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Abstract

Constructing realistic and real time human-robot interaction
models is a core challenge in crowd navigation. In this paper
we derive a robot-agent interaction density from first prin-
ciples of probability theory; we call our approach “first or-
der interacting Gaussian processes” (foIGP). Furthermore,
we compute locally optimal solutions—with respect to multi-
faceted agent “intent” and “flexibility”—in near real time on
a laptop CPU. We test on challenging scenarios from the ETH
crowd dataset and show that the safety and efficiency statis-
tics of foIGP is competitive with human safety and efficiency
statistics. Further, we compute the safety and efficiency statis-
tics of dynamic window avoidance, a physics based model
variant of foIGP, a Monte Carlo inference based approach,
and the best performing deep reinforcement learning algo-
rithm; foIGP outperforms all of them.

1 Introduction

In 2010, (Trautman and Krause 2010) explained the “freez-
ing robot problem” (FRP): for crowd navigation, indepen-
dently modeling the robot and the humans causes the robot
to freeze (or take unnecessary and possibly unsafe eva-
sive maneuvers) as congestion worsens. In (Trautman et al.
2013), the FRP was demonstrated experimentally in a six
month cafeteria study by showing that the robot-agent inde-
pendence assumption causes frequent robot halting and a 3x
decrement in safety. Further, the FRP has been reproduced in
multiple studies (e.g., (Kretzschmar et al. 2016), (Fan et al.
2019)), was the topic of an academic workshop (Pettre et al.
2018), and has even appeared in the popular media (Adams
2017). Importantly, (Trautman and Krause 2010) provided
a remedy for the FRP: “cooperative collision avoidance
(CCA)” between the robot and human (first order interac-
tion, or FO) must be modeled. In 2012, the crowd navi-
gation community began adopting FO models (Kuderer et
al. 2012); by 2017, FO models for crowd navigation (Chen
et al. 2017; 2019; Tai et al. 2018) and prediction (Alahi,
Goel, and et al 2016; Vemula, Muelling, and Oh 2018;
Gupta et al. 2018; Ivanovich et al. 2018) were commonplace.

Despite the substantial interest, very little is known about
what form a cooperative collision avoidance (CCA) func-
tion should take. Further, merely formulating the joint is
insufficient because inference is non-trivial: for a 2D holo-
nomic robot performing polygonal obstacle collision avoid-
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ance (decoupled robots and agents), complexity is NP-
Hard (Canny and Reif 1987); for continuous time Bayesian
networks (similar to crowd navigation), complexity is also
NP-hard (Sturlaugson and Sheppard 2014). This complexity
is easily visualized: for a planar discretized action space of
nt agents, each agent can move in 8 directions at each time
step. For prediction horizon T , then, the system has 8ntT

states. Two questions are thus imperative:
• Which CCA functions best mitigate unnecessary eva-

sive maneuvers (FRP)?
• Given a CCA function, how can the argmax of the

robot-agent joint be efficiently computed?
Most practitioners assume that CCA functions can take any
form. However, Theorem 1 shows that for Gaussian process
(GP) mixtures the CCA function is constrained: it contains
only warranted prior information iff it takes as argument only
the full set of mixture statistics. Theorem 1 thus implies
that free parameters are prohibited in CCA functions over
GP mixtures (implementation tuning parameters, like pre-
diction horizon and discretization, are permitted). Compared
to existing approaches, this is an important result: the social
forces model (Helbing and Molnar 1995) contains 4nt + 1
free parameters for nt agents; deep reinforcement learning
relies on careful network parameterization and reward func-
tion tuning. Minimizing free parameters has practical rel-
evance: invalid CCA functions can lead to skewed perfor-
mance outside of the evaluation set (e.g., parameter tuning
can lead to poor generalization). Section 7 shows that valid
CCA functions lead to human-competitive safety and effi-
ciency performance without parameter tuning. These CCA
results are our first contribution.

Our second contribution is an efficient (≈ 0.2s replan
time) and novel approach to inference of a statistically valid
FO joint, called first order interacting Gaussian processes or
foIGP. We leverage Theorem 1 to determine the valid joint;
we then interpret the GP means as optimization variables
that are modulated by the GP covariances. Effectively, then,
we are optimizing over a function space—rather than a state
space of time ordered positions—because the dense GP co-
variance matrix encodes a smooth evolution of trajectories
that mutually shape each other. Further, our formulation is
compatible with any agent Gaussian mixture model (GMM).
For crowd navigation and prediction research, agent models
are often GMMs. For example, Gaussian noise dynamical
models are GMMs and deep network outputs can be mod-
eled with a GMM (Ivanovich et al. 2018).
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Finally, we test the safety and efficiency performance of
humans, two traditional planners, the best performing deep
reinforcement learning approach, two variants of foIGP, and
foIGP on 242 ETH runs. foIGP displays safety-efficiency
statistics competitive with humans and significantly outper-
form the other approaches.

2 Related Work
Roboticists have been investigating navigation in human en-
vironments since the 1990s. Two landmark studies were
the RHINO (Burgard, Cremers, and et al 1998) and MIN-
ERVA (Thrun, Beetz, and et al 2000) experiments, which
inspired broad research in navigation near humans. A stan-
dard approach to crowd prediction assumes agent indepen-
dence; (Du Toit and Burdick 2012) observed that this leads
to an uncertainty explosion making efficient navigation im-
possible. A number of researchers thus focused on control-
ling uncertainty. For instance (Thompson and et al 2009)
developed high fidelity agent models in the hope that con-
trolled uncertainty would improve navigation. In (Du Toit
and Burdick 2012) predictive uncertainty is bounded; in-
tractability is avoided with receding horizon control; col-
lision checking algorithms keep navigation safe. The in-
sight here was that since replanning is used, predictive
covariance can be held constant at measurement noise.
In (Joseph, Doshi-Velez, and Roy 2011) sophisticated in-
dividual agent models are developed: GP mixtures (Ras-
mussen and Williams 2006) with a Dirichlet Process (DP)
prior over mixture weights. DP priors allowed the number of
motion patterns to be data driven while the GP enables inter-
motion variability. However, bounding uncertainty cannot
prevent freezing robot behavior (Trautman et al. 2013).

Human intention aware planning is a popular crowd nav-
igation approach (Kruse et al. 2013). Proximity relation-
ship knowledge (“proxemics”, (Hall 1966)), provides insight
about social robot design. In (Mead, Atrash, and Mataric
2011) proxemics informs navigation protocol. In (Svenstrup,
Bak, and Andersen 2010) RRTs are combined with a prox-
emic potential field. In (Rios-Martinez and et al 2011) per-
sonal space rules guide the robot’s behavior. In (Unhelkar
and et al 2015), anticipatory indicators of human walking
informs co-navigation. Although these approaches model
human-robot interaction, they do not model human-robot
cooperation.

We point out that the above algorithms, as well as (Ful-
genzi and et al 2007), (van den Berg, Lin, and Manocha
2008) and its relatives such as (Snape et al. 2011) and (Ful-
genzi et al. 2008), (Aoude and et al 2011), (Joseph, Doshi-
Velez, and Roy 2011) were investigated theoretically and ex-
perimentally in Section 5.4 of (Trautman 2013) and found
to suffer from the FRP. As the author argues, this list is an
exhaustive accounting of pre-2013 crowd navigation algo-
rithms.

Some approaches learn navigation strategies by observ-
ing examples. In (Kretzschmar et al. 2016) inverse rein-
forcement learning finds the robot-crowd joint distribution.
In (Ziebart, Maas, and et al 2008), maximum entropy in-
verse reinforcement learning learns cab driver strategies
from data. In (Sadigh et al. 2018) coupled human-robot

models generate communicative autonomous behaviors. Us-
ing deep reinforcement learning variants for crowd naviga-
tion is also highly popular. For example, (Chen et al. 2017;
Fan et al. 2019) use a variant of “adversarial reinforcement
learning,” with the reward encoding cooperative collision
avoidance. Typically, the relationship between humans is ig-
nored (e.g., the interaction between robot and human is mod-
eled); importantly, (Chen et al. 2019) models human-human
interaction in a method called “socially aware reinforcement
learning (SARL).” SARL has the best safety-efficiency pro-
file of the DRL approaches.

While the deep learning approaches in (Pfeiffer et al.
2018; Alahi, Goel, and et al 2016; Gupta et al. 2018;
Vemula, Muelling, and Oh 2018) focus on prediction, they
are an important contribution to crowd navigation. The in-
sight of these papers is that a connected layer corresponds to
robot-human interaction; long-short term memory and gen-
erative adversarial techniques are used. In (Ivanovich et al.
2018), a variational auto encoder captures multimodality.

3 Terminology

Define X to be the state space of the crowd and robot. For
example, X could be R

2 for planar navigation. We collect
measurements zR1:t of the robot trajectory fR : t ∈ R → X
and nt measurements z11:t, . . . , z

nt
1:t of the human trajec-

tories f = [f1, . . . , fnt ] : t ∈ R → X , where f repre-
sents the crowd. The functions fR and f are governed by
p(fR | zR1:t) and p(f i | zf i1:t) for each i. We use the shorthand
zf1:t = [zf

1

1:t, . . . , z
fnt

1:t ]. We do not assume that zR1:t or zf1:t
are complete, i.e. for any τ ∈ 1 : t or i ∈ 1 : nt some zRτ or
zf

i

τ could be missing. We say that fR, f i ∈ F(X ), the func-
tion space over X . We use the shorthand N (x | μ,Σ) ≡
GP (x | μ,Σ) to define our agent GP mixture models:

p(f i | zf i1:t) =
N fi

t∑
ki=1

wf i

ki
N (f i | μf i

ki
,Σf i

ki
) (crowd agent)

p(fR | zR1:t) =
NR

t∑
�=1

wR
� N (fR | μR

� ,Σ
R
� ). (robot)

(3.1)

The mixture weights, means and covariances update at each
time step, but we suppress time for clarity: wf i

ki
≡ wf i

ki
(t),

μf i

ki
≡ μf i

ki
(t), and Σf i

ki
≡ Σf i

ki
(t).

Definition 1 (GP shorthand). Let NfR,� = N (fR |
μR

� ,Σ
R
� ). For each f i, let Nfp,v = N (fp | μp

v,Σ
p
v) where

v = ki and p ∈ {1, . . . , nt}.

For example p(fR | zR1:t) =
∑NR

t

�=1 w
R
� NfR,�.

Definition 2. We call μf i

ki
,μR

� the crowd agent and robot
intents. If N f i

t or NR
t is greater than 1, intent ambiguity is

present. Intent preferences are wf i

ki
and wR

� .

Consider Figure 1 where p(f i | zf
i

1:t) =∑
ki=L,R w

f i

ki
Nf i,ki

. Because N f i

t > 1, intent ambi-
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Figure 1: GP components model intent to go μf i

R ,μ
f i

L (with
preferences wf i

R and wf i

L ). Within a component, agent has
flexibility Σf i

R,L about μf i

R,L.

guity is present. Intent preferences are the left and right
values wf i

L and wf i

R .
Definition 3. Flexibility is agent willingness to compromise
about intent. Mathematically, the flexibility of intent μ is Σ.
Flexibility is motivated by the following: imagine that we
draw a sample x and evaluate N (f i = x | μ,Σ). For large
covariance, even if x is far from the intent μ the probabil-
ity of x is nonzero (e.g., the mixture component has “large
flexibility”). Using these variables, we define the following.

Problem Formulation Generative crowd navigation uses
a joint robot-crowd density p(fR, f | zR1:t, zf1:t) to generate
the action ut = fR∗

t+1 at time t according to

[fR, . . . , fnt ]∗ = argmax
fR,...,fnt

p(fR, f | zR1:t, zf1:t). (3.2)

Starting with GP mixture agent models, we derive a set of
principles that any interaction function—the function cou-
pling the agent models—must obey. We then propose a valid
interaction function that has desirable safety and efficiency
properties and an optimization routine to find ut = fR∗

t+1.

4 Statistical Principles of First Order

Interacting GPs

In (Trautman 2017) the following factorization was studied:

p(fR, f | zR1:t, zf1:t) = ψ(fR, f , γ)p(f | zf1:t)p(fR | zR1:t)

=

nt∏
i=1

ψ(fR, f i, γ)p(f i | zf i1:t)p(fR | zR1:t). (4.1)

The function ψ(fR, f , γ), γ ∈ R is a product of pairwise in-
teraction functions ψ(fR, f i, γ) modulated by p(f i | zf i1:t).
This model captures robot-agent interaction but ignores
inter-human interaction (while including human-human in-
teraction is straightforward in definition 4.1, implementation
is substantially different and more complex; we leave that
work for a future paper). We study factorization 4.1.

We start with the case of two agent interaction (nt = 1,
1 robot) We intend to determine statistically valid forms of
ψ(fR, f i, γ). Since p(fR | zR1:t), p(f

i | zf
i

1:t) encode on-
line intention and flexibility information (Definitions 2, 3),

��

δ̄(fR, f i), ck,� interaction

ψ(fR, f i, γ) imposes
flexibility prior

ψ(fR, f i, γ) �= δ̄(fR, f i), ck,�

δ̄(fR, f i), ck,�
admissible

p(fR | zR1:t)

p(f i | zi1:t)

Figure 2: Human in green, robot in black, dotted lines one
standard deviation; δ̄(fR, f), ck,� does not alter agent statis-
tics; ψ(fR, f i, γ) �= δ̄(fR, f), ck,� imposes flexibility prior
on p(f i | zf i1:t), p(fR | zR1:t).

the means and covariances capture inter-agent intention and
flexibility that is specific to and influenced by agent inter-
action. If the interaction function has finite support (e.g.,
ψ(fR, f i, γ) =

∏T
t=1

[
1− exp

(
− 1

2γ (f
R
t − f it )

)]
where

γ > 0), joint flexibility is altered in a static and unwarranted
way by γ (Figure 2); any probability mass in ψ(fR, f i, γ)
alters the agent-specific flexibilities in p(fR | zR1:t) and
p(f i | zf i1:t).

In other words, since fR, f i are both governed by GP co-
variances, we already have a measure of how much each
variable can deform (e.g., our model of agent compromise is
the covariance). If we include some factor γ—perhaps tuned
to a specific dataset—we impose unwarranted flexibility on
the fR, f i system. While it may be the case that agent flex-
ibility changes during interaction, it is unclear how to mea-
sure this. We emphasize that a promising area of study is to
model how individual flexibility changes during interaction.

To preserve the statistics of p(fR | zR1:t), p(f i | zf i1:t) we
introduce the transform δ̄(fR, f), where δ̄(fR, f) = 1 if sam-
ples of fR, f i are not equal at any time t and δ̄(fR, f) = 0

otherwise. We also introduce cki,� = c(μR
� ,μ

f i

ki
,ΣR

� ,Σ
f i

ki
),

a function of the GP means and covariances. Using δ̄(fR, f)
and cki,� we improve the proof from (Trautman 2017):

Theorem 1. If p(fR | zR1:t), p(f i | zf i1:t) are GP mixtures
then ψ(fR, f i, γ) = δ̄(fR, f i) or a set of constants cki,� =

c(μR
� ,μ

f i

ki
,ΣR

� ,Σ
f i

ki
). That is, if ψ(fR, f i, γ) has non-zero

support over fR or f i then it acts as an unwarranted prior.

Proof. See the supplement for the proof.

This theorem tells us that we have two choices for the
coefficients of each GP product in the joint mixture. If
we used a trajectory basis so that p(fR, f i | z1:t) =∑G

g=1 wgδ([f
R, f i] − [fR, f i]g) then δ̄(fR, f) would be ap-

plicable. However, since the interaction of two GPs is prob-
abilistic, a “coupling” probability is appropriate.

Corollary 2. The coefficient cki,� does not impose unwar-
ranted prior information iff it takes as argument only the full
set of statistics of the agent models.

Proof. See supplement for proof.
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In summary, if parameters are added to or removed from
c(μR

� ,μ
f i

ki
,ΣR

� ,Σ
f i

ki
) then the model is statistically invalid.

For instance, modifying the covariance changes the model’s
predictive confidence (or, equivalently, agent flexibility) in
some unwarranted way.

5 Derivation of First Order Interacting GPs
For GPs, the probability of robot-agent collision does not
only involve time-aligned terms (Du Toit and Burdick 2012)

Z−1
�,ki,t

=

∫
N

(
x | μR

�,t,σ
t,t
R,�

)
N

(
x | μf i

ki,t,σ
t,t
f i,ki

)
where μR

�,t = μR
� (t),μ

f i

ki,t
= μf i

ki
(t) ∈ R

2 and σt,t is the

t’th diagonal of Σ. Since ΣR
� ,Σ

f i

ki
are dense, positions are

correlated via covariance off diagonals and∫
N

(
x | μR

�,t,σ
t,τ
R,�

)
N

(
x | μfi

ki,τ
,σt,τ

fi,ki

)

= w�,ki,t exp

[
−1

2
(μR

�,t − μfi

ki,τ
)�(σt,τ

�+ki
I)−1(μR

�,t − μfi

ki,τ
)

]

≡ w�,ki,tZ
−1
�,ki,t,τ

, x

contributes to collision probability (σt,τ
�+ki

is the (t, τ)’th

element of Σ�+ki
= ΣR

� +Σf i

ki
, w�,ki,t = (2πσt,τ

�+ki
)−1/2).

Since Z−1
�,ki,t,τ

is the coupling between fRt and f iτ , the value∏T
τ=1(1 − Z−1

�,ki,t,τ
) is the decoupling between the robot at

t and the trajectory of agent i.
Definition 4. The symbol P(¬κ)—the probability of not
colliding—represents the decoupling of NfR,� and Nf i,ki

P(¬κ) =
T∏

t=1

T∏
τ=1

(1− Z−1
�,ki,t,τ

). (5.1)

Definition 5. The transform P¬κ measures how decoupled
the robot and agent GPs NfR,� and Nf i,ki

are:

P¬κ : NfR,�Nf i,ki
→

T∏
t=1

T∏
τ=1

(1− Z−1
�,ki,t,τ

)NfR,�Nf i,ki

= Λ�,ki
NfR,�Nf i,ki

.

where Λ�,ki ≡
∏T

t=1

∏T
τ=1(1− Z−1

�,ki,t,τ
).

The quantity Λ�,ki is close to 1 when NfR,� is decoupled
from Nf i,ki

and near zero when NfR,� is coupled to Nf i,ki

(Figure 3); since Λ�,ki
changes based on μR

� and μf i

ki
it is a

natural cooperative collision avoidance metric.
Corollary 3. The transform P¬κ does not impose unwar-
ranted prior information on the GP mixture components.

We now define single agent first order IGP.
Definition 6 (Single agent foIGP). Combining Equa-
tions 4.1, 3.1, and Corollary 3, single agent foIGP is

p(fR, f i | z1:t) = P¬κ

[ NR
t∑

�=1

wR
� NfR,�

N fi

t∑
ki=1

wf i

ki
Nf i,ki

]

=

NR
t∑

�=1

N fi

t∑
ki=1

Λ�,kiw
R
� w

f i

ki
NfR,�Nf i,ki

. (5.2)

Λ�,ki ≈ 0 Λ�,ki ≈ 1

Figure 3: L: If NfR,� and Nf i,ki
are tightly coupled, the coef-

ficient Λ�,ki
≈ 0 . R: When agents are decoupled Λ�,ki

≈ 1.

Leveraging Definition 6 we generalize foIGP to nt ≥ 1.

Definition 7. Multi-agent foIGP is

p(fR, f | z1:t) = PIGP
¬κ

[ NR
t∑

�=1

wR
� NfR,�

nt∏
i=1

N fi

t∑
ki=1

wf i

ki
Nf i,ki

]

= PIGP
¬κ

[ NR
t∑

�=1

wR
� NfR,�

×
N f1

t∑
k1=1

wf1

k1
Nf1,k1

× · · · ×
N fnt

t∑
knt=1

wfnt

knt
Nfnt ,knt

]

=

NBIG∑
η=1

[wΛ]η[NfRNf1 · · · Nfnt

]
η

(5.3)

where NBIG = NR
t

∏nt

i=1N
f i

t and η enumerates all prod-
ucts of robot and agent GPs. The coefficients

[wΛ]η = ΛR,f1

η · · ·ΛR,fnt

η wR
η w

f1

η · · ·wfnt

η

weight each GP basis element

[NfRNf1 · · · Nfnt

]
η
= NfR,ηNf1,η · · · Nfnt ,η

according to PIGP
¬κ . The operator PIGP

¬κ operates pairwise

PIGP
¬κ ≡ (P¬κ)

nt = P¬κ ◦P¬κ ◦ · · · ◦P¬κ,

since we only measure robot-agent interaction.

6 Inference of First Order Interacting GPs

While Equation 5.3 provides a form for p(fR, f | z1:t), it
does not provide content. In particular, if we construct agent
distributions (Equations 3.1) in isolation of each other, we
are unlikely to find large [wΛ]η . For example, MC 1e5 (see
Tables 1 and 2) draws 105 joint samples and then takes
the sample with largest [wΛ]η as the robot action. Despite
the computation, MC 1e5 produces unsafe and long tra-
jectories. Instead of brute force enumeration, we seek the
N∗ 	 NBIG modes that best capture Equation 5.3.

We begin by treating μR
� ,μ

f i

ki
as functions xR,�,xf i,ki

∈
F(R) → R

2 mapping time to (x, y) position and search for
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the x∗
R,�,x

∗
f i,ki

that optimize [wΛ]η . We define

wxR,� = N
(
xR,� | μR

� ,Σ
R
�

)

wx
fi,ki

= N
(
xfi,ki

| μfi

ki
,Σfi

ki

)

Z−1
xR,�,t,xfi,ki,τ

=

exp

[
−1

2
(xR,�,t − xfi,ki,τ

)�(σt,τ
�+ki

I)−1(xR,�,t − xfi,ki,τ
)

]
.

where xR,�,t = xR,�(t),xf i,ki,τ = xf i,ki
(τ) ∈ R

2.

Definition 8. Let xf = [xf1,k1
, . . . ,xfnt ,knt

]. Then

λnt(xR,�,xf ) ≡

wxR,�

nt∏
i=1

T∏
t=1

T∏
τ=1

(
1− Z−1

xR,�,t,xfi,ki,τ

)
wxfi,ki

.

We use the logarithm to improve numerical accuracy.

Definition 9. Let

logλnt (xR,�,xf ) =

nt∑
i=1

T∑
t=1

T∑
τ=1

log
(
1− Z−1

xR,�,t,xfi,ki,τ

)

− 1

2
(xR,� − μR

� )�(ΣR)−1(xR,� − μR
� )

−
nt∑
i=1

1

2
(xfi,ki

− μfi

ki
)�(Σfi )−1(xfi,ki

− μfi

ki
).

(6.1)

We seek argmaxxR,�,xf
logλnt

(xR,�,xf ). To understand
the behavior of logλnt

(xR,�,xf ), note that the triple
product rewards cooperative collision avoidance while the
quadratics penalize solutions that deviate from agent intent.

Unfortunately, logλnt(xR,�,xf ) is non-convex. How-
ever, by using Newton’s method and carefully chosen ini-
tializations we recover strong performance (see Section 7).
We first tried automatic differentiation but it was exceed-
ingly slow. Instead, we used hand coded derivatives (see
the supplement) and autograd for numerical validation. Fi-
nally, since trajectories near the mean ± standard deviation
multiples have high probability, we seed the optimizations
with (μR,μf ) ± (0, [σR, σf ], 2[σR, σf ], 3[σR, σf ]), where

σR =
√
diag(ΣR), σf =

√
diag(Σf ). Numerical exper-

iments support this idea (see Section 7).
Additionally, Newton optimization provides insight about

agents most important to the optimization. In particular, we
computed the first step of the Newton optimization for each
agent and the robot and then computed the effective sample
size (ESS) (Doucet and Johansen 2008) of nt robot-agent
pairs to determine how many agents are statistically signifi-
cant to the optimization. Importantly, ESS finds the signifi-
cant agents at each time step. A shortcoming is that by only
considering robot-agent pairs, we risk ignoring inter-agent
effects. Letting H be the Hessian and ∇ the gradient, let

Δx�,ki
=∥∥∥[H(logλnt (xR,�,xfi,ki

))
]−1 ∇(logλnt (xR,�,xfi,ki

))
∥∥∥

be the norm of the first Newton step.

Figure 4: First frame of the ETH data evaluated. Pedestrian
current position in green; next 40 time steps plotted as black
curves. While other crowd datasets are useful, this subset of
ETH has the highest pedestrian density and frequency of in-
teraction; every agent thus provides a challenging navigation
negotiation test.

Definition 10 (ESS). Let Δx�,ki
be the normalization of

Δx�,ki
. Then compute

ESS =
1∑nt

j=1

∑NR
t ,N fi

t

�,kj=1 Δx�,ki

2
≤ NR

t

nt∏
i=1

N f i

t .

Finally, we define our action protocol (c.f. Equation 3.2):

Definition 11 (Generative crowd planning). At time t
compute argmaxxR,�,xf

logλnt
(xR,�,xf ) using the top

ESS agents and issue the command uRt = x∗
R,�(t+ 1).

7 Evaluation

Rationale for dataset We considered the crowd datasets
ETH (Pellegrini et al. 2009) and UCY (Lerner, Chrysan-
thou, and Lischinski 2007) and the crowd simulators PED-
SIM (Gloor 2016) and Menge (Curtis, Best, and Manocha
2016). Our concern with simulation is that overly aggressive
robot behavior is often permitted. For example, our Monte
Carlo IGP produced zero collisions in PEDSIM, whereas in
this study it was unsafe in 17% of runs (row 6, Table 1). The
study in (Chen et al. 2019) observed zero “socially aware
reinforcement learning (SARL)” collisions, whereas we ob-
served unsafe runs 17% of the time (row 7, Table 1). These
elevated performance statistics are due to the overly flexi-
ble simulated humans. From an evaluation perspective, this
makes reporting vulnerable to false positives. The agents can
be more aggressively tuned; however, we then risk tuning the
simulation to optimize algorithm performance.

Alternatively, many trajectories in the ETH and UCY
datasets have little or no interaction. We can tell that ETH
and UCY is mostly linear by looking at the results in
recent studies that benchmarked over the whole of both
datasets (Alahi, Goel, and et al 2016), (Gupta et al. 2018):
linear extrapolation error rates were very low (e.g., 0.39m
“average displacement error” over a 5 second prediction
horizon for the hotel dataset). This indicates that the dataset
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Figure 5: Partial trajectory statistics. Total number of runs is 181; x, y axes in meters. All x-axes plot distance to nearest
pedestrian; (a) plots means ± 1 standard deviation of algorithm and human; (b) appends plot (a) with dmin threshold, the closest
distance two humans passed in the dataset. Inspection of region left of dmin shows numerous instances of DWA, MC 1e5, and
SARL; (c) normalizes algorithm path length with human path length. E.g., values below dr = dh mean the robot moved to goal
more directly than human.

μ(s) %s<0.3 %s<0.21 μ(dr) %dr/dh>1.25 max(dr/dh) μ(t) μ(ρ)
Human 1.1± .2m 1.6% 0% 8.7± 1.0m NA NA NA .22±.15
IGP Full .9± .3m 9% 5% 8.9± 1.2m 1% 1.3 .2± .15s .23± .12
IGP Diag .9± .4m 18% 9% 8.6± 1.3m 2% 1.2 .13± .11s .19± .3
IGP Lin .9± .3m 13% 8% 9.2± 1.5m 8% 1.5 .14± .07s .2 ± .14
DWA .6± .4m 35% 24% 12.1± 2.5m 48% 4.1 .1± .03s .23 ± .1
MC 1e5 .6± .3m 30% 17% 13.3± 3.5m 62% 3.9 2.3± 2.5s .2 ± .3
SARL* .4± .15m 37% 17% 8.3± 2.2m 1% 1.5 1.3± .13s .22 ± .1

*SARL was trained in five different environments; we report the best performing network.

Table 1: Partial trajectory metrics. For each run, distance to nearest pedestrian is s and μ(s) is the mean; %s<0.3,%s<0.21 are
the percent of runs that s < 0.3m, 0.21m; μ(dr) is mean robot path length dr over all runs; %dr/dh>1.25 is percent of runs
that dr was 1.25 times human path length dh; μ(t) is mean time of all replanning steps; and μ(ρ) is mean density over all runs
(density is number of people in a 3m radius circle around robot, in people/m2).

itself is, in total, too simple. Thus, testing against all of ETH
runs the risk of being non-discriminative because straight
line solutions are often available (i.e., all algorithms would
have high efficiency and low collision rates).

However, a subsample of the ETH dataset (Figure 4; 100
frames, 150 pedestrians) collected for training a deep net-
work in (Ivanovich and Pavone 2019) has many interactions
and substantial congestion; indeed, every pedestrian inter-
acts at least once and most pedestrians interact many times
during the 100 frame sequence. Ultimately, we chose this
subset of ETH so that evaluation would be discriminative.
By partitioning our dataset into partial and full trajectories
we generated 214 test runs, which provides enough statisti-
cal power to draw conclusions. Conversely, if we had added
numerous weak interaction runs, statistical power would de-
crease (all algorithms would find the straight line solution).

Further, canned crowd datasets do not immediately sug-
gest a navigation testing protocol (ETH and UCY are typi-
cally used to benchmark prediction algorithms, where test-
ing protocol is straightforward). To derive a navigation test
protocol, we expand on an idea from the experimental sec-
tion of (Trautman and Krause 2010): 1) identify a pedestrian,

2) extract the start and end position of that pedestrian, 3) re-
move that pedestrian from the observation dataset of the nav-
igation algorithm, and 4) provide the start and end positions
of the removed pedestrian and the current and previous po-
sitions of the remaining agents to the navigation algorithm.
Thus we assure that at least one path through the crowd ex-
ists (the one taken by the removed pedestrian). Addition-
ally, by providing the navigation algorithm with start and
end points that are joined by a path through the crowd, the
navigation algorithm naturally confronts high crowd densi-
ties (μ(ρ) column, Tables 1 and 2). Finally, this testing pro-
tocol provides us with a powerful performance benchmark:
actual human performance on the exact same situation as
encountered by the algorithm.

Furthermore, we partition this dataset into what we call
“partial” and “full” trajectory datasets. In the partial tra-
jectory dataset, we considered all (approximately) 10 me-
ter long agent runs. For example, if agent 1’s full trajectory
was 30 meters long, we would have 3 partial trajectories.
Partial trajectory experiments provide focused examination
of an algorithm’s ability to navigate through congestion in a
safe and efficient manner. Full trajectory runs (the entire run
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Figure 6: Full trajectory statistics. Total number of runs is 61; ; x, y axes in meters. All x-axes plot distance to nearest pedestrian;
(a) plots means ± 1 standard deviation of algorithm and human; (b) appends plot (a) with dmin threshold, the closest distance
two humans passed in the dataset. Inspection of region left of dmin shows numerous instances of DWA, MC 1e5, and SARL;
(c) normalizes algorithm path length with human path length. E.g., values below dr = dh mean the robot moved to goal more
directly than human.

μ(s) %s<0.3 %s<0.21 μ(dr) %dr/dh>1.25 max(dr/dh) μ(t) μ(max(ρ))
Human .89± .1m 5% 5% 25.6± 6.2m NA NA NA .22±.15
IGP Full .55± .17m 15% 8% 22.6± 5.6m 3% 1.4 .2± .3s .23± .12
IGP Diag .57± .2m 30% 16% 25.0± 5.8m 0% 1.2 .11± .07s .43± .4
IGP Lin .55± .2m 26% 15% 26.3± 6.5m 16% 1.4 .12± .1s .46 ± .9
DWA .4± .15m 50% 32% 31.9± 8.3m 44% 2.2 .1± .03s .23 ± .1
MC 1e5 .4± .17m 47% 31% 32.7± 8.6m 57% 2.1 4.7± 3.2s .2 ± .3
SARL* .36± .12m 47% 25% 8.9± 2.7m 0% 1.23 1.4± .2s .17 ± .1
*SARL was trained in five different environments; we report the best performing network.

Table 2: Full trajectory metrics. For each run, distance to nearest pedestrian is stored as s and μ(s) is the mean; %s<0.3,%s<0.21

are the percent of runs that s < 0.3m, 0.21m; μ(dr) is the mean of the robot path length dr over all runs; %dr/dh>1.25 is percent
of times that dr was 1.25 times the human path length dh; μ(t) is the mean time of all replanning steps; and maxruns(ρ) is the
maximum density observed. Density is computed in a 3m radius circle centered on robot position (in people/m2).

of an agent) provide an additional level of information: they
quantify how well the planner transitions between a variety
of scenarios—strong interaction (head on avoidance, orthog-
onal crossing, following, being followed, etc), light interac-
tion (a nearby person) and no interaction (straight line runs),
all of which may occur in a single full trajectory run. We
identified 293 partial trajectories and tested 181 (discarding
112 for calibration reasons). We tested 61 of the 150 full tra-
jectories (discarding 89 trajectories for calibration reasons).

Since all algorithms replan from scratch at each step, long
horizon planning (full trajectory) is straightforward: sim-
ply allow the goal at each time step to be the next step in
the human’s trajectory. We do not address the intricacies of
combining long and short horizon planning here, and we are
aware that providing this much human information can po-
tentially bias the robot to over-perform. We guard against
this potential confound with the partial trajectory studies
(where only start and goal is provided). Also, performance
in the full trajectory tests varies significantly across 6 differ-
ent approaches.

Rationale for test algorithms We collected safety and
path length data on humans, foIGP (IGP Full), foIGP us-

ing the diagonals of Equation 5.1 (IGP Diag), IGP with a
linear prediction model for the agents (IGP Lin), the “dy-
namic window approach” (DWA, (Fox, Burgard, and Thrun
1997), IGP using Monte Carlo optimization (MC 1e5, e.g.,
draw 105 random samples and choose the sample with
largest Equation 6.1 value), and “socially aware reinforce-
ment learning” (SARL, (Chen et al. 2019).

Each algorithm was chosen to explore a certain aspect
of the performance space. We collected data on humans to
serve as an upper bound on performance. We tested data
on DWA for two reasons: First, this algorithm is widely de-
ployed; in particular, it is the default navigation algorithm in
ROS (see http://wiki.ros.org/base local planner). Thus it is
a useful benchmark for many practitioners. Second, DWA is
susceptible to known crowd navigation failure modes, such
as freezing robot behavior (Trautman and Krause 2010). We
chose MC 1e5 to test whether foIGP’s optimization routine
achieves better performance. We chose IGP Lin to demon-
strate that our inference approach can be used with any
Gaussian mixture model (e.g., physics or machine learning
based). We tested SARL because it outperforms all existing
deep reinforcement learning approaches.
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Finally, we trained SARL in 5 different environments.
First, we trained in a 3m by 10m corridor (mimicking
ETH conditions) with 15 and 5 people (0.5 and 0.16
people/m2 densities), with mostly cross human cross traffic.
The high density environment produced freezing robot be-
havior (%dr/dh>1.25 = 71%, max(dr/dh) = 23.8), while
the low density training produced a policy that was unsafe
(%s<0.21 = 21%). We thus attempted training in the high
density corridor, but with random start and goal positions
of the people; this again resulted in freezing robot behav-
ior (%dr/dh>1.25 = 18%, max(dr/dh) = 14.7). We also
trained in a 4m radius circular environment but with 10 peo-
ple (density ≈ 0.2 people/m2); in (Chen et al. 2019) a 4m
radius circular environment with 5 people was the training
environment. For reference, the average density in the ETH
data was ≈ 0.2 people/m2. The high density circular train-
ing also showed freezing robot behavior (%dr/dh>1.25 =
10%, max(dr/dh) = 4.32). The training regimen of (Chen
et al. 2019) thus produced the best policy. We tested this
policy because it outperforms all existing deep reinforce-
ment learning crowd navigation approaches, as well as “opti-
mal reciprocal velocity obstacle” (ORCA) planning (van den
Berg, Lin, and Manocha 2008) as shown in (Chen et al.
2019).

Partial and full trajectory safety and efficiency metrics
We report the results of 181 partial trajectory runs in Fig-
ure 5, Table 1, and 61 full trajectory runs in Figure 6, Ta-
ble 2. The μ(s) and μ(dr) columns of the tables correspond
to the ellipses in Figures 5, 6; the %s<.21 column is the per-
cent of runs to the left of the dmin line in Figures 5, 6; the
%dr/dh

column is the percent of runs above the y = 1 hor-
izontal line in Figures 5(c), 6(c); max(dr/dh) is the largest
y value in Figures 5(c), 6(c); μ(t) is replan time; and μ(ρ)
is the mean of the maximum density of each run. Density is
the number of people in a 3m radius circle around the robot
(people/m2).

The most important observation is revealed in Figures 5, 6
and in the %s<0.3,%s<.21 and %dr/dh>1.5 columns of Ta-
bles 1, 2: safety and path length of foIGP is competitive with
humans. Additionally, the tables provide information about
outlier values. For instance, the safety threshold %s<.21 for
foIGP is nearly as good as human performance, but foIGP
often chooses a shorter path than the human. foIGP requires
≈ 0.23s replan time (in python with a 2.6 GHz Intel Core i7
CPU and 16 GB RAM).

DWA, foIGP Lin, MC 1e5, and SARL are not competi-
tive with human performance. Notably, SARL has the short-
est path lengths, but also has a very small safety margin (1
standard deviation almost reaches dmin, the human safety
threshold determined empirically from the dataset), rela-
tively high %s<.21 and among the highest %s<.3. Impor-
tantly, we trained SARL in five different environments and
chose the highest performing network. None of these train-
ing environments improved upon the original training reg-
imen. It remains unclear how to improve SARL’s perfor-
mance.

For DWA and MC 1e5 the values %dr/dh
and

max(dr/dh) are very large. These algorithms exhib-

ited freezing robot behavior, taking evasive paths to avoid
congestion. For DWA this is unsurprising. For MC 1e5,
this is likely because solutions that represent “cooperative
collision avoidance” are unlikely to be found with vanilla
sampling. Additionally, DWA and MC 1e5 had large values
for %s<0.21. This is consistent with freezing behavior: in
congestion they take evasive action that can force collisions.

8 Conclusion

Although this study makes progress on resolving the freez-
ing robot problem, understanding valid forms of coopera-
tive collision avoidance, and introduces a new method to
recover locally optimal solutions of a complex joint distri-
bution in real time, it must be emphasized that no real world
experiments have taken place. This is a crucial asterisk on
these results, since many additional factors are at play when
robots are deployed in unscripted human environments. Fur-
ther, the ETH dataset is static—that is, the agents are non-
responsive—so whether or not a statistically valid CCA will
port to real environments has yet to be decided. Additionally,
crucial metrics like legibility and predictability can only be
judged by human participants. To address this shortcoming,
we are constructing a large scale, longitudinal study of robot
navigation in unscripted human environments. We intend to
test in multiple public spaces over a multi-year period.

Given the stated shortcomings of static testing, perhaps a
good way to interpret simulation or canned dataset studies
is as one of invalidation: we cannot validate that a crowd
navigation algorithm will work in the real world, but we can
show that an algorithm most likely will not work. For in-
stance, DWA does not have the machinery for real world en-
vironments: in this study (and others), DWA exhibits freez-
ing robot behavior and too high of a collision rate to risk
deployment. SARL did not show freezing robot tendencies,
although the collision rate in this study was too high to merit
deployment (the SARL authors demonstrated the robot in
a small crowd, but no performance metrics or operational
parameters were reported). Given that SARL’s performance
was borderline, perhaps a different reward function would
improve the safety to an acceptable tolerance.

While a real world study is the most pressing next step,
theoretical issues remain. For instance, the Gaussian as-
sumption is misaligned with human passing preferences; hu-
mans typically prefer passage on either side. However, our
model of flexibility as covariance matrix assumes that left
and right passing preference is identical. Further, our flexi-
bility model is impoverished; better methods of understand-
ing human “willingness to compromise” can surely be de-
vised. Finally, while we tested on full trajectories, our al-
gorithms were provided the global plan. Rigorously incor-
porating our current short horizon methods into a long hori-
zon planner is nontrivial. Further, understanding how to plan
over long distances given the native complexity of crowds is
a substantial undertaking.
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