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Abstract

This paper proposes and investigates a novel way of combin-
ing machine learning and heuristic search to improve domain-
independent planning. On the learning side, we use learning
to predict the plan cost of a good solution for a given instance.
On the planning side, we propose a bound-sensitive heuris-
tic function that exploits such a prediction in a state-space
planner. Our function combines the input prediction (derived
inductively) with some pieces of information gathered dur-
ing search (derived deductively). As the prediction can some-
times be grossly inaccurate, the function also provides means
to recognise when the provided information is actually mis-
guiding the search. Our experimental analysis demonstrates
the usefulness of the proposed approach in a standard heuris-
tic best-first search schema.

Introduction
The performances of current planning systems are affected
by the structure of the search space, which depends on the
application domain and its encoding. In many cases, the
planning performance can be improved by deriving and ex-
ploiting knowledge about the structure of the problem and
its potential solutions that is not explicitly given in the input
formalisation, and that can be used for optimising the plan-
ner performance. Well-known examples include portfolio
configuration (Seipp et al. 2015), reformulation approaches
such as macro-operators (Botea et al. 2005; Scala 2014;
Scala and Torasso 2015), entanglements (Chrpa, Vallati, and
McCluskey 2019), action schema splitting (Areces et al.
2014), and model configuration (Vallati and Serina 2018).1

Another kind of knowledge that could be derived by
analysing a planning problem is the expected (predicted)
cost of its solutions, and in particular of an optimal or
good quality solution. Taking inspiration from the signifi-
cant amount of work devoted at handling solution quality
bounds (see, for instance, (Stern et al. 2014; Thayer and
Ruml 2011)), the question that we address in this paper is
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1For an extensive overview of the field, the interested reader is
referred to (Celorrio et al. 2012).

the following: How can we exploit a prediction of the cost
of a (good) solution plan to improve search performance?
Predictions on the costs of solution plans can come from dif-
ferent sources: they can be made by human experts, or com-
puted automatically through, e.g., inductive methods based
on machine learning approaches. The use of such a predic-
tion during the planning search poses a number of interest-
ing challenges about how to fruitfully exploit it to improve
planning performance. This is because predicted values can
sometimes be grossly inaccurate and either under- or over-
estimating the quality of the best plan, or of the best-quality
plan that can be found by the considered planning approach
within a certain time limit. Due to this, such predictions can
not be straightforwardly used as bounds, but there is a need
for appropriately designed approaches.

In order to address the above question, in this paper first
we introduce a domain-independent approach for predicting
the cost of a “good” solution of a planning instance; then, to
exploit the knowledge provided by these predictions, we in-
troduce a best-first search schema that chooses the nodes to
visit considering the predicted solution cost combined with
pieces of information collected during search (heuristic costs
to reach the goal, current cost from the root, number of ex-
panded nodes). In particular, we propose a heuristic function
aimed at putting in synergy these different sources of in-
formation for improving performance. The heuristic is also
provided with means to mitigate the impact of the prediction
when the search recognises that such a prediction is actually
misguiding the search because too inaccurate.

To evaluate the proposed techniques we perform an ex-
perimental analysis using well-known benchmarks from the
international planning competitions, and we show that the
addition of this knowledge can be beneficial in the context
of a best-first search schema.

Predicting Plan Cost
Useful information about the structure of a planning instance
can be extracted under the form of some “features”. Each
feature summarises a potentially important property of the
considered instance. The whole set of features can be seen
as the fingerprint of the planning instance at hand. Features
have been exploited in planning mostly for predicting the
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CPU-time needed by a given planner to solve a new instance
(e.g., (Fink 1998; Howe et al. 1999; Roberts et al. 2008;
Fawcett et al. 2014; Cenamor, de la Rosa, and Fernández
2016; Rizzini et al. 2017)). More recently, features have
also been used as a measure to compare planning instances
in terms of differences and informativeness (Cenamor and
Pozanco 2019). This amount of research provided the com-
munity with a large number of features that can be automati-
cally extracted from the specification of a planning instance.

Given the results achieved by Fawcett et al. (2014) in pre-
dicting planners’ performance, we decided to consider the
set of features they exploited, which are 311 different fea-
tures for each planning instance. This set of features demon-
strated to be useful for predicting the behaviour of a different
range of planners. The features that Fawcett et al. exploited
are obtained from the analysis of: (i) different encodings of a
planning problem (PDDL, SAT, SAS+); (ii) pre-processing
statistics of LPG (Gerevini, Saetti, and Serina 2011) and
Fast Downward (Helmert 2006); (iii) the search space topol-
ogy analysed by Torchlight (Hoffmann 2011), and (iv) Fast
Downward probing features –brief runs of a planner on the
considered instance, in order to extract information from its
search trajectories. However, due to the significant runtime
required to extract Fawcett et al.’s features from the SAT en-
coding of the planning instance, we decided to remove these
features from our set. Therefore, our final set consists of 196
features that can be generally extracted in a matter of few
CPU-time seconds.2

Our aim is to obtain a predictive model that is able to es-
timate the cost of a good solution of a given planning in-
stance, on the basis of the extracted features. In order to de-
velop such a model, here we trained it to predict the cost
of the best known solution of a training planning instance.
The data used to train the predictive model comes from a
large set of planning domains. Indeed, we collected as many
PDDL planning instances as possible. We included instances
from the following sources: (i) IPC-98 and IPC-00; (ii) IPC
deterministic tracks from 2002 to 2011; (iii) learning tracks
of IPC-08 and IPC-11; (iv) FF benchmark library; (v) Fast
Downward benchmark library; (vi) UCPOP Strict bench-
marks, and; (vii) Sodor and Stek domains used by Roberts et
al. (2008). In total, more than 7000 planning instances were
used to derive the training data set.

As cost value to predict, for each planning instance we
considered the best known quality (lowest cost) of a plan,
whether available, by looking at the data stored in “Plan-
ning.Domains”. Otherwise, we considered the best solution
generated by a set of selected state-of-the-art planners using
1800 CPU-seconds for each run. Such planners are: LAMA
(Richter and Westphal 2010), Fast Downward (Helmert
2006), LPG (Gerevini, Saetti, and Serina 2006), Madagascar
(Rintanen 2012), FF (Hoffmann and Nebel 2001), Arvand
(Nakhost et al. 2011), Probe (Lipovetzky and Geffner 2011).
They were chosen because they exploit very different plan-
ning techniques, and can therefore provide solution plans of
significantly different costs – maximising the possibility of

2The interested reader is referred to (Fawcett et al. 2014) for a
detailed description of the considered features.

obtaining good cost plans on the considered instances.
For generating the predictive model, we used the WEKA

tool (Hall et al. 2009), and in particular Auto-WEKA (Kot-
thoff et al. 2017) for selecting the best technique to use
and the best configuration of the corresponding parameters.
Auto-WEKA was run for 2 CPU-time days in a 10-fold
cross-validation on all the considered training instances. The
resulting predictive model that we obtained uses additive re-
gression models based on random forests.

Regarding the use of the model, the CPU-time needed to
extract the considered features and the prediction made by
the model take less than 0.1 CPU-time seconds.

Exploiting Potentially Inaccurate Predictions
A common approach to solving planning problems (Ghallab,
Nau, and Traverso 2004) is using a forward state space plan-
ner, guided by a best first search such as A∗. This section
proposes a bound-sensitive heuristic function exploiting an
externally provided estimation B ∈ R of the cost of a plan.

Similarly to standard wA*, we use a constant weight w
for h(n) and collect the cost g(n) to the node n as the cost
of the prefix that goes from the initial state/root node to n;
moreover, we consider two heuristic estimates of the cost
from n to the goal, namely hδ(n) and hs(n). hδ(n) is used
for assessing whether the prefix under exploration has tres-
passed the estimate given as an input; hs(n) is used to guide
the search. In particular, we intend hδ(n) to be a robust esti-
mator of the current situation, and so we usually prefer for an
admissible estimate. Instead, for hs(n), we use an estimate
that is not guaranteed to be admissible but that is potentially
more informed. Our A∗ search process organises the explo-
ration by expanding the node n in the frontier that minimises
the cost function f(n) = g(n) + w · hBound(n) where

hBound(n) = hs(n) ·
(

B

g(n) + hδ(n)

)(1−prate)

(1)

and

prate =
#{n ∈ {expanded nodes } | g(n) + hδ(n) > B}

#{expanded nodes}

Intuitively, the use of hBound accelerates the search to-
wards the nodes that are close to B (the provided predicted
cost), and from that point on-wards, it promotes an explo-
ration that is more sensible to the g-values (the heuristic con-
tribution is diminished in the minimisation). This is obtained
by amplifying the contribution of the heuristic for all those
nodes n with g(n)+hδ(n) < B, and diminishing the heuris-
tic value of those nodes n with g(n)+hδ(n) > B. Note that,
since hδ(n) is an admissible function, g(n) + hδ(n) plays
the role of an optimistic predictor for the cost of the solu-
tion plan that the search would obtain through the candidate
node n.

It is easy to see that the overall behaviour of the search
heavily depends on how the bound B relates to the solutions
space of the problem. When B is incorrectly too tight (much
lower than the cost of the optimal cost), the second factor
in (1) gets very small, and therefore we expect the search to
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Approach Cov. avg-C IPC-Q PAR10 IPC-R
wA* 191 248.4 187.5 10443.0 166.7

wA*-bound 228 279.3 215.2 8992.3 211.6
GBFS+wA* 277 729.2 270.4 8265.1 230.3

GBFS+wA*-bound 277 766.0 271.6 8084.1 264.1

Table 1: Comparison of the performance of wA* using
our bound-sensitive heuristic function (wA*-bound) and the
baseline wA* alone (top table) or after a run of GBFS (bot-
tom table). Results are presented in terms of coverage (num-
ber of solved instances), normalized average plan costs, IPC
score quality, PAR10, and IPC score runtime.

expand more nodes; most of the search will be indeed done
favoring nodes with lower g-values. Instead, when B is too
large (much larger than the optimal cost), the second factor
of (1) makes the search greedier, because it favours the indi-
cation provided by hs. In general this can reduce the number
of expanded nodes, but it can also compromise the quality of
the obtained solution. Nevertheless, we experimentally ob-
served that having B over estimating the optimal cost does
not worsen solution quality significantly, especially when B
is only slightly larger.

To overcome the issue related to the use of a too tight
B (potential very high number of visited nodes), we devise
a further exponential modifier in the definition of hBound:
(1 − prate). The aim of this modifier is to alleviate the ef-
fect of the bound on the heuristic by taking advantage of
the information acquired whilst searching. More precisely,
prate is defined as the fraction of expanded nodes that have
a value for g(n) + hδ(n) (where hδ is admissible) that ex-
ceeds bound B. In this way, the more expanded nodes ex-
ceeded B, the closer the second factor of (1) gets to one.
As a matter of facts, when prate increases, the exponent of
the second factor tends to zero and the second factor itself
becomes irrelevant (i.e., close to 1).

It is important to remark that the described “adaptive”
heuristic function hBound exploiting B can inform the search
in a way that is in contrast with the heuristic evaluation of the
original function hs. For instance, suppose B = 7, w = 1
and there are two nodes on the search frontier n1 and n2
such that hs(n1) = 5, hδ(n1) = 3, g(n1) = 1, hs(n2) = 9,
hδ(n2) = 7, and g(n2) = 1. wA∗ using hs prefers n1 to n2,
while wA∗ with hBound prefers n2 because hBound(n1) =
5 · 7

3+1 = 8.75 and hBound(n2) = 9 · 7
7+1 = 7.875. A situ-

ation like this could happen, for instance, in a logistic prob-
lem where we are at a location from which we can reach the
target from two paths; one of such paths appears to be bet-
ter according to hs, but it is actually not viable to the end
because along this path, differently from the other longer
path, there is no refuel station, and the target location can
be reached only if at least one refuel is done before a maxi-
mum number of moves. The predicted cost B could alter the
hs-values towards the longer but safer path.

Experimental Analysis
We implemented the bound-sensitive heuristic function in
Fast Downward (Helmert 2006), taking into account the set-

tings used by the well-known planner LAMA, that includes
a wA* search episode with w = 5 alternately guided by a
couple of inadmissible heuristics: hFF (Hoffmann and Nebel
2001) and hLM (Richter and Westphal 2010). Our hBound

can use as its hδ component any heuristic. We modified the
planner to be guided by the proposed bound-sensitive heuris-
tic, where hLM-Cut is used as hδ , and either hFF or hLM as hs

according to LAMA’s alternating policy.
In the experimental analysis, for each problem of the con-

sidered benchmarks (that are different from the problems
used to train the predictor), the predictor is provided with
features extracted from the problem, and it returns the pre-
dicted cost of solving such a problem. This predicted cost
plays the role of B in Equation 1. The plan cost prediction
made on a given planning instance can at times be grossly
wrong and this can harm the search substantially. To par-
tially overcome this problem, we employ a simple prepro-
cessing that tests if the predicted value B is lower than
the value of the admissible heuristic hLM-Cut (Helmert and
Domshlak 2009) computed in the initial state; if B is lower,
the prediction underestimates even the cost of a lower bound
for an optimal solution for the problem considered, and so
we do not use hBound. If instead B is higher or equal to the
value of hLM-Cut, then hBound is used.

We considered 26 domains from the satisficing track of
IPCs 2014 and 2018, for a total of 520 instances; among
them hBound was disabled (by the preprocessing) in 69 in-
stances which are distributed over 6 of the 26 considered do-
mains. These instances are removed from our evaluation.3

Our experiments were run on an Intel Xeon Gold 6140M
CPUs with 2.30 GHz. For each instance we set a cutoff time
of 1800 seconds, and memory was limited to 8 GB. Our eval-
uation considers coverage (number of solved problems), av-
erage plan costs, PAR10 (Penalised Average Runtime), IPC
quality score, and IPC runtime score, as defined in IPC-14.

Results
Table 1 summarises the results achieved by using hBound in
a single run of wA* (top) and when run after a Greedy Best
First Search (GBFS) episode (bottom), versus the baseline
wA* and GBFS+wA* alone, respectively. It is easy to ob-
serve that, compared to the baseline wA*, wA*-bound can
significantly boost the performance in terms of both cover-
age (+19%) and runtime. This comes at the cost of an aver-
age negative impact on the quality of the provided solutions
(approx. 12.4%). Looking at the raw data that we collected
for these two configurations, we observe a 22% reduction in
nodes expansion over all benchmark problems, with results
that vary domain by domain: in 9 out of the 26 considered
domains, the use of the predicted cost decreases the num-
ber of expanded nodes (obviously considering the problems
solved by both systems), while in 11 domains the number of
expanded nodes is worsened. Coverage-wise, instead, wA*-
bound solves more instances than wA* in 10 domains, while
in 2 domains wA* solves more problems than wA*-bound.
We can observe some complementarity between the system

3The actual predicted costs and the model parameterisation can
be found at https://bitbucket.org/maurovallati/icaps-2020/
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that uses the cost prediction, and the system that does not.
Indeed, wA*-bound solves 47 instances that are not solved
by the baseline, while wA* solves 10 instances that are not
solved by wA*-bound.

The bottom part of Table 1 evaluates the performance
of the proposed approach when used together with GBFS;
The baseline here is GBFS+wA*, where our approach is
GBFS+wA*-bound. Note that the second episode of search
does not consider the solution found by the GBFS during
the search: GBFS is used only to help increasing instance
coverage performance, since it can be the case that GBFS
can solve instances that wA* alone can not.4 In both con-
sidered configurations, if the second episode of wA* (with
or without bound) is not completed, we penalize the runtime
by an amount equal to 1800 seconds. As shown in Table
1, GBFS+wA* tends to provide better quality solutions, but
GBFS+wA*-bound reduces runtime.

To shed some light on the “value” of the cost predictions,
we carefully analysed the domain-by-domain performance.
The first aspect to acknowledge is that it is hard to define
what should be the perfect prediction. One may argue that
the cost of the optimal plan is a perfect prediction. How-
ever, our intuition is that the value of a prediction has to
be related to the planning approach that has to exploit such
prediction: it may be the case that using the optimal plan
cost could make finding a solution significantly harder for a
given search technique. For this reason, we decided to evalu-
ate the quality of a prediction according to how close it is to
the cost of a plan that would have been found by an episode
of baseline wA* search (w = 5). Using this metric, we ob-
served that for a large number of domains the predictions
tend to be reasonably accurate: in 8 domains the prediction
is proved wrong by less than 40%; in 5 domains, however,
predictions overestimate by more than three times the cost of
the solution found. Interestingly, it seems that a large over-
estimation does not always lead to worse performance. In
GED and Maintenance, where predictions largely overesti-
mate, the use of hBound in wA* is still beneficial. This is
not the case in Spider, where the large overestimation leads
instead to significantly worse performance. It may indeed
be the case that the structure of the domain plays a pivotal
role in the behaviour of hBound when B is a large over- or
under- estimation. Out of the considered domains, in Bar-
man, Childsnack, Hiking, Termes, Transport, and Visitall we
observed that the predicted value tend to be an underestima-
tion of the cost of the actual plan identified.

Figure 1 shows how the coverage of the considered tech-
niques evolves over time. In particular, we considered the
baseline wA*, wA*-bound, and the wA*-bound without
prate in order to assess the importance of prate in the com-
putation of hBound. On very small instances, solved in less
than one CPU-time minute, there is no significant perfor-
mance difference among the compared approaches; intu-
itively this is due to the fact that for instances quickly solved,
the use of the predicted cost does not lead to the exploration
of substantially different areas of the search space. When

4The cost of the GBFS solution (if any) is not used instead of
B in hBound.

Figure 1: Coverage over time for wA* with hBound (with
and without prate) and the baseline wA* on all the consid-
ered benchmark instances.

more CPU-time is used, and larger areas of the search space
are explored, the hBound obtains better coverage results than
the baseline when more than approx. 100 CPU-time seconds
are given to solve instances. In terms of coverage, the use of
prate is clearly useful in hBound, but the benefit is not evenly
spread with regards to the given runtime limits. Our intuition
is that the usefulness of the prate for hBound depends on the
domain and on the quality of the predicted cost. Interest-
ingly, the coverage gap between wA*-bound and wA* tend
to slightly increase with the increase of the given CPU-time
limits. This suggests that the performance gap in favour of
the wA*-bound could further increase for CPU-time limits
above 1800 seconds.

Conclusions
In this paper we have addressed the problem of exploiting
plan cost predictions, computed at preprocessing through
machine learning techniques, in order to improve planning
performance for propositional domains with action costs.

An effective use of these predictions during planning
should take into account that the predicted cost can be (even
grossly) inaccurate with respect to the best quality plan that
a planning approach can found within a certain time limit.
We have developed a cost prediction model that is based on
standard machine learning techniques using a large set of in-
stance features, and we have proposed a method to exploit
the predictions made by this model in the context of wA*.
Our method can be seen as a way to dynamically adjust the
input weight w of the heuristic during search, taking into ac-
count the predicted plan cost and preventing the search to be
misguided when the prediction is severely inaccurate.

As a future work we aim at investigating an extension of
our approach to predict and exploit makespan and plan cost
in metric-temporal planning (Fox and Long 2003; Gerevini,
Saetti, and Serina 2008) and for plan adaptation (Gerevini
and Serina 2010).
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