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Abstract

The creation and maintenance of a domain model is a well
recognised bottleneck in the use of automated planning; in-
deed, ensuring a planning engine is fed with an accurate
model of an application is essential in order that generated
plans are effective. Engineering domain models using a hy-
brid representation is particularly challenging as it requires
accurately describing continuous processes, which can have
complex numeric effects. In this work we consider the prob-
lem of the refinement of an engineered hybrid domain model,
to more accurately capture the effect of the underlying pro-
cesses. Our approach exploits the information content of the
original model, utilising machine learning techniques to iden-
tify important situation and temporal features that indicate a
variation in the original effect. We use the problem of mod-
elling traffic flows in an Urban Traffic Management setting as
a case study and demonstrate in our evaluation that the refined
domain models provide more accurate simulation, which can
lead to higher quality plans. The contribution of this work is a
general approach to the automated refinement of hybrid plan-
ning domain models that reduces the knowledge engineering
effort in producing a detailed process model. The approach
can be used for refining the domain model during the ini-
tial stages of development, or for re-configuring the domain
model when used in the same problem area but with a dif-
ferent scenario. We test out the approach within a real world
case study.

Introduction

In automated planning, it is common to formulate all the
knowledge required to solve a problem within a precise
planning description language, independently of the plan-
ning engine that will be used to generate a solution plan.
Capturing this knowledge is a well recognised bottleneck in
the use of automated planning: the problem formulation (of-
ten split into a model of the dynamics of the domain, and
a model of the problem instance) is an abstraction of some
real planning problem, and if it lacks some details or is in-
correct then the wrong planning problem will be attempted.
In particular, for the planner to be able to generate accu-
rate plans, the domain model must adequately capture both
a declarative description of the dynamics of the application
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and its simulation during plan execution. Various lines of re-
search have focused on the domain model accuracy problem,
from as far back as Benson’s thesis (Benson 1996) to more
recent work on Space applications (Clement et al. 2011;
Frank 2015), and the related area of model incompleteness
(e.g. as referred to in (Zhuo, Nguyen, and Kambhampati
2013)).

Even if planning is restricted to discrete models, vali-
dating that the model is an accurate representation may be
a challenge. If the model is hybrid, involving continuous
changes to variables, the burden on the knowledge engineer
is greater, since the encoding of continuous changes are typ-
ically more difficult than the encoding of discrete changes.
This is particularly apparent in applications to physical sys-
tems where it can be necessary to use richer languages to
capture the dynamics of continuously changing phenomena
in an environment (Say et al. 2017). Further, it may be that
modelled processes change their behaviour over time, and
the model has to be constantly maintained. Or it may be that
there are many similar processes in the domain, but each is a
variant over the space that the planning function is aimed at.
In these cases, producing a faithful hybrid planning domain
model a priori, is indeed a challenge.

Our research is aimed towards creating a general method
for the automated refinement of pre-engineered hybrid do-
main models, suitable for automated planning in real world
environments. In this paper a method for the refinement of
domain model process descriptions is described, utilising the
PDDL+ language (Fox and Long 2002) for model encod-
ing. PDDL+ has the advantage that it is usable by a range
of planners, and it has a well defined declarative and oper-
ational semantics. The approach is designed so that the re-
sulting refined domain model will retain (a) its original lan-
guage - PDDL+ (b) its efficiency, in terms of plan simulation
and plan generation (c) its readability so that changes can be
explained in terms of high level features. We illustrate and
evaluate the approach using a case study from the domain of
Urban Traffic Management. A PDDL+ model of traffic flow
is utilised based on earlier work in this area, and an indus-
try standard, proprietary simulator called AIMSUN (Barceló
and Casas 2005) is used to provide process training data.
Our evaluation demonstrates that simulation using the re-
fined domain model is closer to the behaviour of the actual
processes being modelled, and when using expert selected
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Figure 1: The system operates from a domain model, DM .
A plan, π, can be observed as it is executed in the environ-
ment (ENV), resulting in observation traces (obs). A predic-
tive model is learned to capture the difference between the
observations (obs) and expected results (with respect to DM)
using machine learning (ML).

features the plans produced with the refined domain are of
higher quality than the original. Further, we show that the
simulation time efficiency of the model increases only lin-
early with the complexity of the refinement step.

Preliminaries

Consider applications involving both plan generation and
plan execution, where in execution mode sensors are avail-
able that can supply the current state of the system. State
information may be obtained from the interpretation of a
stream of such sensor information from the environment, or
be supplied by virtual sensors from a simulator which repre-
sents the real environment (Clement et al. 2011). This sensor
feedback is often required in planning and execution so that
the planner can monitor a generated plan’s execution, and
check it is having the expected effect, with the possibility of
re-planning if actual and expected diverge. Additionally, in
our approach, this state information is used to drive refine-
ment of the domain model.

The method used in this paper is summarized as follows,
and outlined in Figure 1: a planning application is being un-
dertaken in which knowledge engineers have developed a
hybrid domain model DM to the point where an available
planning engine can generate plans for the application, but
the planning engine’s simulation does not accurately match
the state information extracted from the sensors due to in-
accurate process descriptions. Given that a process P in the
DM changes a set of continuous variables V , for each v in
V , assume the effect of P ’s corresponding domain process
is dependent on some subset of state variables captured in
DM . From the environment ENV (see Figure 1), observa-
tion traces of external states obs are obtained. A learning
method uses them to discover an expression, incorporating
a combination of state variables from DM , which best pre-
dicts the effects on v as found in the external states, and
replaces the original expression with the discovered expres-
sion in the process specification. The DM is then replaced
with the new version DM ′.

To make this method concrete, and evaluate it on a real
planning application, we have used the PDDL+ encoding
(Fox and Long 2002) for hybrid domain models, and the
ENHSP planner (Scala et al. 2016) to generate plans when
input with a task and a domain model. In a PDDL+ en-
coding, a hybrid planning model involves time-dependent

discrete-continuous changes in the numeric resources which
can be encoded with three main components: processes, ac-
tions and events. A process simulates continuous changes
on numeric variables, which can be initiated or terminated
by an action/event whereas an event can be triggered by the
external environment to bring about discrete changes.

Motivating Example Domains: Consider as a simple ex-
ample a model of the Bouncing Ball domain1 with no fric-
tion and where the ball has perfect elasticity i.e. no energy is
lost upon bouncing. The original process describing the ball
movement is called ball-movement, and may be engineered
using the known gravitational equation. If it were possible to
collect accurate and representative data on the position and
velocity of the ball, the model could be refined to better fit
reality - in this case we assume by finding the appropriate
friction coefficients. The model would be refined in accor-
dance with the data by learning scaling factors that act on
the increase in velocity. This can be achieved by splitting
the ball-movement process into (e.g.,) two new processes by
adding as preconditions whether velocity >= 0 or < 0 and
treating each case individually. For example, the falling fric-
tion might be observed as 0.8. However, when the ball is
rising, both gravity and friction pull the ball back, resulting
in a rising friction coefficient bigger than 1, e.g. 1.2.

As another example, consider a fixed angle solar panel
used for charging,2 where the original engineered model as-
sumes a constant rate of charge. The amount of electricity
it receives, however, is a function of the time of the day,
weather etc. Given a set of training data containing time,
weather, etc, and the charging effect, the PDDL+ domain
model can be refined into multiple charge processes to im-
prove accuracy. This illustrates a potential trade-off between
accuracy vs computational complexity: the more accurate,
the more processes need to be checked for applicability.

As an in-depth case study, for the rest of this paper, the
domain of Urban Traffic Management (UTM) is used. (Val-
lati et al. 2016) introduced a hybrid planning approach using
a PDDL+ representation to solve traffic management prob-
lems involving congestion in both unexpected and regular
road traffic. In their macroscopic model of UTM, a road net-
work is represented by a directed graph where the edges and
vertices denote the road links and junctions (the entry/exit
point of the road links) respectively. Each connected en-
try/exit pair is called a turn and the traffic flow through a turn
(here called the turn rate) is measured in standardized vehi-
cles (PCU) per second. Flow across a junction is organised
by grouping these turns into stages (representing the stages
of traffic signals) and then selecting durations for each of
these stages. Each road link has a maximum capacity, and
the occupancy of a road link denotes the current number of
PCUs within it. This approach was used in feasibility trials
and incorporated a simple description of the flow process
(called flowrun green), which took no account of the chang-

1Similar to the example in Coles’s tutorial http://cognitive-
robotics17.csail.mit.edu/docs/tutorials/Tutorial8 Planning in Hyb
rid Domain.pdf

2A good example is the satellite cooled domain, see
https://nms.kcl.ac.uk/planning/software/colin.html
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ing features of the road network (McCluskey and Vallati
2017). The use of this case study in this paper is to demon-
strate the utility of learning an improved specification for
the flowrun green processes, which leads to more accurate
simulation and better solution plans.

Process Refinement

Key to the method is to replace a domain model process with
a set of more targeted processes that will each better capture
the effects of the observed process in specific situations. An-
other important feature is that effect modifying factors are
learned, which instead of overwriting the original specified
effects, adjusts them. The motivation here is that in focusing
on refining the process descriptions we exploit the existing
structure and information content within the existing model.

For example, a process in the world being modeled
might require a warm up period, which can be better rep-
resented by separating the process’s first n seconds of op-
eration and reducing the process’s effect in that initial pe-
riod (e.g., queuing PCUs getting up to speed when signals
have changed). The method learns this by constructing a
set of processes that each define the process’s effect for
a more specific situation. This requires that the new pro-
cesses have extended preconditions, as illustrated by the
refinement-condition predicates in Figure 3. The
new process also defines factor terms (highlighted in red),
which are specified for each of the continuous effects of the
process.

The context that we have selected for process refinement
includes both temporal and situational aspects, which can
both impact on the effect of continuous transitions.

Temporal Features: process effects can change depend-
ing on how long the process has been active, e.g., waiting
PCUs getting up to speed when a stage becomes active. In
order to allow the refined processes to reflect this change,
the context includes the time since the process became ac-
tive. Notice that this part of the context is treated in the same
way as the functions in the state features (described next).

State Features: a process’s effect may also be different
when certain state relationships exist (e.g., turning across
a busy road will reduce turnrate). The context that we use
for learning includes all of the predicates, both numeric and
propositional, which can be referenced by the parameters of
the process. The parameters of the original process are used
to create the context, as naturally the factors that impact on
a processes’ behaviour are most likely related to the param-
eters of the process. Moreover, by focusing the context it
should allow less data to be used, while still learning pro-
cess specific phenomena. For example, there will be fewer
correlations with external features that might be specific to
the gathered data. Another reason is that including additional
parameters further increases the computational complexity
of the model.

Feature Space: Using the temporal and state features of
the PDDL+ encoding of the domain as specified above,

the feature space is constructed automatically. In order to
support a general method of refinement we have designed
a language for generating numeric features and proposi-
tional terms that supports a variety of common relationships.
Propositional terms are included directly from the context,
while numeric features are built from any function in the
context (denoted f [y0, . . . , yn]) using the free variables of
the process header (X). The language is specified as follows:

T [X] ::=(T [X]RT [X]) | f [y0, . . . , yn], yi ∈ X

R ::= + | − | ∗ |/
We define the depth of a numeric term depth(T [X]), as
the count of the number of function terms in T[X], e.g.,
depth[(+ (occupancy ?r1) (occupancy ?r2))]= 2. The set
of features are then generated by fully expanding the ex-
pressible terms in the language up to a defined depth. In this
case this constructs expressions that build from the func-
tions of the domain using the typical binary relationships:
{+,−, ∗, /}.

Refinement as a Learning Problem

Multi-target regression methods are used on learning prob-
lems where a model that relates the set of input features
to a set of target outputs is sought. The approach is used
here with one target output for each of the process’s contin-
uous effects. This allows a single model to be learned for
each process, which can be more concise than if a model is
learned for each target variable, as well as being more prac-
tical for encoding back into PDDL+. The learned model can
be used to identify the appropriate factor for each effect at
any state. The approach which relates state observations to
active processes is similar to the deictic representation de-
veloped for learning action models in (Mourão, Petrick, and
Steedman 2010).

The input data is modified into a process orientated form,
for a process P , as illustrated in Figure 2. For each time
point, t, and active process, p (an instantiation of P ), a
learning example, 〈p.X, tactive, s〉 describes: p.X , a process
header, tactive, the active time of the process and s, the state.
Figure 2 (a) and (b) illustrates this for t = x+ δ: the process
flowrun green is active from x and has been active for
δ at time t. Each of these learning examples is used to con-
struct a single data point. The state is generalised by using
the header p.X to replace the constants of the state predi-
cates (numeric and propositional) with the process parame-
ters (Figure 2 (b) and (c)). Any predicates with parameters
that are not replaced (i.e., that have parameters that are not in
p.X) are discarded. This gives a single frame that has been
generalised from its instantiated process, p.

The feature space (as described above) defines lifted terms
(e.g., (/(occupancy ?r1)(capacity ?r1))). The
terms’ values are then evaluated in the generalised states. For
example, in Figure 2 (d) the inserted row records the values
for the occupancies of in and out links and the process active
time are reported for the frame in (c).

The aim for learning is to capture an effect modifying fac-
tor for each of the processes’s effects. The targets are there-
fore computed for each data point, d, and process effect, e,
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Figure 2: For a process that becomes active at time x we have an observation at each observed time point, δ, until it is inactive.
For each time point we extract the relevant information for the process (parameters) and write it in terms of the parameters.
Each process frame becomes a data point for our learning process.

(:process flowrun green-leaf-i
:parameters (?p - stage ?r1 ?r2 - link)
:precondition
(and

(> (occupancy ?r1) 0.0) (active ?p)
(>= (turnrate ?p ?r1 ?r2) 0.0)
(< (occupancy ?r2) (capacity ?r2))
(refinement-condition-1 ?p ?r1 ?r2)
...
(refinement-condition-n ?p ?r1 ?r2))

:effect
(and

(increase (occupancy ?r2)
(* (#t (* refinement-factor-i-1 (turnrate ?p ?r1 ?r2))) )

(decrease (occupancy ?r1)
(* #t (* refinement-factor-i-2 (turnrate ?p ?r1 ?r2))))))

Figure 3: An example of process refinement using the
flowrun green process. A set of conditions (bold) identify
sets of states where it is appropriate to modify the process’s
effect using a factor (red).

as factor = obsd(e)
modd(e)

, where obsd(e) is the observed effect
and modd(e) is the modelled effect. In Figure 2 (d) this is
illustrated for the two flowrun green effects: increasing the
occupancy of the out link (+occ’?r2) and decreasing the oc-
cupancy of the in link (-occ’?r1).

Finally examples and features are pruned: i) Features are
pruned where any evaluation leads to an undefined value
(i.e., the result of the expression is not defined). This would
suggest that the feature might lead to undefined values dur-
ing planning. ii) Propositional features are pruned if their
value is the same across all examples. iii) Examples are
pruned where the target is not defined (i.e., where the mod-
elled effect is 0).

The result is a consistent set of features and targets for ex-
amples across all of the instantiations of the process that can
be addressed as a general machine learning with optimisa-
tion function:

argmin
M

∑

d∈DB

∑

e∈EFF (p)

[obsd(e)−Md(e) ∗modd(e)]
2

function Reprocess(obsTrn, obsV al, P,DM ) :
F = chooseFeatures(DM)
trnData = makeProcessOrientated(trnObs, P )
valData = makeProcessOrientated(valObs, P )
t← Root()
GrowTree(trnData, t, F )
PruneTree(valData, t)
RevalueTree(trnData+ valData, t)
P+ = extractProcesses(t, P )
extendModel(DM,P+)

end function

Figure 4: Pseudo code for the Reprocess approach, which
refines a process description. The Reprocess function or-
ganises the data, grows the tree and replaces the original
process with the generated refinements and supporting ex-
tensions (e.g., for maintaining active time features).

Regression Tree Learning

The hypotheses for the process model are represented by
regression trees, as they can be used to approximate com-
plex functions, and algorithms exist that can grow them ef-
ficiently and effectively from observation data. Moreover it
is possible to encode the learned model in PDDL+, as pre-
sented at the end of this section. This contrasts with several
of the alternative representations used for machine learning.
In this section we describe the tree learning approach and
focus on its important aspects.

Hypothesis Construction

A high level description of the Reprocess method is pre-
sented in Figure 4. The method uses both training and val-
idation data sets, which are both pre-processed into process
orientated data points as described in the previous section
(see Figure 2).

At the heart of the approach (i.e., GrowTree), a multi-
target regression tree learning approach based on earlier
work (De’Ath 2002) is used to learn a multi-target regres-
sion tree. The important difference that extends standard tree
learning approaches to multi-target regression is that the cost
function sums error terms for each of the targets. The ap-
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proach greedily identifies conditions that lead to the largest
reduction in the error for the training data. A condition is
used to split the data into two parts: those for which the con-
dition holds and those for which it does not. A child is made
for each of the data sets and the GrowTree process is re-
peated at each child with the associated (and therefore re-
duced) data set. The recursive process is stopped when there
are too few data points at a node, or when splitting has a
small change on the error.

As tree learning approaches can lead to over-fitting, a
validation data set is used in order to inform a tree prun-
ing process (PruneTree in Figure 4). Starting from the leaf
nodes, the process re-evaluates each of the branchings of the
tree and decides whether it provides a sufficient information
gain, given the new data set. If it does not then the node be-
comes a leaf and the branch is pruned. The tree is completed
by re-evaluating the values at the leaf nodes using the com-
bined data sets (RevalueTree).

Feature Selection As the feature space defined above is
potentially large, a pre-processing step is used to identify a
reduced subset of the features that appear most relevant for
use during learning. Two approaches are demonstrated here:
• The first is hand selection. A transport expert who was

involved in the initial engineering of the domain model
indicates which features are relevant to the target.
• The second is to exploit attribute selection, a common

pre-processing step in machine learning applications. A
filter method is adopted which identifies features that are
correlated with the targets, yet uncorrelated with each
other (Hall 1998).

Describing Tree Node Conditions The system must also
generate possible division points for the domains of numeric
functions (e.g., (<=(/(occupancy ?r1)(capacity
?r1))0.8)). A standard approach for regression trees is
used: calculate the value of a feature at each data point (at
the current node), order the values and propose splitting the
feature’s domain in between each pair of adjacent values.
The Model Prediction The value of a tree leaf is calculated
for each of the processes’ effects separately (e ∈ EFF (P ))
as the average of the factors between the modelled value
(modd(e)) and the observed values (obsd(e)) for the data
set (DB) at the leaf node: t.e = [

∑
d∈DB

obsd(e)
modd(e)

]/|DB|
Leaf Cost Function The evaluation of a hypothesis is de-
fined as the sum of the error at each of the tree’s leaves.
This is based on the data at that leaf (DB) and calculates
the squared differences between the observed values and the
modified modelled value (using the tree’s value) for each
data point. In order to use a consistent measure of error we
evaluate the error as the error of the updated process’s effect:
Err =

∑
d∈DB

∑
e∈EFF (p)[obsd(e)− t.e ∗modd(e)]

2

Extracting PDDL+ Processes From a Tree The final step
is to modify the domain model with the refined process
(Figure 4 extractProcesses and extendModel). The tree
conditions themselves are expressible in PDDL. As a result
the path to each leaf node describes a conjunction of condi-
tions that should each hold for the leaf to be appropriate for

1.2;1.2

no
yes

yesno

0.4;0.4 0.8;0.8

(:process flowrun green-leaf-2)
:parameters (?p - stage ?r1 ?r2 - link)
:precondition (and ...

:effect (and

(> (/ (occ’?l1) (cap’?l1)) 0.8)
(<= (greentime ?p) 5))

(increase (occ’ ?r2)
(* #t (* 0.4 (turnrate ?p ?l1 ?l)))

(decrease (occ’?r1)
(* #t (* 0.4 (turnrate ?p ?l1 ?l2)))))

(> (/ (occ’?r1) (cap’?r1)) 0.8)

(> (tactive ?p ?r1 ?r2) 5)

Figure 5: An example decision tree and the resulting re-
fined process generated from one path from the tree root
to a leaf node. In this example the leaf found by going
down the right branch at the root, i.e., (>(/( occupancy
?r1)(capacity ?r1))0.8) and then the left branch,
i.e., (<=(tactive ?p ?r1 ?r2) 5). The factors at this
leaf are both 0.4. These conditions are used to refine the
original process and control when it is applied.

the state. As such the tree is descended and conditions are
recorded at each node (either (<= X) or (notX), for the
left hand branch or (> X) or (X) for the right hand branch)
as illustrated in Figure 5. These conditions are added to the
original conditions to form a larger conjunction. The effects
are then each modified by multiplying the right hand side
of the effect terms by the associated factors learned for the
leaf node. A unique symbol is added to the process name
to distinguish it from the processes constructed for the other
leaves. These processes replace the existing process descrip-
tion.

The tree hypothesis is further examined to determine if
it exploits any features that relate to the active time of the
process. If the original model does not already represent the
active time of the process (and the tree uses the features) then
the model is further extended. In particular, for a process, p,
we define a new set of functions (one for each instantiation
of the process): 〈p.name〉 counter. These functions are
maintained by events that start and end the timer and a new
process that records the active time.

Evaluation

Here we report results from experiments with two domains:
the Bouncing Ball domain, which demonstrates the appli-
cation of our framework in a familiar scenario with a con-
strained learning problem, and the UTM domain, which is
extracted from industrial trials of automated planning to
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Figure 6: Height vs. graph for a ball modelled using the orig-
inal, target and learned models in the Bouncing Ball domain.

regulate traffic flow through large urban areas. Whereas in
the Bouncing Ball domain we create our own ground truth
model representing the target of learning,3 in the UTM do-
main no such explicit model is known. In particular with
the UTM domain, we investigate whether the Reprocess
procedure improves simulation accuracy and leads to better
plans in this industrial-strength application.4

Bouncing Ball: Capturing Air Resistance

Experiments with this domain, introduced in Preliminaries,
have been used to investigate the impact of the data set size,
and in particular how the number of training examples can
lead to higher accuracy in the learning problem. Two do-
main models are used: an original model where the moving
process captures frictionless motion, and the target model,
which captures a simple form of air resistance. A collec-
tion of problems with balls starting from various heights was
generated. Plans for these problems were simulated using a
PDDL+ simulator, which was modified to output state ob-
servations at regular intervals. Figure 6 plots height against
time for a ball modelled using the original frictionless model
(where the balls continue bouncing to the same height) and
the target model.

The Reprocess method was used in order to refine the
ball-movement process. The process was repeated using dif-
ferent sizes of training sets and 10 times for each training
set size. The error (mean squared error) on a separate test-
ing set is presented for each training set size in Figure 7. As
expected this illustrates that as the number of examples in
the training set increases the mean error and standard devi-
ation decrease. Figure 6 also plots the ball simulated using
the learned model (1000 examples).

Process Refinement in UTM

A microscopic model of a region of the Manchester (UK)
city centre road network was obtained from the local trans-
port authority and was captured in AIMSUN (Barceló and
Casas 2005): professional modelling and simulation soft-
ware. AIMSUN uses a micro model of the road network,
which has been heavily parameterised to represent individ-
ual PCUs (e.g., aggression level of drivers, bus stops) and

3Ground truth models are often used in planning domain model
acquisition research to assess the quality of a learning technique

4In this context we interpret a better plan as one that concludes
in a state that is closer to the goal (during execution).
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Figure 7: Plotting error (mean squared error) against number
of training examples for learning factors to modify height
and velocity effects of the ball-movement process (to capture
air resistance) in Bouncing Ball.

has been validated against real world data. This level of de-
tail cannot be captured in a macro model; however, our ex-
pectation is that our base line model can be refined in or-
der to better characterise the flow. The model contains c.300
road links and over one hundred junctions, and provides a
challenging test case for this approach. Two subnetworks at
either side of this road network were extracted for the ex-
periments – we denote them RHS and LHS. For each run,
data (including turnrates, active signals and occupancies) is
collected from the simulator at regular intervals. For the ex-
periments we have generated 8, 1 hour long, data sets for
each of the networks. These data sets each start from differ-
ent initial states and have been generated by first planning
from that initial state using the original model and then sim-
ulating the original model’s plan. Each plan provided around
10,000 data points. For each network, the observations for 3
plans were divided into training (75%) and validation (25%)
sets. The remaining 5 simulations were used as the test set.

The starting (original) PDDL+ domain model is the rep-
resentation of the UTM problem domain presented in (Mc-
Cluskey and Vallati 2017), as introduced above. The turn-
rates used to model flow in the original model are speci-
fied for each green time stage and link pair and approximate
maximum average flow.

The Refined Models Two trees were learned for each of
the networks using the training and validation sets described
above. Each uses a subset of the feature set generated by our
system. The first (Expert Assisted) uses features that experts
believed would determine in some way the real traffic flow
rates and the second (Auto) uses the automated process, de-
scribed as follows.

There are 201 features generated (for max depth φ = 2)
from the original domain. For the Expert Assisted approach
the following features were selected: in-link and out-link sat-
uration, proportion of process time (with respect to maxi-
mum stagetime) and approximated maximum turnrate.

For the Auto approach we used a filtering method for fea-
ture selection, which results in a subset of 8 features for the
RHS network and 7 features for the LHS network. The auto
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Figure 8: A comparison of the RHS network occupancies
between modelled (Expert Assisted, Auto and Original) and
those observed in AIMSUN after 300s, 600s and 900s of
simulation.
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Figure 9: A comparison of the LHS network occupancies
between modelled (Expert Assisted, Auto and Original) and
those observed in AIMSUN. Dotted areas indicate standard
deviation.

selected features included 2 (RHS) and 3 (LHS) of the 4 ex-
pert selected features.

Accuracy Through Simulation

In this experiment we examine the accuracy of the model
during plan simulation. During data collection in AIMSUN
we have periodically recorded the occupancies of the links
across the network. The plans that were used to generate
the test data were simulated using the learned and original
models. At each time point we compared the occupancies in
the modelled states against the occupancies in AIMSUN.

We have plotted the squared error observed (between
planning model and AIMSUN) for the Expert Assisted, Auto
and Original models in the two networks (RHS in Fig-
ure 8 and LHS in Figure 9). The results indicate that the
refined model using expert selected features leads to less er-
ror across the network in each of the networks. In the case
of the automatic features, the refined model improves simu-
lation accuracy in each of the subnetworks, although not as
much as for the expert picked features.

Efficiency of Refined Models The more refined the model
the more processes in the PDDL+ domain and consequently
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Figure 10: As the complexity of the refinement is increased,
the computational effort of simulating the model increases.
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Figure 11: PCUs cleared from the goal link (in AIMSUN)
after simulating plans for the three models in the LHS net-
work; goal to clear 500 PCUs (red line).

the longer the simulation time. In Figure 10 we plot the sim-
ulation time (15 minutes simulating a plan on RHS network)
with increasingly complex models (from 0 to 150 decision
tree nodes). It shows that computation time grows in a linear
fashion as a function of the number of nodes in the tree. The
trade-off between accuracy and computation time is applica-
tion specific and will depend on the type of search that will
be used.

Accuracy in Planning

In this experiment we examine the accuracy of the models
in the context of planning tasks in the UTM domain. In this
case we ran AIMSUN three times from each initial state in
our test set. In the first case we generated a plan using the
original model and in the other cases, we generated a plan
using the refined models. Each plan was simulated in AIM-
SUN and stopped when the plan completed. At this stage
the model had predicted that the goal would be achieved.
We then analysed this final state in the simulator in order to
determine whether the goal had been achieved.

For this experiment the goal was to clear 500 PCUs from
a specific link. This was repeated 5 times in each network
(LHS and RHS). We have plotted the number of PCUs that
were cleared from the link at the end of the plan in the case of
each model. The graphs in Figure 11 and Figure 12 show that
the original model over predicts the number of PCUs that
are cleared from the goal link in both networks. In compari-
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Figure 12: PCUs cleared from the goal link (in AIMSUN)
after simulating plans for the three models in the RHS net-
work; goal to clear 500 PCUs (red line).

son, the expert assisted model is able to more accurately pre-
dict the number of cleared PCUs in both networks and was
particularly effective in the RHS network. The Auto model
performs well in the LHS network (Figure 11). In this case
the selected features set included the saturation of the out-
link (e.g., (/(occupancy ?l2)(capacity ?l2))).
In the RHS the Auto model predicts that the clearance will
be slower than was observed in AIMSUN. We observed that
the stage times around the goal link are significantly differ-
ent in the generated plans for this experiment from the train-
ing set used to learn the model. Also the selected features
do not include the saturation of either the in- or out-links. It
is therefore possible that the selected features did not allow
an effective model to be learned, but instead a model that is
overfitted to the plan distribution of the training data.

Related Work

While much of the motivation of this work aligns with re-
cent work on the challenges of domain model construction in
Space applications, and in particular the ideas underlying the
Interactive Model Development Environment (Clement et al.
2011), related work is centred around learning from execu-
tion data, an early example being Benson’s TRAIL method,
which used ILP on success and failure to learn action mod-
els in robot simulation environments (Benson 1996). In (Say
et al. 2017) they learn a deep network model of a process
from observations and compile it into a Mixed Integer Lin-
ear Program problem. This provides a complementary ap-
proach for use in domains where a utility function and hori-
zon can be defined. A key benefit of our approach is that it
supports representing the learned model in PDDL+, allow-
ing any PDDL+ planner to be used.

Most related to this paper’s refinement method is the
progressive development of appropriate representations for
concept learning, e.g., (Martin and Geffner 2000) and se-
lection of the appropriate contexts for learning for control
knowledge (Lindsay 2015) and heuristic correction (Yoon,
Fern, and Givan 2007). In domain model acquisition (DMA)
it has been common to assume accurate input data and
this has allowed inductive learning approaches to be ex-
ploited, e.g., (Cresswell and Gregory 2011). In recent work,
researchers have examined noisy data, exploiting cluster-

ing (Lindsay et al. 2017), machine learning (Zhuo and
Kambhampati 2013) and deep learning (Asai and Fukunaga
2018) as part of their processes. DMA has progressively
considered richer target fragments of the PDDL language,
from propositional (Wu, Yang, and Jiang 2007; Cresswell
and Gregory 2011), including ADL (Zhuo et al. 2010);
to learning action costs (Gregory and Lindsay 2016) and
numeric constraints (Segura-Muros, Pérez, and Fernández-
Olivares 2018). As the richness of the language is increased,
the space of possible models that explain the data vastly in-
creases and has led to the DMA problem being set as ei-
ther a search or learning problem (e.g., subtype selection
in LOCM2; CP model to identify cost relevant parameters
in NLOCM). We are not aware of any work in DMA that
supports modelling of continuous transitions in PDDL+, al-
though there are related works that consider numeric frag-
ments, such as the approach in (Lanchas et al. 2007), which
learns relational decision trees to appropriately estimate sit-
uation specific action durations from observational data.

Conclusion and Future Work

In this paper a novel approach for refining hybrid planning
models by exploiting observation data from executions has
been presented and evaluated. In order to exploit the infor-
mation content of the original model, its effects are modi-
fied in order to better fit the observed data. Our approach
relies on learning a decision tree for each process, which
captures the relationship between state functions and propo-
sitions and the effects of continuous processes. A particu-
lar advantage of this approach is that it removes the knowl-
edge engineering effort in producing and maintaining very
detailed hand-crafted process models. We presented both a
fully automated version, which selects its own features and
a collaborative version, which takes advantage of expert se-
lected features. We used our approach to refine a planning
model for the Urban Traffic Management domain, which
uses continuous processes to model the flow of traffic. We
demonstrated that when expert selected features are used,
the accuracy of simulation can be improved (e.g., the aver-
age reduction in error at the end of simulation in each road
network of our case study was over 50%), resulting in a
more accurate representation of occupancy of the network
over time, as well as plans that are more effective during ex-
ecution. The fully automated version is not as effective and
highlights the main limitations of the approach: the feature
set must be suitable and the dataset must be representative
and sufficient. The current framework supports exploiting
structure present in the original model, which is not always
sufficient to capture important phenomena, e.g. a busy cross-
flow turn can significantly alter turn rates if it ever gets full.
In future work we will combine our approach with a frame-
work for extending the planning model with additional fea-
tures, e.g., based on derived predicates (de la Rosa and McIl-
raith 2011) or on identification of relevant features through
structural analysis (Lindsay 2015).
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