are averaged over 5 complete repeti-
tions using different random seeds.

Simulation Runs A simulation scenario lasts for 10,000
steps, representing approximately three hours of real-time
traffic. One step in SUMO is equivalent to one second of real
simulated time. Each scenario goes through a hundred iter-
ations, with the agent’s Q-tables transferring between each
iteration. Minimal and maximal phase durations, d,,;, and
dmaz are set to 5 and 45 steps respectively. All transition
phases 7 have a duration of 5 steps.

Traffic generation Traffic demand is generated using two
parallel Poisson processes. One Poisson process of param-
eter A is uniformly distributed, meaning that each vehicle
arrival is equally likely to happen on every approach of the
intersection. The second Poisson process, using parameter 7,
only assigns arrivals to the northern and southern approaches
of the intersection. By supposing that the overall vehicle ar-
rival rate is constant (i.e. A + 7 = 0.5), we can hence define
multiple different traffic patterns, ranging from uniform sit-
uations (low values of 7) to arterial/side street patterns (high
values of 7).

Performance Evaluation

We consider that the learning method has converged when
the difference between the moving average of last five per-
formance measures is lower than a threshold of 10%. Once
convergence, occurs, agent performance is measured as the
average of total waiting time of vehicles over all subsequent

587

T Fixed Phase Step (Best) Step (Worst)
0.0 | 3.617 2.672 2.053 2.473
0.1 | 4.070 2.746 1.956 2.595
0.2 | 4.603 3.070 1.977 2.570
0.3 | 7.773 4.582 2.032 2.531
04 | 6.807 5.773 2.088 2.216
0.5 | 18.329 3.240 1.994 2.473

Table 1: Average vehicle waiting time after convergence per
agent type and traffic parameter 7 (in 10® seconds).

T I T
. . --- Fixed
51 |
—— Phase
—— Stepn =5
——Stepn = 15

Total Waiting Time (s)

1
0 10 20 30 40 50 60 70 80 90
Simulation Runs

100

Figure 1: Vehicle waiting time per agent type, 7 = 0.10.

iterations. An overview of simulation results per agent and
traffic flow types can be seen on Table 1.

Fixed Method Unsurprisingly, the performances of the
fixed method decrease as traffic demand becomes increas-
ingly unidirectional through parameter 7. Both learning con-
trollers beat the fixed method by a significant margin in ev-
ery tested traffic scenario.

Phase-based Method Table 1 shows us that the phase-
based method is less efficient than any n-step method for
any value of 7. However, the performance improvements
on Figure 1 throughout simulation iterations imply that the
lack of performance of the phase-based methods is not due
to its inability to learn from its environment, but is rather
due to the fact that they are by nature less flexible than
step-based ones. Indeed, the single-decision-point nature of
phase-based methods has negative consequences on their
performances: they cannot adjust to changing traffic situa-
tions within a single phase, as opposed to step-based meth-
ods that can re-assess the necessity to switch phases given
the current traffic conditions multiple times within the same
phase. The lesser amount of interactions with the environ-
ment could reduce convergence speed for the phase-based
agent, which in turn would lower its performance. This hy-
pothesis raises an important question, which is whether an
increase in the frequency of an agent’s interactions with its
environment necessarily results in an improvement of its
performance.

Step-based Methods On top of performing better than
other methods for all tested traffic scenarios, results of the n-
step methods listed in Table 1 show that these methods are

T n=1 n=5 n=10 n=15 n=20
0.0 0 4.86 10.29 22.37 27.81
0.1 0 4.17 7.20 23.96 30.15
0.2 0 0.45 5.49 22.68 31.03
0.3 3.04 0 4.38 11.02 26.39
0.4 9.53 0 2.74 11.09 7.84
05| 22.12 0.56 0 13.60 3.33

Table 2: Percentage difference with respect to the optimum
average vehicle waiting time (marked as 0) for step-based
methods by action interval value n and traffic scenario 7

extremely robust as they reach similar performance levels
for all values of 7 where other methods perform worse when
demand uniformity decreases. These observations clearly
show that step-based RL-TSC methods perform better than
their phase-based counterparts.

Guideline 1 Step-based methods should be chosen for
RL-TSC methods under any traffic situation.

Step Action Interval

We now investigate the influence of parameter n on n-step
agent performances in order to establish the optimal value of
n and whether this optimality changes according to different
traffic scenarios.

Optimal Action Interval Value The differences in perfor-
mance between multiple n-step methods listed on Table 2
allow us to make two important observations. First, the op-
timal value of the action interval parameter n changes de-
pending on the traffic demand, which implies that higher in-
teraction frequency of the agent with its environment does
not necessarily results in better performances. Second, there
seems to be a clear relationship between the optimal value of
n and the value of 7, since n-step methods using higher val-
ues of n perform gradually better when unidirectional traffic
increases.

Guideline 2 Very short intervals between decision points
are preferable for intersections with a uniform traffic de-
mand while slightly longer intervals are preferable for in-
tersections with skewed demand.

Convergence Figure 2 shows us that if all n-step meth-
ods eventually learn to assign longer green-light durations in
highly skewed traffic situations, methods with lower values
of n have a somewhat delayed and weaker response. Prelim-
inary results lead us to believe that these convergence issues
are at least partly due to the e-greedy policy of the agent. In-
deed, every time an n-step agent has to pick an action, it can
randomly choose to switch the current phase with probabil-
ity £/2. Since ¢ has a very high value in the first simulation
iterations and since agents with small action intervals are,
by design, choosing actions very frequently, they are very
unlikely to apply high phase duration values at first. This
would explain why the agent n = 1 on Figure 2 only starts
converging on later iterations. These results lead us to rec-
ommend using values of n between n = 5 and n = 10, as

588

40

z
2
s 30 B
=
=l
o
g, 20 b
5
z —— Stepn =1
107 --- Stepn=>5 | |
——Stepn =20

0 10 20 30 40 50 60 70 80 90
Simulation Runs

T
100

Figure 2: Evolution of phase 1), average duration per simu-
lation iteration, 7 = 0.50.

they are either optimal or close to optimal in all traffic sce-
narios (see Table 2) and do not suffer from the convergence
issues discussed before.

Feasibility Another added benefit of using longer action
intervals for n-step agents is that they are better suited for us-
ing existing economically and technically competitive traffic
sensing technologies. If measurement intervals of one sec-
ond or less had been deemed optimal, it would have forced
a trade-off between technical and economical feasibility and
system performance, which is fortunately shown not to be
the case.

Guideline 3 Defining longer intervals between successive
decision points (from 5 to 10 seconds) yields satisfactory to
optimal results for step-based agents. These values are also
better suited for using existing economically and technically
competitive traffic sensing technologies.

NEMA-type Signal Cycles We finally test our previous
guidelines on a NEMA-style signal cycle composed of
four green phases ¥ = {1 4,%1 B,%2 4,102 g} Where
straight/right-turn phases (A) and left turn phases (B) are
represented separatly for N/S (1) and E/W (2) approaches.
Using this extended set of phases in a fixed phasing scheme
globally yields results similar to the original case.

Conclusion

We investigated different RL-TSC action definitions in or-
der to provide guidelines to design optimal TSC controllers.
Simulation results lead us to recommend using step-based
controllers instead of phase-based ones for traffic signal con-
trol. Moreover, we have shown that the optimal value of the
action step parameter n of a step-based agent is dependent
on the shape of the traffic demand on the intersection in
which they are implemented. Finally, our simulations sug-
gest that using action intervals between 5 and 10 seconds
guarantee acceptable performances for any traffic situation
and have the advantage of being better suited for using exist-
ing economically and technically competitive traffic sensing
technologies. Future works include exploring the trade-off
between shorter action intervals and convergence efficiency
as well as an extension of our model in a multi-agent setting.

References

Abdoos, M.; Mozayani, N.; and Bazzan, A. L. 2011. Traf-
fic light control in non-stationary environments based on
multi agent g-learning. In Intelligent Transportation Sys-
tems (ITSC), 2011 14th International IEEE Conference on,
1580-1585. IEEE.

Busoniu, L.; Babuska, R.; and De Schutter, B. 2010. Multi-
agent reinforcement learning: An overview. In Innovations

in multi-agent systems and applications-1. Springer. 183—
221.

El-Tantawy, S., and Abdulhai, B. 2012. Multi-agent rein-
forcement learning for integrated network of adaptive traffic
signal controllers (marlin-atsc). In Intelligent Transporta-
tion Systems (ITSC), 2012 15th International IEEE Confer-
ence on, 319-326. IEEE.

Gartner, N. H.; Stamatiadis, C.; and Tarnoff, P. J. 1995. De-
velopment of advanced traffic signal control strategies for
intelligent transportation systems: Multilevel design. Trans-
portation Research Record (1494).

Genders, W., and Razavi, S. 2018. Evaluating reinforcement
learning state representations for adaptive traffic signal con-
trol. Procedia computer science 130:26-33.

Krajzewicz, D.; Erdmann, J.; Behrisch, M.; and Bieker, L.
2012. Recent development and applications of SUMO -
Simulation of Urban MObility. [International Journal On
Advances in Systems and Measurements 5(3&4):128-138.

Mannion, P.; Duggan, J.; and Howley, E. 2016. An ex-
perimental review of reinforcement learning algorithms for
adaptive traffic signal control. In Autonomic Road Transport
Support Systems. Springer. 47-66.

Prashanth, L., and Bhatnagar, S. 2011. Reinforcement
learning with function approximation for traffic signal con-

trol. IEEE Transactions on Intelligent Transportation Sys-
tems 12(2):412-421.

Sutton, R. S., and Barto, A. G. 1998. Introduction to rein-
forcement learning, volume 135. MIT press Cambridge.

Touhbi, S.; Babram, M. A.; Nguyen-Huu, T.; Marilleau, N.;
Hbid, M. L.; Cambier, C.; and Stinckwich, S. 2017. Adap-
tive traffic signal control: Exploring reward definition for re-

inforcement learning. Procedia Computer Science 109:513—
520.

Van der Pol, E., and Oliehoek, F. A. 2016. Coordinated deep
reinforcement learners for traffic light control. Proceedings
of Learning, Inference and Control of Multi-Agent Systems
(at NIPS 2016).

Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279-292.

Wiering, M. 2000. Multi-agent reinforcement learning
for traffic light control. In Machine Learning: Proceedings
of the Seventeenth International Conference (ICML’2000),
1151-1158.

Yau, K.-L. A.; Qadir, J.; Khoo, H. L.; Ling, M. H.; and
Komisarczuk, P. 2017. A survey on reinforcement learn-

ing models and algorithms for traffic signal control. ACM
Computing Surveys (CSUR) 50(3):34.

589

