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Abstract

When delivering a transport service, scheduled driver work-
plans have to be aligned with world wide complex hours
of service (HoS) regulations which constraint the amount of
working and driving time without resting. The activities of
such workplans are recorded by onboard sensors in large tem-
poral event logs. Transport companies are interested on rec-
ognizing what a driver is doing, based on the temporal ob-
servations from event logs, considering the terms defined by
HoS regulations. This work presents an application of tempo-
ral HTN planning to plan and goal recognition that, starting
from a real event log extracted from a tachograph, identifies
different sub-sequences of a driver’s daily and weekly driv-
ing activity and labels them according to the terms defined by
HoS regulation.

Introduction

World wide transport authorities are imposing complex
hours of service (HoS) regulations to drivers (Meyer 2011;
Goel and Vidal 2013), which constraint the amount of work-
ing, driving and resting time when delivering a service. As
a consequence, scheduled driving plans have to be aligned
with laws that define the legal behavior of a driver.

A problem of paramount importance for transport compa-
nies is to determine whether driver activity conforms with
HoS regulation to forestall illegal behaviour and avoid costs
due to sanctions . Fortunately, the widespread adoption of
onboard IoT devices in vehicle fleets enables recording the
activity of drivers in event logs. Therefore, an important
technical challenge is to come up with easily interpretable
descriptive models that help understand the huge amount of
information stored in such event logs. It does not only con-
sists on finding out drivers’ workplan compliance of HoS
regulation, known as plan verification (Barták, Maillard, and
Cardoso 2018), but also on determining what a driver is do-
ing, based on the observations from the event log, consid-
ering the behavior patterns defined by the HoS regulation.
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We are calling this problem Driver Activity Recognition un-
der HoS and it is a problem with many similarities with
plan and goal recognition (Simpson 2006) which normally
is addressed by inferring which plan, from a known set of
possible plans, an agent is executing based on observations
of their actions (Geib and Goldman 2011). Particularly we
are addressing this problem as Plan and Goal Recognition
(PGR) as HTN planning (Höller et al. 2018) where, instead
of a plan library or an operator-based model (Ramırez and
Geffner 2009), an HTN domain is used as the model to de-
scribe the behavior rules of the agent. The main novelty in
this work is that the observations of the driver are temporally
annotated and, up to authors’ knowledge current approaches
for PGR as Planning do not address the representation of
temporal and numerical information.

Therefore, in this paper we present an application that,
starting from a real event log extracted from a tachograph,
identifies different temporal sub-sequences of a driver’s
daily and weekly driving activity and labels them according
to the terms defined by HoS regulation. The identification
of temporal sub-sequences is an activity recognition prob-
lem that is addressed as a temporal HTN planning problem
wherein (1) the domain describes the HoS regulation con-
straints as a hierarchy of tasks with temporal and numerical
constraints, (2) the initial state represents a set of tempo-
rally annotated observations each one corresponding to an
event of the original log, and (3) the goal-task is any of the
top-most tasks of the domain hierarchy. Indeed, the temporal
HTN problem can be seen as the high-level description of a
parsing task to be performed over the event log considering
the temporal HTN domain as a set of production rules of an
attribute grammar. The result of this recognition process is a
labeled event log that can be easily interpreted by company
experts which can make more informed decisions consider-
ing the historic or current labeled situation of a driver.

The remainder of this paper shows, firstly, a detailed de-
scription of the novel problem addressed and the main con-
tribution of the approach. Then, we briefly explain some
background concepts needed to ease the overall description
of the approach. We then present experimentation conducted
over a proof of concept of the application, and discuss re-
lated and future work.
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Figure 1: A summary of HoS concepts, duration and additional constraints.

Figure 2: Hierarchical relations and structure of the different
types of sub-sequences, extracted from (Meyer 2011).

Problem Description

We are collaborating with a company which provides deci-
sion support based on prediction services to its customers.
They want to help them to govern the behavior of their
drivers by predicting whether a driver is close to commit-
ting a regulation violation, or characterizing drivers accord-
ing to their driving style with respect to the HoS regulation.
They handed us an event log with thousands of events and
asked us to label the records with the terms of the HoS reg-
ulation, so that an expert can directly interpret what a driver
has been doing during the period of time encompassed by
the event log.

Every event is a tuple (a start end dur d id),
where each component refers to: activity identifier, event
start and end times, event duration, and driver identi-
fier, respectively. A value for a is any of the labels
[Driving,Other, Pause, Idle] meaning that the driver is
either Driving, performing Another Work, at Pause or Idle
during dur minutes, between start and end. The semantics
of each event is completed with the definitions provided by
the HoS regulation, which are detailed in the following.

This regulation has been extensively analyzed in (Goel
and Vidal 2013; Meyer 2011). It is applied in several coun-
tries, but in this work we focus on the European Union reg-
ulation (EC) No 561/2006 (Meyer 2011). The basic terms
refer to four types of driver activities as break (short pe-
riod for recuperation), rest (period at driver free disposal
with enough time to sleep), driving (time during which the
driver is operating a vehicle) and other work (time devoted

to any work except driving, like loading). These activities
do not exactly correspond to the event labels above defined,
but they are defined according to such events and their at-
tributes. That is to say, the regulation defines different types
of rest and break periods (see Figure 1, left-hand table) ac-
cording to the duration of a Pause event. Moreover, there
are different types of driving sequences. A basic driving se-
quence is composed of a totally ordered set of the elements
of [Driving, Pause, Other, Idle] constrained to the du-
ration of any Pause is less than 15 minutes (see Figure 1,
right-hand table for more types). More constraints are de-
fined over the duration of the rests and breaks, and over the
accumulated duration of driving sequences (see both tables
in Figure 1). The regulation provides a set of basic and op-
tional rules, should the former not be satisfied, thus allowing
more flexibility to generate and interpret driving schedules
under such constraints. For example, either a break of 45
mins has to be taken after 4.5 hours of accumulated driv-
ing or the break can be taken splitted in two parts of at least
15 mins and 30 mins respectively. This feature is good for
drivers since it provides flexibility to their work, but compli-
cates the interpretability of what they are doing. Regulations
also define additional constraints (for example, the maxi-
mum number of occurrences of a reduced rest in a weekly
driving period), or the hierarchical relationship between the
different types of sub-sequences, as well as their internal
structure (see Figure 2).

Technical Challenges

According to previous description, the following key fea-
tures to be modeled can be identified: (i) duration and tem-
poral constraints over both actions/events and sequences of
activities, (ii) numerical information and constraints, (iii) it-
eration constraints (maximum number of occurrences for an
event), and (iv) hierarchical/compositional relationships be-
tween tasks at different levels of abstraction. Furthermore,
the problem consists of parsing the temporal event log and
identifying which sub-sequences of events correspond with
legal definitions of HoS regulations. Therefore, the observed
behavior has to be provided in terms of driving periods, daily
driving periods (and their types), and weekly driving periods
(and their types) as shown in Figures 1 (right-hand table) and
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2.
The main contribution of this work consists of the res-

olution of three technical challenges, related to both how
the key features to be modeled are represented, and how the
parsing of a temporal event log is faced: 1) the recognition
of plans involving temporal and numeric constraints is ad-
dressed with a temporal planning approach; 2) since plans
have to be recognized following the HoS regulation, we pro-
pose to use a temporal HTN process wherein the events are
represented as PDDL primitive durative actions, the HoS
high-level concepts are represented as high-level tasks, al-
lowing the representation of recursive tasks; 3) in order to
deal with the formalization of the HoS regulation, we pro-
pose a Knowledge Engineering process that starts from a
formalization of the HoS regulation as an attribute grammar
and translate it into a temporal HTN domain.

Background

Regarding knowledge representation and reasoning, we are
using HPDL and SIADEX, a planning language and a plan-
ner designed to represent temporal HTN problems and suc-
cessfully applied in serveral application domains (Fdez-
Olivares et al. 2006; Fdez-Olivares et al. 2019). The syntax
of HPDL embodies the syntax of PDDL 2.1 level 3 to rep-
resent primitive actions as durative actions, as well as other
important PDDL concepts as derived literals, temporal pred-
icates and temporal facts and timed initial literals in the ini-
tial state. Furthermore, it extends PDDL to represent tasks
at different levels of abstraction and methods to describe al-
ternative decomposition schemes for compound tasks (see
Figure 3). HPDL provides additional features with respect
to other HTN languages (Holler et al. 2019) which make it
suitable for the purposes of this application:

1. Defining temporal constraints over the start and end point,
as well as the duration of a task at any level. Any sub-
action in a method has three special variables ?start,
?end and ?dur that represent it start and end time points
as well as its duration, and some constraints on their value
may be posted on them using a logical expression with re-
lational operators (an example is shown in Figure 4).

2. Using inference tasks (:inline <precondition>
<effect>) where <precondition> and
<effect> are usual expressions for preconditions
and effects of PDDL actions. They may be used as ”on
the fly” sub-tasks in a task decomposition scheme to
infer new knowledge (asserting/retracting literals into the
current state) or capturing information from the current
world state.

3. Binding a variable with the evaluation of an ex-
pression, using the special predicate (bind <var>
<expression>).

4. Representing temporal facts, either as PDDL timed ini-
tial literals or facts embodying time data as for example
(start action P15 "05/01/2017 15:46"), a
literal representing the start date of the action P15.

SIADEX is essentially a state-based forward HTN planner
with the same foundations as SHOP (Nau et al. 2003), but

(:task <name> :parameters <var-typed-list>

(:method <name>

:precondition <prec> ;;a PDDL logical expression

:tasks ( ;;an (un)orderder list of one of ...

;; a "normal" task

(<name> <var-typed-list>)

;; a task with temporal constraints

(<temp_constraints> (<name> <var-typed-list>))

;; an inference task

(:inline <condition> <consequence>)))

(:method ...)

...

)

Figure 3: An HPDL task is represented with a name, a list of
typed parameters and a set of decomposition methods. A de-
composition scheme is a (partially) ordered list of subtasks,
where every element can be of one of these three types: nor-
mal, temporally constrained or inference tasks.

extended with the management of temporal information at
any level of the task hierarchy, besides the management of
the temporal and numeric capabilities of PDDL 2.1 and the
singular features of HPDL above described. A more detailed
description of the planner can be found in (Castillo et al.
2006).

Application Overall Description

The methodology we have followed to provide a solution to
the problem of driver activity recognition under HoS regula-
tion consists of the following steps:

1. Generating a set of temporal observations represented in
PDDL from an event log, which are part of the initial state
of an HTN problem.

2. Representing the recognition of an event as a temporal
HTN problem.

3. Formalizing HoS rules as productions of an attribute
grammar.

4. Translating the grammar into a temporal HTN domain,
aimed at representing the parsing of the event log as an
HTN problem where (1) terminals are recognized as tem-
poral events and (2) nonterminals are recognized accord-
ing to grammar rules.

5. Extending that domain to be capable of both recognizing
and labeling the events for the event log to be easily inter-
pretable.

The following sections describe in detail these steps.

Generating HPDL Temporal Observations

Every record of the event log is translated into an obser-
vation (a i type start end dur d id) where i is an in-
dex representing the order in the sequence of events, a is a
unique identifier for the action, type indicates the type of
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action (one of [D,O, P, I] corresponding to the actions la-
bels [Driving,Other, Pause, Idle]), d id is the identifier
of the driver, and start, end, dur represent the start and end
times of the action and its duration, respectively. Every ob-
servation is in turn represented with a set of classical and
temporal PDDL facts. For example the event representing
a Pause of 68 minutes from 15:46 to 16:54 on 05/01/2017
would be represented as follows:

Event:
(Pause "05/01/2017 15:46" "05/01/2017 16:54" 68 driver1)

Observation:
(P15 39 "05/01/2017 15:46" "05/01/2017 16:54" 68

driver1)

PDDL-facts:
(is_action P15) ;; P15 is an action identifier

(is_typeP P15) ;; P15 is of type "P"

(index_action P15 39) ;;P15 is the 39th observation

(start_action P15 "05/01/2017 15:46") ;;start of P15

(end_action P15 "05/01/2017 16:54") ;;end of P15

(duration_action P15 68) ;;duration of P15

(parameters_typeP P15 driver1) ;;parameters of P15

Additionally we have defined the PDDL function
(current index action) which keeps track of the in-
dex of the current observation, initially set to 0 in the initial
state. This function is needed to represent a “virtual” pointer
to the current event/observation being recognized.

Event Recognition with HPDL

Each type of event [Driving,Other, Pause, Idle] has an
associated primitive durative action 〈type〉 p in the domain,
that represents the planner has processed (read) an event of
that type. Therefore, recognizing an concrete event that is
at any given position k with label type consists of adding
its corresponding primitive action to a plan such that (i) the
temporal points of the action are consistent with the tempo-
ral information of the event, and (ii) guaranteeing that the
temporal constraints of a are consistent with the rest of tem-
poral constraints of the actions already added to the plan.
The condition (ii) is checked by the planning process itself,
but (i) has to be hand coded in the HTN domain. In the fol-
lowing we show an illustrative example.

Figure 4 shows the compound task recognize PAUSE,
which is applied when the reading pointer of the event log
is pointing at an event of type Pause, and it is used to
(1) add to the plan a durative primitive action (PAUSE p
?driver ?dur) representing that a Pause has been read
by the planner, and (2) bind the value of its argument ?dur
to the duration observed. This is clarified below.

The derived predicate is used to determine the type of the
observation the reading pointer index is pointing at, and it is
used in the precondition of the method to capture the value
of the index invariable ?k and the type of observation in
variable ?sa. The precondition of the first :inline task is
used to capture the value of parameters and temporal infor-
mation about the observation pointed by the current index,
using the corresponding predicates used to represent a tem-
poral observation. The primitive task represents the ”token”
(a Pause) to be read and the method describes in essence that
a primitive task of type Pause has to be added to the plan

(:durative-action PAUSE_p

:parameters (?c - Driver ?dur - number)

:duration (= ?duration ?dur)

:condition ()

:effect ()

)

(:derived (currentindex_is_typeP ?k ?sa)

(and ( bind ?k (current_index_action))

(index_action ?sa ?k)

(is_typeP ?sa))))

(:task recognize_PAUSE

:parameters(?c - Driver ?dur - number)

(:method type_PAUSE

:precondition (currentindex_is_typeP ?k ?a)

:tasks (

( :inline (and (parameters_typeP ?a

?driver)

(start_action ?a ?begin)

(end_action ?a ?final)

(duration_action ?a ?dur)) ())

((and (= ?start ?begin)

(= ?end ?final)

(= ?duration ?dur) )

(PAUSE_p ?driver ?dur))

( :inline ()

(increase (current_index_action) 1)))

Figure 4: Recognizing an event of type Pause with HPDL.
Singular features of HPDL are framed.

when there is an observation of the same type at the reading
pointer position. Interestingly, the ability to represent tempo-
ral constraints on tasks at any level of the hierarchy makes
possible to represent that the start and end points of the prim-
itive action are constrained by the temporal information of
the observation which, in turn, is captured by the first :inline
task. This is the point where temporal planning capabilities
play an central role since the method will fail if the temporal
constraints cannot be met. If the primitive task is succesfully
inserted the index moves to the next position.

Recognizing HoS Concepts with HPDL

We have used attribute grammars (Knuth 1968) as an in-
termediate representation to formalize the description of
the HoS regulation in Europe. The main reason is that at-
tribute grammars, apart from being an excellent mechanism
to describe context-sensitive grammars, allow to easily rep-
resent temporal and numeric constraints with grammar at-
tributes. An attribute grammar extends productions with se-
mantic rules1 of the form {〈condition〉〈assignments〉},

1We are using an ad hoc syntax for attribute grammar in order
to ease the explanation.
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...

;;PDDL functions used to represent nonterminals’

attributes

(:functions
...

(rt_current_elt) (dt_current_elt) ;;nonterminal "elt"

(dt_current_baseq) ;;nonterminal "baseq"

...)

(:task baseq

:parameters (?c - Driver)

(:method base_case

:precondition ()

:tasks ((elt ?c)

(:inline () (assign (dt_current_baseq)

(dt_current_elt))))

(:method recursion

:precondition ()

:tasks (

(elt ?c) (baseq ?c)

;;updates driving time of current baseq

(:inline ()

(increase (dt_current_baseq) (dt_current_elt)))

)

(:task elt

:parameters (?c - Driver )

(:method DRIVING

:precondition ()

:tasks ( (Recognize_DRIVING ?c ?dur)

(:inline () (assign (rt_current_elt) 0))

(:inline () (assign (dt_current_elt) ?dur))

))

(:method OTHER

:precondition ()

:tasks ( (Recognize_OTHER ?c ?dur)

(:inline () (assign (rt_current_elt) 0))

(:inline () (assign (dt_current_elt) 0))

))

(:method PAUSE ;; BREAK of [0,15min)

:precondition ()

:tasks (

(Recognize_PAUSE ?c ?dur)

(:inline (and (< ?dur 15)) ())

(:inline () (assign (rt_current_elt) ?dur))

(:inline () (assign (dt_current_elt) 0))))))

Figure 5: HPDL tasks for the recognition of a basic sequence of events as described by the HoS regulation. The task elt
recognizes any of the possible events that can be found in an event log, and the task baseq is a recursive definition of the
recognition of a sequence of elements elt.

where 〈condition〉 defines the applicability conditions of
the production and 〈assignments〉 define how synthesized
attributes of parent nonterminals (at left-hand side of the
production) are calculated from attributes of the right-hand
side of the production. In the following we describe the pro-
duction rules to recognize basic breaks, rests and basic se-
quences (as described previously), as well as the methodol-
ogy used to translate such productions into HPDL tasks.

Recognizing breaks, rests and basic sequences The ter-
minals of the grammar are the labels [D,O, P, I], since they
are used to distinguish the types of observations which may
be found in an event log. Every non-terminal has associated
two attributes that represent the driving time (attribute dt)
and pausing time (attribute rt) of the current recognized to-
ken 2.

Breaks recognition. The pausing time of any pause is fur-
ther used to discriminate between different types of Breaks
or Rests, according to rules in Figure 1 (left-hand table).

b_t1 : P {(and (P.dur >= 45min)(P.dur < 3hrs)

(b_t1.rt := P.dur)

b_t2 : P {(and (P.dur >= 15min)(P.dur < 30min))

(b_t2.rt := P.dur)}

b_t3 : P {(and (P.dur >= 30min)(P.dur < 45min))

(b_t3.rt := P.dur)}

2Grammar terms attributes are represented with the ”dot” nota-
tion used to refer the items of a structure.

Rests recognition. Daily and weekly rests (rd and rw)
may be normal or reduced, and are defined according to the
duration of pauses described in Figure 1 (left-hand table).
rd : rd_normal {rd.rt := rd_normal.rt} |

rd_reduced {rd.rt := rd_reduced.rt};

rd_normal : P {(and (P.dur >= 11h) (P.dur < 24h)

(rd_normal.rt := P.dur) };

rd_reduced : P {(and (P.dur >= 3h) (P.dur < 11h)

(rd_reduced.rt := P.dur)};

rw : rw_normal {rw.rt := rw_normal.rt} |

rw_reduced {rw.rt := rw_reduced.rt};

;;rw_normal and rw_reduced are defined similarly.

Basic sequences recognition. The following production
defines the elements of a basic HoS sequence as described
in Figure 1 (right-hand table).
elt: D {(elt.dt := D.dur;elt.rt:= 0)} |

P {(P.dur < 15mins)

(elt.dt := 0; elt.rt:= P.dur)} |

O {(elt.dt := elt.dt := 0)}

I {(elt.dt := elt.dt := 0)};

The HoS regulation establishes that a basic sequence is
a sequence of any number of activities such that the dura-
tion of any Pause is strictly less than 15 mins. The follow-
ing production represents that rule and, moreover, defines
that the driving time of a sequence is the accumulated driv-
ing time of its components. Note that in attribute grammars
occurrences of the same symbol are differentiated by sub-
scripts to be correctly identified.
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baseq : elt {(baseq.dt:= elt.dt)}

elt baseq2 {(baseq.dt := elt.dt+baseq2.dt)};

Representing tasks from productions. Figure 5 shows as
an example the HPDL representation of the production rules
for elt and baseq. The tasks described in this example
are the result of a knowledge engineering process that rep-
resents every recognition task as an HPDL task, from a for-
malization of it as an attribute grammar production rule. In
this process, every production 〈lhs〉 : 〈rhs1〉|...|〈rhsn〉 of
the grammar is translated (manually) into a recognition task
for the symbol lhs with name lhs, typed parameters list (?c
- Driver), and n methods, each one corresponding to a
rhsi. For every method the following steps are performed:
• The method precondition is empty.
• Grammar attributes are represented as PDDL func-

tions. Concretely, every attribute a of a nontermi-
nal t is represented as a PDDL function (〈t〉 〈a〉).
For example elt.dt is represented as the function
(dt current elt) used to store the value of the driv-
ing time of the current elt processed.

• Assignments of attributes are represented as HPDL
(or PDDL) assignment operations in the effects
of inference tasks. For example baseq.dt :=
elt.dt is represented as (:inline () (assign
(dt current baseq) (dt current elt))).

• Terminal and nonterminal symbols are represented by
their corresponding recognizing tasks.

• Regarding conditions in production rules, we are assum-
ing that those conditions which refer to a symbol’s at-
tribute in the rhs of productions are evaluated after the
symbol has been processed. For example, testing the value
of the duration of a Pause in (P.dur < 15min) is
evaluated after a symbol P is processed. Therefore, in or-
der to keep this order in the evaluation process, condi-
tions are represented as the precondition of an inference
task, and the task is ordered after the subtask which recog-
nizes the symbol the condition refers to. For example, as
shown in Figure 4 the inference task (:inline (and
(< ?dur 15)) ()) is ordered after the task to rec-
ognize a Pause which, in turn, captures the value of the
variable ?dur.
Finally, Figure 6 shows the production rules to recognize

the rest of HoS concepts described in Figure 1. The non ter-
minal symbols of the right-hand-side of every production are
used as the labels of the event labeling process, performed
over the entire event log, briefly described in next section.

Labeling Events with HPDL

The labeling process accounts for the different time
resolution contexts, defined by HoS regulation, which
an event may belong to. Because of that, every event in
the event log is annotated with four labels3 according
to the contexts day (with possible values ndd or edd),

3We are assuming four labels and a reduced set of possible val-
ues for each label to ease the explanation.

driving period (continuous or splitted), sequence
(cdds or cdde) and token (elt, b t1, b t2,
b t3, rd normal, rd reduced, wr normal,
wr reduced).

We have made extensive use of the features of HPDL (and
the control search mechanism of the planner) to write an
HTN domain, which allows to label records of the event
log, as an extension of the HTN domain defined in last
sections. Concretely, every task in the right hand side of
a production {a : b1 .. bn }, is extended as {a :
sb1 b1 eb1 ... sbn bn ebn} where the new tasks
sbi,ebi are used to (1) delimit the start (sbi) and end
(ebi) of the decomposition of a task (sbi), (2) add to the
state information about the label corresponding to that task
(which can be interpreted as the current decomposition con-
text). For example the production {cdd : cdds cdde}
is extended as {cdd : scdds cdds ecdds scdde
cdde ecdde}, scdds asserts the context ’cdds’ to the
state, and ecdds retracts that context. Finallly, the primi-
tive durative actions associated with each event are extended
with new parameters (one for each type of label) and tasks
devoted to recognize events (as the one shown in Figure 4)
are extended to capture the information added to the state by
the newly added delimiting tasks, and adding primitive tasks
which embody information about the context.

Experimentation
We have conducted an experimentation in order to validate
a proof of concept implementation where the events of an
initial event log have been annotated with labels correspond-
ing to the nonterminal symbols defined in previous section.
Figure 7 shows an example of the original and annotated
event logs. In the experiments we have generated an ini-
tial state that contains 200 observations extracted from the
event log plus the necessary symbol definitions to manage
all the possible types of actions. Moreover, the initial state
also contains the initialization of the PDDL functions used
to represent the different counters and accumulators to store
the values of driving and resting time. The goal consists of
the task (wdd driver1) what means that it is required to
recognize the weekly activity of driver1 in the event log.
The temporal HTN domain represents the recognizing and
labeling tasks as explained in the previous sections and the
planner carries out a planning process that involves recog-
nizing and labeling the events which encompasses one week.
As can be seen in Figure 7, the original event log can be in-
terpreted by using the labels of its annotated version. In this
example, every activity (or event) is annotated at token level
with its corresponding label (an expert can interpret directly
with type of Pause is being carried out by the driver). And,
what is much more interesting, if we put together the infor-
mation at sequence, driving period and day level, in this case
the system informs that the driver, during a day, has carried
out a normal daily driving, composed of a starting sequence
of a splitted driving period and an ending sequence of con-
tinuous driving period.

Once the post-processed event log was shown to users,
they provided us an evaluation and feedback extremely pos-
itive, since they do not have at present an automated means
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;;a weekly driving sequence is five daily driving
sequences and an ending day
wd : (dd)5 end_day

({dd1.dt +..+ dd5.dt + end_day.dt <= 56)};

;;a daily driving sequence can be normal or extded.
dd : ndd {dd.dt:=ndd.dt} |

edd {dd.dt:=edd.dt};

;;normal daily driving is a combination of driving
periods with less than 9hrs of driving
ndd : cdd {(cdd.dt<= 9hr)

ndd.dt:=cdd.dt};

;extended daily driving allows upto 10hrs of driving
edd : cdd {(and (cdd.dt > 9h)

(cdd.dt<= 10hr))

edd.dt:=cdd.dt};

;; a combination of driving periods has a start and an end
cdd : cdds cdde

{cdd.dt:= cdds.dt + cdde.dt};

end_day : cdds cdde_w

{end_day.dt := cdds.dt + cdde_w.dt}

;;the start of a combination is a continuous driving period
;;or a splitted driving period
cdds : seq b_t1 {cdds.dt:=seq.dt} |

seq b_t2 seq2 b_t3

{cdds.dt:=seq.dt+seq2.dt};

;;the end of a combinantion of driving period is the same
;;but ending in a daily rest
cdde : seq rd {cdde.dt:=seq.dt} |

seq b_t2 seq2 rd

{cdde.dt:=seq.dt+seq2.dt};

;;similarly for the end of a week
cdde_w : seq rw {cdde_w.dt:=seq.dt} |

seq b_t2 seq2 rw

{cdde_w.dt:=seq.dt+seq2.dt};

Figure 6: Production rules to recognize the remaining elements of HoS regulation. All these rules can be translated into HPDL,
however we only show the grammar productions for the sake of clarity and generality.

to get a descriptive model easily interpretable for large event
logs. Experts have not found a commercial tool that covers
their need, and up to authors’ knowledge, there are no other
approaches that address the problem of recognizing driver
activity under HoS regulation.

Related Work

HTN planning could be seen as a very suitable technique
to solve the problem of generating driving plans compli-
ant with HoS regulations. In fact, other approaches (which
do not use HTN planning) have been developed to solve
route planning problems under HoS regulations minimizing
transportation costs (Goel 2018)(Goel and Irnich 2017). Al-
though addressing this problem with temporal HTN plan-
ning would be of great interest, we are using this planning
technique from a different perspective: recognizing a pre-
viously synthesized temporal plan. As previously shown, a
key issue is to formalize the HoS regulation, and an alter-
native formalization can be found in (Goel 2018), which is
aimed to use classical scheduling techniques to check the
compliance of schedules (only plan verification) or to gen-
erate compliant schedules (plan generation), but not suitable
for the problem of plan-goal recognition here addressed.

This application can be, in part, viewed as an instance of
Runtime Verification with Planning, where regulations are
expressed in a suitable formal language, most often based
on temporal logic, as described in (Bensalem, Havelund,
and Orlandini 2014). This paper is interestingly different,
in that it encodes regulations involving metric temporal con-
straints, expressed in an attribute grammar. (Barták, Mail-
lard, and Cardoso 2018) addresses the problem of (non tem-
poral) plan verification, integrating HTN domains (with no
temporal or numeric information) with attribute grammars.

Our work is also related with conformance checking, in the
area of Process Mining, that consists of determining whether
an executed process conforms with a process model (Aalst
2016). Nevertheless, we do not only provide an answer to
whether a plan is or is not generated by a regulatory model,
but additionally our approach classifies subsequences of the
input plan and recognizes/identifies them with concepts of
the model (in our case the HoS regulation represented as a
temporal HTN domain), providing an interpretation of the
plan in such terms. Therefore, this is a clear instance of a
Plan-Goal Recognition (PGR) problem that is traditionally
addressed either by providing a plan library to represent the
set of possible plans to be recognized, or by representing the
behavior of the agent as a planning domain (also known as
PGR as Planning) (Ramırez and Geffner 2009).

Concretely, we follow a PGR as Planning approach since
we are providing as input a (temporal HTN) planning do-
main. In order to compare with other approaches, it is wor-
thy to note that we are assuming full observability, noise-
less and complete event sequences, no ambiguity, and an of-
fline recognition process. Most approaches to plan and goal
recognition are focused on the offline analysis, and very few
address an online approach focused in path planning prob-
lems (Masters and Sardina 2019) or human-robot interaction
(Levine and Williams 2014; Freedman and Zilberstein 2017)
. A large bunch of work addresses ambiguity and uncertainty
in the field of plan recognition (Ramı́rez and Geffner 2010;
Sohrabi, Riabov, and Udrea 2016) even for a goal recogni-
tion process supported by HTNs (Blaylock and Allen 2006).
These works are motivated by the existence of noisy sen-
sors or by incompleteness in the behavior model. This is not
our case, since the events provided by digital tachographs
are noiseless, and the HoS regulation is a complete and pre-
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Figure 7: An excerpt of the event log annotated with labels easing the interpretation of driver activity.

cise set of rules with no room for unforeseen behaviors.
Hence, at this moment, we do not need to address uncer-
tainty on goal recognition, thus a deterministic approach is
much more suitable. We have observed in some cases incom-
pleteness, but it can be straightforwardly addressed with the
temporal process of the planner. For example, once detected
a ’gap’ in the event log, it is possible to insert directly an idle
or pause activity with a duration equal to the size of the gap.

Regarding temporal plan recognition, few works address
problems where observations have temporal information,
and, up to authors’ knowledge, no one addresses the prob-
lem using a temporal planning domain. (Geib and Goldman
2009) proposes PHATT, which uses temporal constraints
and variable bindings, thus going beyond the recognition of
propositional activity streams. However, the use of a tem-
poral model is only mentioned as a suggestion on how to
improve PHATT with an external STP solver for tempo-
ral reasoning. The approach in (Levine and Williams 2014)
assumes fully observable, noiseless and complete event
streams, as well as no ambiguity (as ours), and it recognizes
temporal plans online (ours is offline). However, they require
a plan library represented with TPNUs (Temporal Plan Net-
works with Uncertainty) and use ad hoc plan recognition
algorithms, whereas, we use an off-the-shelf temporal HTN
planner instead. Further, TPNUs lack of key aspects to rep-
resent HoS regulations like hierarchical compositional re-
lationships, (bounded) recursion to represent iteration con-
straints, or representing and reasoning with numerical in-
formation. Indeed, as stated in (Geib and Steedman 2007),
the knowledge representation models used for plan recogni-
tion based on plan libraries can generally be seen as special
cases of HTNs. Moreover, those based on planning domains
use either strips-based action models (Ramı́rez and Geffner
2010; Sohrabi, Riabov, and Udrea 2016) or non temporal
HTN (Höller et al. 2018), thus lacking of enough expressive-
ness to describe HoS regulations. This is the main aspect that
made us to build a new proposal based on temporal HTN to
solve the problem of driver activity recognition under HoS

regulations.

Conclusions

We have presented a novel planning application that brings
the worlds of Data Analytics, IoT and Automated Planning
and Scheduling together. The approach provides support to
experts on the task of interpreting what drivers are or have
been doing by recognizing their activity recorded in an event
log. The main contribution is the proposal of a temporal
HTN-based approach to plan and goal recognition where the
plans observed are temporal sequences of events, using an
off-the-self temporal HTN planner, with a domain config-
ured to recognize and classify the events according to the
goals represented as HTN tasks. The novelty here is that,
assuming that we are clearly not using a plan library, but a
planning domain as the model of behavior, the planning do-
main requires to represent temporal and numerical informa-
tion, and up to authors’ knowledge there is no approach to
PGR as Planning which fits that requirements. Another con-
tribution is the formalization of concepts and constraints of
the HoS regulation as an attribute grammar, a necessary step
in the knowledge engineering process proposed to represent
the HTN domain.

Regarding future work, it is worth noting that the main
interest, and the ultimate goal of the company is to build an
intelligent assistant to provide decision support services to
both drivers and companies’ decision makers. This is a re-
search direction aligned with the concept of assistive inter-
action (Freedman and Zilberstein 2017), that advocates for
the integration of plan recognition and planning. In this way,
the recognition of driver’s intent is a previous stage needed
to respond with a generated plan adapted to the currently
recognized task. Precisely, one of the main advantages of
using a temporal HTN planner to carry out a recognition
process as the one here presented, is that it paves the way
to generate regulation-compliant plans adapted to the intent
of the driver. Therefore, this work is the first step and part
of a more ambitious project, proposed by the company, to
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develop a predictive and prescriptive model able to detect
whether a driver is close to have an illegal behavior, and
provide a response by adapting the driving plan to the HoS
regulation.
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