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Abstract

Model-based intersection optimization strategies that produce
signal timings over a specified optimization horizon have been
widely investigated for urban traffic signal control, and re-
cent work in this area produced a scalable approach to real-
time traffic control based on a decentralized schedule-driven
optimization model. In this approach, a scheduling agent is
associated with each intersection. Each agent senses the traf-
fic approaching its intersection through local sensors and in
real-time constructs a schedule that minimizes the cumula-
tive wait time of vehicles approaching the intersection over
the current look-ahead horizon. Intersections then exchange
schedule information with their neighbors to achieve network
level coordination. Although the approach is general and has
demonstrated substantial success, its effectiveness in a given
road network depends on the extent to which various param-
eters of the model, e.g, maximum green time, are adjusted
to match that network’s actual flow conditions over time. To
address this problem, we propose a two-stage hierarchical
structure that combines online planning and reinforcement
learning. Reinforcement learning is applied to adjust the pa-
rameters of the model over a longer time-scale. On the other
hand, online planning is used to compute the schedule for man-
aging the traffic signals in the shorter term. We demonstrate
how this hybrid approach outperforms the original approach
in real-time traffic signal control problems.

Introduction

Urban mobility is becoming an increasingly critical prob-
lem, and it is commonly recognized that better optimiza-
tion of traffic signals could lead to substantial reduction
in traffic congestion. Recent development of a decentral-
ized online planning approach to the traffic signal control
problem has achieved significant traffic flow efficiency im-
provements through real-time, distributed generation of long-
horizon, signal timing plans. (Xie, Smith, and Barlow 2012;
Smith et al. 2013) The key idea behind this schedule-driven
approach is to formulate the intersection scheduling problem
as a single machine scheduling problem, where input jobs
are represented as sequences of spatially proximate vehicle
clusters (approaching platoons, queues).This aggregate rep-
resentation enables efficient generation of plans with longer
horizons that incorporate multi-hop traffic flow information,
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and thus network-wide coordination is achieved through ex-
change of schedule information.

One potential limitation of this approach, however, is its
reliance on a scheduling model whose parameters must be
configured to match actual traffic conditions. Although the
online planning approach is able to compute schedules in real-
time (i.e., on a second-by-second basis), the settings of model
parameters such as minimum and maximum green times for
each phase, vehicle free-flow speed and intersection turning
percentages must be fixed in advance to reflect expected
traffic flow patterns, and the extent to which these settings
match actual traffic conditions will ultimately determine the
accuracy of the signal timing schedules that are generated
over time. Hence, we would expect to be able to further
boost the performance of the traffic signal control system by
introducing the ability to adjust these parameters over longer
time scales in response to observed traffic behavior.

In this paper, we explore this hypothesis. We propose a
hierarchical framework that integrates reinforcement learning
(RL) with schedule-driven traffic control, where the upper-
level module learns a policy to configure parameters, and the
lower-level module generates signal timing plans that min-
imize cumulative vehicle delay according to current model
parameter settings. More specifically, the model controls traf-
fic flow at an intersection over two levels of hierarchy:

1. The lower-level module regenerates a signal timing plan
every second and interacts with the hardware controller
at the intersection and the intersection’s direct neighbor
intersections to execute it in rolling horizon fashion. Mean-
while, the traffic data produced by execution (e.g, queue
length data), as well as projected demand (e.g., number of
arriving vehicles) extracted from incoming messages re-
ceived from upstream intersections is relayed to the upper
layer for learning a control policy.

2. The upper-level module computes statistics (e.g., average
queue length and average number of arriving vehicles)
over a larger time-scale based on the received data from
the lower-level module and updates model parameters.

The work flow is described in Figure 1. We are interested in
a cooperative setting where all agents tend to smooth traffic
flow, which is to jointly minimize the globally averaged delay
over all intersections. Basically, two types of information are
exchanged horizontally between intersections: a) schedule
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information in the lower-level module and b) traffic statistics
in the upper-level module. Thus, the ability to utilize informa-
tion received from neighbors is especially essential for acting
in such cooperative environments.

In addition, we adopt a framework of decentralized train-
ing with decentralized execution for RL (Zhang et al. 2018)
instead of the more traditional centralized training approach
(Lowe et al. 2017; Foerster et al. 2018), mirroring the philos-
ophy of the original decentralized online planning approach
to traffic signal control that we are proposing to extend. Fully
decentralized learning greatly increases its scalability, as the
number of joint states and actions grows exponentially with
the size of the network in a centralized training context. A
decentralized training approach also preserves the advantage
of allowing the system to be incrementally deployed to ur-
ban areas over time. However, the challenge of decentralized
training is that the intersections are coupled together and the
environments become non-stationary from the perspective
of any individual intersection. Thus, we propose a simple
extension of actor-critic policy gradient methods where the
critic and actor are augmented with extra information about
other intersections. By exchanging information (i.e., sched-
ule information and traffic statistics), the agents are able to
discover complex communicative coordination strategies to
adjust parameters and apply online planning (Wu, Zilber-
stein, and Chen 2009). To ensure scalability, we assume that
scheduling messages continue to be exchanged only between
direct neighbors (although information can travel multiple
hops over multiple planning and learning episodes).

Figure 1: The hierarchical structure of traffic control sys-
tems with the upper-level reinforcement learning module and
the lower-level planning module. An agent is able to share
schedule information and traffic statistics with its neighbor
agents.

Related Work

Real-Time Traffic Signal Control

In urban environments, centralized traffic signal control that
adjust signal timing plan parameters (e.g., cycle time, green
time split) according to actual sensed traffic data (Lowrie
1992; Heung, Ho, and Fung 2005; Gettman et al. 2007) have
been proposed to overcome the inefficiency of relying on

conventional fixed signal timing plans. However, these ap-
proaches are designed to accommodate continuous gradual
change in traffic patterns (typically adjusting parameters af-
ter integrating information for several minutes), and are not
responsive to real-time traffic events and disruptions. Alter-
natively, decentralized online planning approaches have been
proposed (Sen and Head 1997; Gartner, Pooran, and An-
drews 2002; Shelby 2001; Cai, Wong, and Heydecker 2009;
Jonsson and Rovatsos 2011). These approaches solve the
problem of scalability in principle, but have historically had
difficulty computing plans in real-time with a sufficiently
long horizon to achieve network-level coordination.

RL-Based Approach

Real-time traffic signal control is a complicated control
problem because of its responsiveness, scalability and es-
pecially the non-linearity of queueing dynamics. In machine
learning, RL formalizes such control problems as finding
a policy that maximizes expected future rewards. Although
several works in RL has already made progress in traffic
signal control problems (Wiering 2000; Kuyer et al. 2008;
Bazzan and Klügl 2014), they are often slow to converge and
difficult to apply under the real-time setting if traffic flows
vary frequently. Moreover, if we consider a more realistic set-
ting in which external information is provided solely through
local sensors (the most common being physically nearby in-
roadway induction loop detectors or cameras) rather than
relying on global state or vehicle-based representation, the
online planning approach (Xie, Smith, and Barlow 2012) is
viewed as a recent state of the art (Covell, Baluja, and Suk-
thankar 2015). In this sense, learning model parameters for
planning is a more reasonable solution for realistic traffic
signal control systems.

It is well established that agent-based approaches suit
the decentralized traffic management well given newly de-
veloped sensing technologies and historical temporal data,
as well as the frequent and flexible interaction between
the agents and their environment (Dresner and Stone 2008;
Bazzan and Klügl 2014). A common approach related to con-
trol of traffic signals is to let multiple agents learn a policy
for mapping states to actions by monitoring traffic flow and
selecting actions (Wiering 2000; Kuyer et al. 2008). However,
recent development in RL has placed greater emphasis on
the framework of centralized training and decentralized exe-
cution (Lowe et al. 2017; Foerster et al. 2018), which is not
practical for such real-world applications as intelligent trans-
portation systems or sensor networks. For those applications,
a central controller does not exist or may be costly to install.
The closest to our problem setting is that of (Zhang et al.
2018), who also considers a fully decentralized multi-agent
RL.

Communication in RL and Planning

To decentralize multi-agent RL problems, a recent trend is to
let agents learn independently but allow them to interact with
each other and combine their policies or plans. This provides
a new trade-off between total centralization and total indepen-
dence. Exchange of information between a group of agents
may increase accuracy and learning speed at the expense
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of communication (Nunes and Oliveira 2004). The work in
(Kuyer et al. 2008) also focuses on exchanging information
to benefit reinforcement learning and explicit coordination
among agents through a coordination graph. However, this
leads to an increase in complexity as the graph becomes
larger. In the field of planning, exchanging information to
extend the horizon is considered in (Sen and Head 1997;
Gartner, Pooran, and Andrews 2002; Xie, Smith, and Barlow
2012) as a way to accommodate non-local information.

Preliminaries

Schedule-Driven Traffic Control As indicated above, the
key to the single machine scheduling problem formulation
of the schedule-driven approach of (Xie, Smith, and Bar-
low 2012) is an aggregate representation of traffic flows as
sequences of clusters c over the planning (or prediction) hori-
zon. Each cluster c is defined as (|c|, arr, dep), where |c|,
arr and dep are number of vehicles, arrival time and depar-
ture time respectively. Vehicles entering an intersection are
clustered together if they are traveling within a pre-specified
interval of one another. The clusters become the jobs that
must be sequenced through the intersection (the single ma-
chine). Once a vehicle moves through the intersection, it is
sensed and grouped into a new cluster by the downstream in-
tersection.The sequences of clusters provide short-term vari-
ability of traffic flows at each intersection and preserve the
non-uniform nature of real-time flows. Specifically, the road
cluster sequence CRoad,m is a sequence of (|c|, arr, dep)
triples reflecting each approaching or queued vehicle on en-
try road segment m and ordered by increasing arr. Since
it is possible for more than one entry road to share the in-
tersection in a given phase (a phase is a compatible traffic
movement pattern, e.g., East-West traffic flow), the input clus-
ter sequence C can be obtained through combining the road
cluster sequences CRoad,m that can proceed concurrently
through the intersection. The travel time on entry road m
defines a finite horizon (Hm), and the prediction horizon H
is the maximum over all roads.

Every time the cluster sequences along each approaching
road segment are determined, each cluster is viewed as a non-
divisible job and a forward-recursion dynamic programming
search is executed in a rolling horizon fashion to continually
generate a phase schedule that minimizes the cumulative de-
lay of all clusters. The frequency of invoking scheduling is
once a second for reducing uncertainty associated with clus-
ters and queues. The process constructs an optimal sequence
of clusters that maintains the ordering of clusters along each
road segment, and each time a phase change is implied by
the sequence, then a delay corresponding to the intersection’s
yellow/all-red changeover time constraints is inserted. If the
resulting schedule is found to violate the maximum green
time constraints for any phase (introduced to ensure fairness),
then the first offending cluster in the schedule is split, and
the problem is re-solved.

Formally, the resulting control flow can be represented as a
tuple (S,CCF ) shown in Figure 2, where S is a sequence of
phase indices, i.e., (s1, · · · , s|S|), CCF contains the sequence
of clusters (c1, · · · , c|S|) and the corresponding starting time

after being scheduled. More precisely, the delay that each
cluster contributes to the cumulative delay

∑|S|
k=1 d(ck) is

defined as d(ck) = |ck| · (ast − arr(ck)), where ast is the
actual start time that the vehicle is allowed to pass through,
which is determined by the optimization process. The optimal
sequence (schedule) C∗

CF is the one that incurs minimal delay
for all vehicles.

Figure 2: The resulting control flow (S,CCF ) calculated by
scheduling agents: each block represents a vehicular cluster.
The shaded blocks represent the delayed clusters.

To collaborate with neighbor intersections, each intersec-
tion receives a projection of expected outflows from its up-
stream neighbors and plugs it into its local computation. Af-
ter starting to execute its schedule, the resulting flows are
communicated to its downstream neighbors. Since a vehi-
cle may enter into/leave from intersection via different road
segments, the clusters that are propagated to neighbors over
extended look-ahead horizon H are split and weighted by
turning movement proportion. Thus, the weight |c| of the
non-local cluster will be a fractional number to reflect the
uncertainty of movement. The turning movement proportion
data is estimated by taking average of traffic flow rates for
different phases. All approaching vehicles are sensed through
the intersection’s lane detectors.

Learned Parameter: Maximum Green Time Schedule-
driven traffic control has several parameters in its model and
some of them need to be updated or configured according to
the traffic condition. In this section, we introduce maximum
green time Gmax, a parameter that upper bounds the duration
of phase and has impact on average delay performance. It can
be understood as deciding when to cut off vehicular clusters
(in the worst case).

The phase duration of each phase i is constrained to be
within [Gi,min, Gi,max], in which Gi,min and Gi,max are
respectively the minimum and maximum green times for
phase i. Gi,min is usually configured for pedestrian safety
reasons, i.e., how long a pedestrian should take to cross street.
Gi,max, alternatively, is designed to ensure fairness, but can
lead to significant inefficiencies if set improperly. For in-
stance, a too small Gi,max may cause traffic signal to switch
too frequently and lower the service rate. On the other hand,
a too long maximum green time could cause queues of the
competing phase to grow without bound. Note that it is not
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always advantageous to have longer Gmax. Correctly setting
maximum green time will assist the lower-level planner to
perform better under different traffic conditions.

Background

Deterministic Policy Gradient (DPG) Algorithm Policy
gradient methods are widely used in a variety of reinforce-
ment learning problems. The main idea is to directly opti-
mize the parameters θ of policy πθ(a|s): S × A �→ [0, 1],
where state space S could be discrete or continuous and
action space A is discrete, in order to maximize the objec-
tive J(θ) = Es∼pπ,a∼πθ

[R] by taking steps in the direction
of gradient ∇θJ(θ), where R =

∑T
t=0 γ

trt. Using the Q
function, the gradient of the policy can be written as

∇θJ(θ) = Es∼pπ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)], (1)

where pπ is p(s). It is also possible to extend policy gra-
dient to deterministic policies μθ(s) : S �→ A (Silver et
al. 2014), where state space S could be discrete or continu-
ous and action space A is continuous. It is especially useful
for configuring parameters of the model. We can write the
gradient of the objective J(θ) = Es∼pμ [R(s, a)] as

∇θJ(θ) = Es∼D[∇θμθ(s)∇aQ
μ(s, a)|a=μθ(s)], (2)

where the state s is drawn from experience replay buffer D.
Deep deterministic policy gradient (DDPG) is a variant of
DPG where the policy μ and Q function Qμ are approximated
with deep neural networks.

Coordinated Reinforcement Learning Coordinated rein-
forcement learning is a method for agents to select coop-
erative actions under multi-agent setting. In this approach,
agents make coordinated decisions based on structured com-
munication between agents and share information to achieve
a principled learning strategy. We can show that if the global
utility function Q is approximated by the sum of local util-
ities Qj , then it is possible to use the coordination graph
(Guestrin, Lagoudakis, and Parr 2002) to compute the maxi-
mizing joint action efficiently. The coordination is achieved
using the max-plus algorithm (Kuyer et al. 2008), which esti-
mates the optimal joint action by sending locally optimized
message among neighbor agents.

Temporal Abstraction Learning and operating over dif-
ferent levels of temporal abstraction is a key challenge
in tasks involving long-horizon planning (Dietterich 2000;
Kulkarni et al. 2016). In hierarchical deep reinforcement
learning (HDRL), the agent uses a two-stage hierarchy con-
sisting of a controller and a meta-controller. The meta-
controller receives a state and chooses a goal. The controller
selects an action using state and goal. The reward function
for the controller is to maximize cumulative intrinsic reward
that depends on the goal set by the meta-controller. Simi-
larly, the meta-controller attempts to maximize the extrinsic
reward received from the environment. The time-scales for
the two controllers are different. For certain applications,
combining planning and learning is more efficient than the

pure hierarchical learning solution. For instance, planning
could replace the controller in HDRL to minimize objective
directly without training overhead.

A Fully Decentralized Hierarchical Algorithm

System Model The system of interest is an urban road net-
work. The connectivity of the network is represented by a
graph G = (V,E) as shown in Figure 3, where V is the set of
nodes and E is the set of links. We consider a network consist-
ing of |V | nodes (intersections) and |E| links (road segments).
Each node has a scheduling agent to serve jobs (clusters) be-
longing to specific classes. On the link (i, j), the node j has a
corresponding queue to buffer approaching jobs. The schedul-
ing agent can only serve one queue at a time. Given the
observations of all agents, each agent is able to learn a param-
eterized policy μθ to configure G = [G1,max, · · · , GP,max],
where P is the number of input queues. In the following
sections, we assume the number of input queues is equal to
the number of phases and and we assume that all agents have
the same number of queues to simplify the formulation.

From Centralized to Decentralized Critic Since the
problem of scalability is a critical issue of urban traffic con-
trol systems, we adopt the framework of decentralized train-
ing over the recent trend of centralized training with de-
centralized execution. Moreover, we allow the policies to
use exchanged neighbor information. Before introducing the
fully decentralized algorithm, a globally optimal formula-
tion is provided as an initial step for deriving decentralized
method. Consider a queueing network with N scheduling
agents with policies parameterized by θ = {θ1, · · · , θN} and
let μ = {μθ1 , · · · , μθN } be the set of all agents’ continuous
policies used for setting G. Then, we can write the gradient
of the global expected delay to θi as:

∇θiJ(μ) = Es∼ρμ

[∇θiQ
μ(s,μ)

]
(3)

= Es∼ρμ

[∇θiμθi(s)∇ai
Qμ(s,a)|ai=μθi

(s)

]
,

where s is a true network state and Qμ(s,a) is the centralized
critic. The multi-agent environment we consider is a queueing
network, so that the centralized critic can be decomposed into
terms that involve the connecting link of two adjacent agents
(intersections).

Qμ(s,a) =
∑

(n,m)∈E

Qμ
n,m(s, an, am). (4)

We replace the centralized critic with right term of (4) and
get

∇θiJ(μ) =

Es∼ρμ

[∇θiμθi(s)∇ai

∑

(n,m)∈E

Qμ
n,m(s, an, am)|ai=μθi

(s)

]
.

(5)

With (5), the gradient can be simplified further by the follow-
ing proposition.
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Proposition 1. With G = (V,E), the gradient of centralized
critic in terms of ai can be simplified to

∇ai

∑

(n,m)∈E

Qμ
n,m(s, an, am) = ∇ai

∑

j∈Ni

Qμ
i,j(s, ai, aj),

(6)
where Ni is a set of neighbor agents of the local agent i.

Proof. The proof is straightforward since all irrelevant terms
to ai can be eliminated from the gradient due to the structure
of the graph G.

Approximated Network State and Loss In the simplest
case, network state s could consist of the observations of all
agents, however, for a decentralized real-time application it
is not practical to hold such assumption. In the decentralized
systems, since the Qμ(s,a) is learned separately, agents are
allowed to access different state information and arbitrary
reward structures, including a shared reward in a cooperative
setting. Given that, we assume that each agent i is able to
access the local observation of queue length:

qi(τ) = [q1,i(τ), · · · , qP,i(τ)], t ≤ τ < t+ T,

and the number of arriving vehicles sent by neighbor inter-
sections:

ci(τ) = [c1,i(τ), · · · , cP,i(τ)], t ≤ τ < t+ T,

where P is the number of input queues (i.e., phases), t is
the last time step when Gi is updated, and T denotes the
number of time steps until Gi is updated. The network state
can thus be expressed by s = {q1, · · · ,qN , c1, · · · , cN}.
Furthermore, each agent i obtains average delay (i.e., di(τ) =
1/|S|∑|S|

k=1 d(ck)) at each time step as a loss sample (i.e., it
is equivalent to a negative reward −ri(τ)) of the state and
agent’s action. Every time when the replanning is executed,
the online planner will forward: a) current queue length, b)
neighbor arrival information, c) average delay dj(τ) and d)
maximum green time Gj from neighbor scheduling agents to
upper reinforcement learner. After obtaining the observations
within T steps, the policy μθ outputs maximum green time
Gi that will be applied for next T time steps. The learned
policies minimize the expected shared delay for each agent
respectively.

To be efficient in terms of both data size and computation
for longer time-scale, we compact the samples that constitute
the state and loss by taking averages. q̂i and ĉi ∈ R

P denote
the sample mean vectors with P dimension (i.e., P queues)
within T time steps such that

q̂i = [q̂1,i, · · · , q̂P,i], (7)

where q̂p,i = 1
T (qp,i(t) + · · ·+ qp,i(t+ T − 1). It is similar

for the case of ĉi. On the other hand, loss function (shared
delay) is obtained through averaging among neighbors and
local agent: l̂i = 1

T×(|Ni|+1)

∑
j∈Ni∪i

∑t+T
τ=t dj(τ).

Since each agent learns the policy independently, each
agent needs to maintain an approximation of centralized
critic, i.e.,

∑
j∈Ni

Qμ
i,j(s, ai, aj), by itself. To enable the

decentralized learning, we define the following approximated
network state for agent i:

Definition 1 (Approximated Network State of Agent i). The
concatenation of local queue information and neighbor ar-
rival information, which is [q̂i, ĉi], is defined as approxi-
mated network state for agent i.

Figure 3: The approximated network state for agent i is com-
posed of q̂i and ĉi, where q̂i is the time average of local
queue length qi(t) and ĉi is the time average of the commu-
nicated number of arriving vehicles ci(t).

Hence, to approximate the gradient of the centralized critic,
each agent takes approximated network state s ≡ [q̂i, ĉi],
ai ≡ Gi and aj ≡ Gj as the inputs of action-value function:

∑

j∈Ni

Qμ
i,j(s, ai, aj) =

∑

j∈Ni

Qμ
i,j([q̂i, ĉi],Gi,Gj), (8)

The approximated network state for agent i in a graph G is
illustrated in Figure 3.

Counterfactual Deterministic Baseline Since we con-
sider the problem of searching for policies to maximize an
estimated network-level utility function, the gradient com-
puted for each intersection does not explicitly reason about
how the actions made by a particular agent contribute to the
utility function and becomes noisy for multiple neighbors.
Therefore, we adopt the concept of counterfactual baseline,
in which each agent learns from a shaped reward. Compared
to the stochastic case, the deterministic case cannot marginal-
ize out Gi through averaging over actions. Hence, we apply
time-averaged value function over the historical actions of
agent i as the baseline to compute the advantage function:

Aμ
i (s, ai, aNi) =

∑

j∈Ni

Qμ
i,j([q̂i, ĉi],Gi,Gj)

− 1

KT

K∑

k=1

∑

j∈Ni

Qμ
i,j([q̂i, ĉi],G

t−kT
i ,Gj) (9)

, where aNi represents the set of neighbor actions and K is
the number of saved historical actions. If we also replace s
of μθi(s) with [q̂i, ĉi], the gradient of the advantage function
with respect to agent i can be written as:

∇θiJ(μ) = Es∼Di

[∇θiμθi (s)∇Gi
Aμ

i (s, ai, aNi
)|ai=μθi

(s)

]

(10)
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The following lemma establishes the convergence of this
gradient to a local optimal value of (8). The proof follows di-
rectly from the deterministic gradient policy theorem (Silver
et al. 2014).

Proposition 2. For a full decentralized actor-critic algo-
rithm following (10) at each iteration, the global performance
converges to a local optimal value.

Proof. Since the deterministic gradient of the time-averaged
baseline function does not depend on current Gt

i that is a
function of state [q̂i, ĉi], then we get

Es∼Di

[∇θi

1

KT

∑

k=1···K

∑

j∈Ni

Qμ
i,j([q̂i, ĉi],G

t−kT
i ,Gj)

]
= 0.

Thus, (10) is equivalent to the DPG of (8).

Here the experience replay buffer Di contains the tuples
(s′, s, ai, aNi , l̂i) ≡ ([q̂′

i, ĉ
′
i], [q̂i, ĉi],Gi,GNi , l̂i) for the

agent i. The decentralized action-value function Aμ
i is up-

dated as:

L(θi) = E
[
(Aμ

i (s, ai, aNi
)− y)2

]
, (11)

y = −l̂i + γAμ
i (s

′, a′i, a
′
Ni

)|a′
i=μθi

(s)

Inferring Policies of Neighbor Agents To remove the as-
sumption of knowing neighbors’ configured GNi

required
in (11), each agent can adopt an online regression algorithm
to estimate neighbors’ actions, e.g., online passive-aggresive
regression algorithm (Crammer et al. 2006). We take the cur-
rent action, i.e., Gj , to predict Ĝ′

j = wt · Gj and update
the weight vector after receiving the actual G′

j according to:
wt+1 = wt + sign(G′

j − Ĝ′
j)τtGj , where τt = lt/‖Gj‖2,

lt = max(|wt ·Gj −G′
j |− ε, 0)and ε is a positive parameter

that controls the sensitivity of predictions.
We learn the weights of actor-critic network and apply

planning at different time-scales. Local queue information
and cluster information from neighbor intersections are col-
lected at every time step after replanning, but the parameters
of scheduling model are only updated after T time steps. The
new Gi is drawn in an ε−greedy fashion with the exploration
variance v annealing as learning proceeds. In the planner, the
delay and observation of replanning are collected at every
time step.

Experimental Evaluation

To evaluate our approach, we simulate performance on a
two-intersection model and a real world network. The two-
intersection model is for studying how different parameters
affect performance. We compare parameters that is config-
ured on-line by a learned policy with fixed parameters. The
real world network is for evaluating the performance of hi-
erarchical approach in a larger complex real network. The
simulation model was developed in VISSIM, a commercial
microscopic traffic simulation software package. We assume
that each vehicle has its own route as it passes through the net-
work and measure how long a vehicle must wait for its turn to
pass through the intersections (the delay). In our experiments,

since one traffic phase may be composed of multiple lanes
(queues), we use a composite queue that contains multiple
queues corresponding to a specific traffic phase as a feature
of the state. Tested traffic volume is averaged over sources
at network boundaries. To assess the performance boost pro-
vided by the proposed algorithm, we measure the average
waiting time of all vehicles over ten runs. All simulations run
for 3.5 hour of simulated time. Results for a given experiment
are averaged across all simulation runs with different random
seeds.

Two-Intersection Model We consider a simple two-
intersection model with 2-way, multiple lanes, and multi-
directional traffic flow as controlled experiments. The source
of traffic are assumed to be stationary and set to 2800
cars/hour. In this simple model, there is only one connecting
road segment.

Two different RL algorithms are implemented. First, we
base our DDPG for continuous actions, where both actor
and critic network have two 30-unit hidden layers, and the
chosen activation unit is rectified linear unit (ReLU). A single
network is used to approximate critic (8) by incorporating
neighbor actions. For deterministic policy, we apply tanh as
output function to constrain output within [−1, 1]. We set γ =
0.99, learning rate α = 0.001 for actor and α = 0.002 for
critic. Experience replay is applied with the size = 500 and the
replace frequency of updating the two networks are calculated
using exponential moving average (EMA) over the time steps
necessary for each traffic phase. For both algorithms, we train
the model for 10 simulation hours and test the performance
for 1 simulation hour over 10 runs with different random
seeds. Here two phase cycles are referred to be the long
time-scale T , and length of history K = 2 for computing
advantage function. Second, we apply the double Q-network
with experience replay and frozen target. Both action-value
functions Q1 and Q2 share same network structure, which has
three hidden layers with 15, 20, 10 units for each. The actions
comprises three outputs corresponding to [60s, 90s, 120s].
Other setting is same as DDPG.

In Table 1, we can observe that for a fixed traffic condition
(2800 vehicles/hour), choosing different parameters could
provide a substantial reduction on average delay. For instance,
the delay of benchmark parameter (50s, 90s) is lower than
(50s, 60s) by nearly 25%. The table shows how the delay is
affected by choosing different parameters, and there exists
an optimal parameter values. DQN and DDPG approaches
generally outperform fixed parameter settings we manually
set. Furthermore, applying deterministic policy is able to have
better performance compared to discrete actions (DQN).

Urban Network Model We compare our hierarchical al-
gorithm to two other real-time traffic control methods: 1)
First, we take the performance of the original schedule-driven
traffic control system (Xie, Smith, and Barlow 2012) as our
baseline system. 2) Second, we compare to a variant of cycle-
based adaptive control that optimizes cycle time, phase split
and timing offset of successive signals every cycle. The
basic concept of cycle-based adaptive control is to calcu-
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Table 1: Summary of two intersection model results

Average Delay (second) No. of stops

mean std. mean

DQN 63.78 53.35 1.75
DDPG 57.80 47.86 1.59

Bench (50s, 60s) 89.62 78.64 2.91
Bench (50s, 90s) 67.66 55.50 1.91
Bench (50s, 120s) 73.49 62.18 2.34

late cycle time based on estimation of saturation flow rate
(Webster 1958) and allocate green time according to flow
ratio on each phase. A well known of this type of adap-
tive control scheme is SCATS system (DAIZONG 2003;
Wongpiromsarn et al. 2012). 1

Figure 4: Map of the 24 intersections in the Baum-Centre
neighborhood of Pittsburgh, Pennsylvania

The network model is based on the Baum-Centre neighbor-
hood of Pittsburgh, Pennsylvania as shown in Figure 4. The
network consists of 24 intersections that are mainly 2-phased.
It can be seen as a two-way grid network. To explore how
the proposed algorithm performs under different demand,
we categorize traffic demand into three different groups. We
use highest and lowest averaged traffic volume from actual
traffic data observed for the Baum-Centre traffic network as
our high and low demand levels, and designate the middle
point of these two values as the medium demand, which are:
low (472 cars/hour), medium (708 cars/hour), and high (1056
cars/hour). Two phase cycles are still referred to be T , and
K = 2. Episodic RL is applied in this model to tackle ir-
reducible state transition since high demand scenario could
cause a ”terminate” state in which queuing stability is lost,
queue length increases without bound, and the system is not
able to return the stable states. With this situation, we need to
reset our training by starting a new episode. Here one episode
is defined as 3.5 hours corresponding to a period of peak
hour. Similarly, we train the model for 35 simulation hours
(10 episodes) and test the performance for 3.5 simulation
hours over 10 runs with different random seeds. The delay
corresponding to different episodes are plotted in Figure 5.
It shows a decreasing trend along with increasing episode
number.

1Note also that previous research with the baseline schedule-
driven approach has shown its comparative advantage over other
online planning approaches (Xie, Smith, and Barlow 2012).
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Figure 6: Costs of actor and critic under high traffic demand.

The model architecture and setting are the same as two-
intersection model other than an enlarged experience buffer
size = 1000. Table 2 shows the hierarchical approach to yield
an improvement over the schedule-driven approach of about
30% and the cycle-based adaptive control of about 35% for
the high traffic demand case. For low and medium traffic, the
average delay of the three approaches are comparable. Since
we use the queue length and the number of arrival vehicles
as state to configure parameters, low and medium may not
have noticeable state transition to adjust policy. Especially,
the parameter we choose to optimize is maximum green time.
Under low and medium demand, the scheduler is already able
to allocate green time efficiently. If we choose different pa-
rameter to optimize, it may express different behavior under
low and medium demand. In addition, the learning costs of
two neural networks are shown in Figure 6. We can observe
that after 4th episode the costs already converge. A visualiza-
tion of testing policy function is also plotted in Figure 7 and
shows a non-linear relationship between the queue length and
the parameters.

We also test the hierarchical algorithm under non-
stationary traffic demand, which is closer to real-world
scenarios. All simulation runs were carried out according
to a realistic traffic pattern from late afternoon through
”PM rush” (4-6 PM). The traffic pattern ramps up vol-
umes over the simulation interval as follows: (0-30mins: 472
cars/hour, 30min-1hour: 708 cars/hour, 1hour-2.5hours: 1056
cars/hour, 2.5hours-3hours: 708 cars/hour, 3hours-3.5hours:
472 cars/hour,). This simulation model presents a complex
practical application to verify the effectiveness of the pro-
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Average Delay (second) and Number of Stops

Benchmark Hierachical Cycle-based Adaptive
mean std. stop no. mean std. stop no. mean std. stop no.

High demand 212.14 361.41 9.55 132.98 92.95 6.76 230.26 279.19 12.34
Medium demand 84.22 61.90 6.34 82.56 55.84 4.56 86.46 61.40 8.78

Low demand 71.84 54.25 6.12 72.10 49.11 4.23 73.89 56.77 8.11
PM rush hour 147.00 177.94 8.27 113.89 88.24 5.10 169.23 265.91 10.81

Table 2: Average delay under different scenarios.

Figure 7: Visualization of policy μ(s) at two-phased Centre-
Aiken intersection

posed approach. The simulation time, T and K are same as
the categorized cases.

Table 2 also shows the results of hierarchical approach
under PM rush, compared to cycle-based adaptive control ap-
proach and the baseline schedule-driven approach. As can be
seen, delay is reduced by 23.13% and 33.14%, compared to
the schedule-driven and adaptive control approaches respec-
tively. The use of learned policy reduces delay by balancing
the maximum green time among phases. The learned policy
is also able to coordinate intersections through incorporat-
ing neighbor schedule information. In addition to delay, the
number of stops of hierarchical approach is nearly half of
cycle-based adaptive control. Note that using learned policy
to configure Gmax is actually similar to the effect of clear-
ing queues of waiting vehicles and reducing the deleterious
effects of spillback (Daganzo 1998) by stopping vehicles
further away from entry into a road segment with insufficient
capacity.

Since traffic conditions are dynamically changing, know-
ing the distribution of delay to vehicles helps us verify the ef-
fectiveness of the proposed hierarchical algorithm. As shown
in Figure 8, using learned policy shifts the cumulative dis-
tribution function (CDF) leftward and provides a 17.08%
improvement over the schedule-driven approach for 90% of
the vehicles. Note also that while the proposed approach
reduces average delay by 40s, the reduction is more than
100s for the congested vehicles. In other words, configuring
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Figure 8: The cumulative distribution function of delay.

maximum green time correctly is especially effective for high
congestion scenarios. In comparison to adaptive control, it
provides a 18.26% delay reduction for 90% of the vehicles.

Conclusion

In this work, we considered the limitations of prior ap-
proaches to schedule-driven traffic control that rely on a
fixed model without regard to potential consequences due to
incorrect configuration of parameters. A fully decentralized
hybrid algorithm is proposed to achieve better network-level
performance in circumstances of high traffic demand. In this
algorithm, each agent has two hierarchical modules, where
the lower-level module is responsible for generating con-
tinuously generating schedules to control the traffic signal,
and the upper-level module learns a policy for configuring
model parameters, based on the samples collected from the
lower-level module. Briefly, the planning module focuses
on short-term traffic variation, while the learning module
focuses on long-term performance. Moreover, learning and
planning achieve better performance through exchanging in-
formation, i.e., online planning utilizes neighbor schedule
information to extend the look-ahead horizon; reinforcement
learning generates better coordinating policies by including
neighbor information as an explicit state feature. Experi-
mental results showed that the hierarchical model improves
cumulative delay overall in comparison to both the baseline
schedule-driven traffic control approach and a cycle-based
adaptive traffic signal control approach, and that solutions
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provide substantial gain in highly congested scenarios.
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