
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Contention-Aware Mapping and
Scheduling Optimization for NoC-Based MPSoCs

Rongjie Yan,1,4 Yupeng Zhou,2 Anyu Cai,3 Changwen Li,3 Yige Yan,2 Minghao Yin2,∗
1State Key Laboratory of Computer Science, ISCAS, Beijing, China

2Schlool of Computer Science and Information Technology, NENU, Changchun, China
3College of Computer Science, BJUT, Beijing, China

4 University of Chinese Academy of Sciences, Beijing, China
yrj@ios.ac.cn, {zhouyp605, ymh}@nenu.edu.cn

Abstract

Network-on-Chip (NoC) has emerged as an alternative in-
terconnecting paradigm in the state-of-the-art multi-core ar-
chitectures. Its capability of parallel data transfer over vari-
ous paths increases the possibility of resource contention and
causes network congestion. How to avoid contention, as well
as to optimize performance and energy consumption becomes
a great challenge for system designers. In this paper, we con-
sider spatial and temporal aspects of communication to avoid
contention. In spatial aspect, we propose to utilize overlapped
communication paths to estimate the degree of contention,
such that they can be minimized in mapping stage. In tempo-
ral aspect, we sequentialize data transfer with potential con-
tention by introducing additional latency. To optimize the de-
sign concerns with the corresponding constraint model, we
further provide an efficient algorithm to search for better solu-
tions for the problem, which integrates a local search process
into a genetic algorithm and applies various heuristics in ini-
tialization and evolution process. Experimentations from ran-
dom and real-case benchmarks demonstrate the efficiency of
our method in multi-objective optimization and the effective-
ness of our techniques in avoiding network contention, while
keeping performance and energy consumption optimized.

Introduction

The scalable communication architecture makes network-
on-chip (NoC) a prevailing solution for multiprocessor
system-on-chips (MPSoCs). An important issue in the NoC
paradigm is how to map and schedule tasks of an applica-
tion to processing elements (PEs), such that the total energy
consumption is minimized, and system performance can be
optimized (Sahu and Chattopadhyay 2013). Within this ar-
chitecture, communication is the main concern in the opti-
mization process. To reduce the cost, tightly coupled tasks
will be closely allocated, which may increase the possibility
of communication contention for frequent data transfer over
same paths. The increase in contention may incur long la-
tency from network congestion thus leading to high energy
consumption and poor system performance (Chou and Mar-
culescu 2008; Yang et al. 2016).

∗Corresponding author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

With contention awareness, performance and energy con-
sumption optimization needs to consider how to map tasks
of an application to available PEs and tiles (the basic build-
ing block in a NoC which can accommodate one or more
PEs), and how to schedule the execution of tasks on same
PEs to avoid contention. However, path-based contention
minimization that tries to minimize the possible contention
on communication paths (Chou and Marculescu 2008) may
reduce the degree of parallel execution between various
tasks. Introducing additional latency to avoid overlapped
communication in scheduling may degrade system perfor-
mance. Therefore, reducing contention with less influence
on performance and energy requires wary mapping and
scheduling strategies, which is a challenge for designers.

In this paper, we consider time-triggered static scheduling
for NoC-based MPSoCs, where both mapping and schedul-
ing cannot be modified at runtime. During runtime, the gen-
erated application-specific scheduler acts as a look-up ta-
ble, where every node in the platform should follow. System
performance is evaluated by makespan, i.e., the scheduling
length of the system. And energy consumption encompasses
both computation and communication cost. To solve the per-
formance and energy optimization problem with the con-
sideration of potential contention in the constraint model,
we integrate various heuristics and a problem-specific local
search into a fast and elitist multi-objective evolutionary al-
gorithm NSGAII (Deb et al. 2002).

The contributions of the paper are as follows. First, to
reduce the over-approximation of spatial (path-based) con-
tention in mapping, we propose to evaluate the contention
degree in terms of overlapped communication paths, and
regard it as an objective to be minimized. Temporal con-
tentions can be avoided by introducing latency in involved
communication during scheduling stage. Second, in the het-
erogeneous architecture, we consider a two-stage mapping
to save makespan and communication cost: first mapping
tasks to PEs, then mapping the PEs to tiles. This flexibil-
ity together with allowing more than one task per PE makes
optimization even harder. Third, to deal with the optimiza-
tion problem with multiple objectives, we construct a hy-
brid algorithm, by integrating a local search into an evo-
lution process of NSGAII framework. The algorithm also

305

consists of problem-specific heuristics such as topology-
oriented task clustering and capacity sensitive cluster refine-
ment. Finally, we compare its performance with our imple-
mentation of NSGAII and exact solving techniques such as
SMT (satisfiability modulo theories) solver Z3 (De Moura
and Bjørner 2008), and MILP (mixed-integer linear and
quadratic programming) as well as CP (constraint program-
ming) solver CPLEX (CPLEX, IBM ILOG 2009). The ex-
perimental results show that the algorithm is capable of
dealing with large-scale applications in approximating better
Pareto fronts. The optimized solutions could save the effort
of NoC-based design space exploration in looking for ap-
propriate configurations and in estimating the performance
in implementation. Though we limit our consideration to 2D
mesh networks in this paper, our idea is applicable to other
regular network topologies with static routing strategies.

Related work
Communication cost minimization is the main concern of
NoCs (Sahu and Chattopadhyay 2013). To have a global
view of the entire system, considering communication la-
tency in task mapping (Chou and Marculescu 2008) and
scheduling (Yang et al. 2016; Li and Wu 2016) is neces-
sary for the design of NoCs. In contention-aware works, traf-
fic congestions can be estimated using heuristics (He et al.
2012). The work in (Tino and Khan 2011) provides a con-
tention model to analyze rendezvous interactions. Though
the two works could be used to estimate the potential con-
tention, they do not consider how to avoid it. Regard-
ing every shared path between communication in mapping
as a contention without temporal information (Chou and
Marculescu 2008) is an over-approximation of contentions
and may lead to a pessimistic performance estimation. The
works in (Yang et al. 2016; Li and Wu 2016) sequential-
ize potential contentions in scheduling by considering prior-
ities on communication, where the former mainly focuses on
makespan minimization and the latter considers energy min-
imization. The strategy adopted in (Neubauer et al. 2018)
blocks the whole route in transmission to avoid contention.
We introduce a contention measure in terms of the over-
lapped paths and the distance of paths, and take it as a goal
to be minimized in order to reduce the side-effect of con-
tention over-approximation in mapping and introduced la-
tency in scheduling. Compared with these works, our model
considers spatial and temporal communication contention,
and allows the overlapped communication without simulta-
neous link contention. Together with the optimization objec-
tives, it can avoid contention, and reduce makespan.

In the content of static mapping and scheduling optimiza-
tion (Sahu and Chattopadhyay 2013), where the deployment
of applications to target platforms is calculated before the
system is implemented, various algorithms exist, such as
tabu search (TS) (Tino and Khan 2011), branch-and-bound
(B&B) (Hu and Marculescu 2003), integer linear program-
ming (ILP) (Chou and Marculescu 2008), population based
incremental learning algorithm (PBIL) (Bolanos et al. 2013),
genetic algorithms (GA) (Nedjah and de Macedo Mourelle
2014), simulated annealing algorithm (SA) (Chai et al.
2014), mixed ILP (MILP) (Yang et al. 2016), answer set

1

23

4

110
12

414

30

20

(a) task graph (b) computation-oriented (c) communication-oriented

20

t1

t2

t3 t4

t2

t3t4
20

(0,2) (0,2)
t1

(1,2) (1,2)(2,2) (2,2)

(0,1) (0,1)(1,1) (1,1)(2,1) (2,1)

(0,0) (0,0)(1,0) (1,0)(2,0) (2,0)

Figure 1: An application with various mapping paradigms.

programming modulo theories (ASPmT) (Neubauer et al.
2018). Due to the high complexity of the problem, meth-
ods with exhaustive search may not be efficient to pro-
vide solutions for large-scale cases. Most of the existing
works employ meta-heuristic optimization. To deal with the
contention-aware optimization of NoC-based MPSoCs, we
further integrate a Pareto local search process into a multi-
objective genetic algorithm, which is more efficient in deal-
ing with large-scale applications.

The comparison between our work and aforementioned
works is shown in Table 1, where Heter. and Homo.
stand for heterogeneous and homogeneous architectures,
Map.and Sch. stand for mapping and scheduling, respec-
tively, and Cap. is for the capacity of PEs, i.e., the allowed
number of tasks per PE. In the table, the first group manages
to avoid contention, the second estimates the latency caused
by contention without avoiding it, and the third does not con-
sider contention, whose estimation may be too optimistic.

Preliminaries

We consider applications represented with task graphs. A
task graph G = 〈T,E〉 is a directed acyclic graph, where T
is a finite set of tasks and E ⊆ T × T is a set of precedence
relations between tasks. Each task t ∈ T is associated with
the amount of work to be dealt with, and each edge eij ∈ E
is associated with the amount of data transferred between
tasks ti and tj . For example, the model shown in Fig.1(a) is
a task graph with 4 tasks and 5 dependency relations.

The target hardware is a 2D mesh NoC-based heteroge-
neous MPSoCs. Each tile z contains a PE and is connected
to a router. Routers are connected with each other through
bidirectional links. XY-routing is assumed in this paper, i.e.,
X direction is determined first and then Y direction is de-
termined. Data transmission is in the unit of packets. If two
consequential tasks are mapped to the same PE, data can
be directly read without routing. Within this topology, the
location of each PE can be determined by the position of ac-
commodated tile z, i.e., a pair of coordinates (x, y). And the
distance between any two tiles at (xk, yk) and (xk′ , yk′) is:

βkk′ = abs(xk − xk′) + abs(yk − yk′) (1)

We present a 3×3 NoC with two different types of PEs in
Fig.1(b), where the frequency of PEs located at the tiles with
bold red square is twice as fast as others. To compare the
computation and communication consumption over various
configurations of an application, we provide two mappings
for the model in Fig.1(a), where one utilizes faster PEs and

306

Table 1: Comparison of related works

Reference Arch. Model Objective Cap. Alg.
Our work Heter. Map.+Sch. Makespan+Energy+Contention Multiple Hybrid
(Chou and Marculescu 2008) Homo. Map. Communication+Contention Single LP Approx.
(Yang et al. 2016) Homo. Map.+Sch. Makespan Multiple Heuristic
(Li and Wu 2016) Homo. Map.+Sch. Energy Single Stepwised
(Neubauer et al. 2018) Heter. Map. +Sch. Latency+Energy+Area Multiple ASPmT
(He et al. 2012) Heter. Map.+Sch. Makespan+Energy Multiple MILP
(Tino and Khan 2011) Homo. Map. Power+Throughput Single TS
(Hu and Marculescu 2003) Homo. Map. Communication Single B&B
(Nedjah and de Macedo Mourelle 2014) Heter. Map. Area+Makespan+Power Multiple GA
(Chai et al. 2014) Homo. Sch. Makespan+Load balance Multiple SA
(Bolanos et al. 2013) Heter. Map.+Sch. Reliability Multiple PBIL

Table 2: Notation explanation for constants and variables

Notation Explanation
τ (ε) time (energy) for transferring a packet through a link
τ ′ (ε′) time (energy) for routing a packet through a router
μ bandwidth of a link
ξ time bound for simultaneous communication
ρk processing speed of PE pk
ωk capacity limit for pk
βkk′ Manhattan distance between tiles zk and zk′

αi computation volume for task ti
ζij communication volume between tasks ti to tj with eij ∈ E
δij true when there is a dependency relation between tasks tj and ti
γijlr number of shared links between XY-routing paths

from tile zi to zj and from zl to zr
mik true for task ti being mapped to pk
�ik true for task ti being located at tile zk
si, fi start and end time of executing task ti
ŝij , f̂ij start and end time of data transfer for eij
qkk′ true if PE pk is allocated to tile zk′

nij true for task tj being executed next to ti on the same PE
oij true if task tj depends on ti and they are not in the same PE
dij communication distance for communication from task ti to tj
cijlr true for existing conflicts between data transfer eij and elr

the other minimizes communication. We only consider the
cost in links, and ignore the latency caused by routing and
contention. The communication is assumed to have cost 1
per packet payload per link, to have an intuitive comparison
between various configurations. If we do not consider the
additional waiting cost for data acquisition, and savings for
parallel data transfer, in the mapping of Fig.1(b), the time
costs of computation and communication are 45 and 82, re-
spectively. For the case in Fig.1(c), the time costs are 70 and
55, respectively. The two mappings both have a contention
between communication paths from t1 to t3 and from t2 to
t3, marked with bold lines. Meanwhile, a contention exists
between paths from t1 to t3 and from t1 to t2 in Fig.1(c),
which does not exist in the case of Fig.1(b).

Constraint formulation for NoC-based design

Given an application with G = 〈T,E〉, a NoC with n ×
n tiles and a set of PEs P with |P | = n2, we present the
notations used in the model in Table 2, where the constants
in the first part of the table can be extracted according to
application and platform features, or be calculated according
to routing algorithms (e.g. number of shared links between
two paths). We list the decision variables and intermediate
variables in the second and third parts of Table 2.

Constraint modeling

Our constraint model has the following features: First, the
mapping of PEs and tiles is not fixed. The mapping consists
of two stages: tasks to PEs and PEs to tiles. Second, multi-
ple tasks can be mapped to one PE, which makes scheduling
more complicated. Third, the constraints are in the format
of logical formulas, which can be translated to the formats
of various solvers. The constraints can be divided into two
types: static constraints and dynamic behaviors. Static con-
straints encode the mapping and communication relation be-
tween tasks, PEs and tiles. Behavior constraints decide the
scheduling sequence of computation and communication.

To simplify the representation, we introduce notations
T = {1, . . . , |T |} and P = {1, . . . , |P |} to denote the range
of tasks and PEs, respectively.

Static constraints

∀i ∈ T, ∀k ∈ P,mik → ∧
k′ �=k

¬mik′ , �ik → ∧
k′ �=k

¬�ik′

∀i ∈ T, ∃k, k′ ∈ P,mik ∧ �ik′ ,mik ∧ �ik′ → qkk′
(2)

∀k ∈ P, (
|T |∑

i=1

mik) ≤ ωk (3)

∀i, j, l ∈ T, ∃k ∈ P,mik ∧mjk ∧mlk ∧ nij ∧ njl → ¬nil (4)

∀i, j ∈ T, ∃k, k′ ∈ P, δij ∧mik ∧mjk′ ∧ (k �= k′) → oij , oij → δij (5)

∀k1, k2, k3, k4 ∈ P, ∃i, j, l, r ∈ T, (γk1k2k3k4 > 0)∧
�ik1 ∧ �jk2 ∧ �lk3 ∧ �rk4 ∧ oij ∧ olr → cijlr

(6)

∀i, j ∈ T, ∃k, k′ ∈ P, oij ∧ �ik ∧ �jk′ → (dij = βkk′) (7)

The two-stage mapping of task-to-PE and PE-to-tile could
be converted to the mapping between task and PE, and
the mapping between task and tile. That is, when a task is
mapped to a PE and a tile respectively, the relation between
the PE and the tile is fixed. Constraint 2 requires that one
task can only be mapped to one PE and one tile, respectively.
Constraint 3 regulates that the number of mapped tasks for
a PE cannot violate the capacity limit. Constraint 4 explains
that the stepwise execution relation is not transitive. Con-
straint 5 reasons the case with communication relation. That
is, communication exists when two tasks with dependency
relation are allocated to various PEs. Constraint 6 shows the
case of potential communication contention. Constraint 7
explains how to calculate the communication distance be-
tween two dependent tasks, which is decided by the distance
between the mapped tiles.

307

t1

t2

t4

t1->t2
t1->t3 t2->t3

t2->t4
t3->t4

990

task execution
communication

t3

P0,2

P1,1

P0,0
P2,0

shared link

10 27 51 61 89

Figure 2: A schedule for the mapping in Fig.1(b).

Behavior constraints

∀i ∈ T, fi = si + αi/(
∑|P |

k=1 mik · ρk) (8)

∀i, j ∈ T, f̂ij ≥ ŝij + oij · (ζij · τ · dij/μ+ τ ′ · (dij + 1)) (9)
Constraints 8 and 9 present quantitative relation for task exe-
cution and data transfer, respectively. The cost of data trans-
fer depends on the distance of communication, and the costs
of links and routers. The path involving dij links will go
through dij + 1 routers, where the first packet of a message
needs to be routed, and the rest can follow the first.

∀i, j ∈ T, δij → f̂ij ≤ sj , and fi ≤ ŝij (10)

∀i, j ∈ T, nij → fi ≤ sj (11)
Constraint 10 regulates the causality between task execu-

tion and communication constrained by the dependency re-
lation. Constraint 11 requires that for two tasks scheduled
next to each other in the same PE, the start of the latter
should wait for the finish of the former.

∀i, j ∈ T, ∃k ∈ P,mik ∧mjk → sj ≥ fi ∨ si ≥ fj (12)

∀i, j, l, r ∈ T, ∃k ∈ P,mik ∧mlk → ŝij ≥ f̂lr ∨ ŝlr ≥ f̂ij (13)
∀i, j, l, r ∈ T, cijlr ∧ (abs(fi − fl) ≤ ξ) → ŝij ≥ f̂lr ∨ ŝlr ≥ f̂ij (14)

Constraints 12 and 13 specify the non-overlapping relation
for task execution on the same PE and communication from
the same source, respectively. Constraint 14 says that two
communication paths with shared resource cannot overlap,
if their sources finish execution almost simultaneously. This
constraint aims to allow the case with path but without tem-
poral communication contention. It covers path contention
with same sources or destinations. Reconsider the mapping
in Fig.1(b). The communication path from t1 to t3 and the
path from t2 to t3 have a shared link. But the two do not
request the shared link at the same time, where the commu-
nication of the first can be finished before that of the second
arrives, as shown in Fig.2.

Optimization objectives

We evaluate the makespan with the scheduling length of the
task graph, i.e., the point when the last task terminates:

M = max{fi |ti ∈ T} (15)

Energy consumption includes cost for computation and
communication. For computation, we distinguish dynamic
and static status in a PE and accumulate the total cost. For
communication, we consider the cost for routing and data
transfer. In a NoC network, some PEs may not have any al-
located tasks. We use P ′ = {pk ∈ P |

∑|T |
i=1 mik > 0} to

denote the set of occupied PEs.

Let Edk
, and Eik be the rates of dynamic, static (idle)

power consumption of PE pk, respectively. Let Lk =
∑|T |

i=1 mik · αi/ρk be the load of computation on pk . The
computation cost (Ep) is:

Ep =
∑

pk∈P ′
(Edk

· Lk + Eik · (M−Lk)) (16)

The energy cost for communication Em is evaluated w.r.t.
the amount of data and the distance of the transmission.

Em =
∑

pk,pk′∈P ′

|T |∑

i,j=1

ζij · oij ·mik ·mjk′ ·

(ε · βkk′ + ε′ · (βkk′ + 1))

(17)

In addition to energy and makespan optimization, we also
expect to reduce potential contention, such that the effort in
scheduling is reduced. We adopt overlapped path between
two communication paths to measure the degree of potential
contention. Suppose two paths are from tile zk1

to zk2
, and

zk3
to zk4

, respectively. Their contention degree is

℘c(k1, k2, k3, k4) = γk1k2k3k4/(βk1k2 · βk3k4) (18)

Let Si be the set of indexes for successors of task ti. The
total contention degree between two tasks ti1 and ti2 is

Pi1i2 =
∑

j1∈Si1
,j2∈Si2

oi1j1 · oi2j2 · ℘c(ki1 , kj1 , ki2 , kj2) (19)

To avoid high local contention degree, we apply the aver-
age contention degree to evaluate the quality of the alloca-
tion strategy with Equation 20.

P̄c =

|T |∑

i,j=1

abs(Pij −
|T |∑

i,j=1

Pij/|T |) (20)

Altogether, we have three objectives to be optimized:
makespan, energy cost, and contention:

minimize(M), minimize(Ep + Em) (21)

minimize(P̄c) (22)

Discussion. The number of constraints is polynomial to the
number of tasks and PEs. In the constraint formulation, Con-
straint 14 and Objective 22 are complementary. Constraint
14 considers the temporal relation of contention, and sepa-
rates the potential overlapped communication to avoid con-
tention. Objective 22 focuses on spatial contention and tries
to minimize the overlapped communication paths.

The hybrid search algorithm

The complexity of the constraint formulation and the feature
of multiple objectives make the optimization process more
difficult. Searching for exact solutions may be infeasible for
large applications. Accordingly, we integrate a Pareto local
search method into the NSGAII framework together with
objective-related heuristic extensions. The resulting multi-
objective optimization with hybrid search (MOHA) consists
of three optimization stages. The first is a task-classification
process, including task clustering (TC) and cluster refine-
ment (CR), to group tightly coupled tasks into one PE, where
communication effort and the degree of path contention can

308

Algorithm 1 TC(G)

1: Input: task graph G
2: Output: Scheduled queues C
3: q = 0; k = 0; i = 0;
4: for ∃t.Pre(t) = ∅ do
5: add t to Q(q); q ++;
6: while (Q(k) �= ∅) ∧ (k < q) do
7: t = pop(Q(k)); C(i).push(t);
8: for t′ ∈ Succ(t) do
9: t′.in−−;

10: if {t′|t′ ∈ Succ(t) ∧ t′.in == 0} == ∅ then
11: i++;
12: if Q(k) == ∅ then
13: k ++;
14: else
15: for t′ ∈ {t′|t′ ∈ Succ(t) ∧ t′.in == 0} do
16: Q(k).push(t′);
17: return C;

be reduced. Then, with the heuristic of spiral mapping (SM),
a PE type and PE-to-tile location mapping stage is applied
to optimize makespan and average contention degree. The
two stages are integrated into initialization. In the evolution
process, with the integrated local search and the CR heuris-
tics, we look for a better task-to-PE mapping and scheduling
sequence for tasks in every PE, to minimize the makespan.

Optimization-related heuristics

Task clustering (TC) To reduce communication cost,
tightly coupled tasks should be allocated together. There-
fore, a task graph is explored according to dependency
relation to divide the tasks into different clusters. Let
Pre(t), Succ(t) be the sets of predecessors and successors of
t, respectively, and t.in be the number of unscheduled prede-
cessors of t, which is initialized as |Pre(t)|, the number of its
predecessors. In Alg.1, we use two queues Q and C to record
the tasks to be organized and having been scheduled, respec-
tively. Starting from a task t with Pre(t) = ∅, the heuristic
pushes all its schedulable successors t′ (where all the tasks
in Pre(t′) have been pushed into C) into the same cluster in
which t is, and other tasks in {t′|t′ ∈ Succ(t) ∧ t′.in �= 0}
into the cluster in which its last being scheduled predecessor
is, to maximize computation parallelization.

Reconsider the model shown in Fig.1(a). As Pre(t1) = ∅,
initially Q contains one queue with t1 (Alg.1 Line 5). In the
while loop, t1 is popped and added to the first cluster in
C (Alg.1 Line 7). Then t2.in and t3.in are decreased by 1
(Alg.1 Line 9). Next t2 can be added to Q(0) (Alg.1 Line
16) and be processed in the second loop. Finally, the four
tasks are added into the same cluster.

Capacity constrained cluster refinement (CR) We as-
sume that the sum of capacity limits of all PEs is larger than
or equal to the number of tasks, to ensure that the system is
schedulable. However, after TC, the number of clusters may
go beyond the number of available PEs, or the number of

crossover

1 2 3 4
pointer1pointer2

P(0,2)

pointer3

P(1,1)P(0,0)P(2,0)

1 2 34
P(1,2)P(0,1)

Sp1 Sp2��� ���

P(0,2) P(1,1)

t1 t2 … … ti … … tn

relative scheduling sequence

pointer1 pointerj pointerm

���

gene1 genem+1

1 2 34Sc
P(0,2) P(1,1)P(0,1)mutation

1 4 2 3
P(0,2)P(0,1)P(0,0)P(1,1)

���

Sm

Figure 3: Chromosome encoding and genetic operations

involved tasks in a cluster may exceed the capacity of a PE.
In the first case, the clusters are ranked in a descending or-
der of computation load. Each time the last two clusters are
merged and the clusters are re-ordered, until the number of
clusters meets the requirement. In the combination, the or-
dering of tasks in one cluster is unmodified, and the tasks in
the other are inserted sequentially according to the schedul-
ing order of their predecessors. In the second case, we can
apply precaution or remedy strategies. The first strategy can
generate a feasible solution directly, and be integrated into
clustering stage or local search stage. In this strategy, a task
will be allocated to a PE in which the number of accommo-
dated tasks is below the capacity limit. The second strategy
is to deal with an infeasible solution generated from a ran-
dom mode, such as random initialization or evolution pro-
cess. For a cluster in an overloaded PE, let ti be the last
scheduled task of the cluster. We search for its successor tj
and check the availability of PE that accommodates tj . If
such a PE exists, we insert ti in front of tj . Otherwise, we
append ti to the cluster of an available PE randomly. In such
a case, indirect dependency between the existing tasks and
ti may be violated. Let T be the set of tasks in the cluster
before modification. We execute a breadth-first search from
ti in the task graph. If a task tj in T is explored, the indi-
rect dependency is violated, and we insert ti in front of tj .
Otherwise, the new generated cluster is feasible. The loop
continues until the capacity constraint is satisfied.

Spiral mapping (SM) We first calculate communication
cost between all clusters and total computation cost of ev-
ery cluster. The allocation of a cluster is searched in a spiral
path (Mehran et al. 2007) from centre to the boundary of the
network architecture, such that communicating clusters are
close to each other. Then, the cluster with the highest amount
of work is placed to the centre with the fastest PE, and the
one with the highest transmission cost to the allocated clus-
ter is placed next to it. If there are several feasible clusters,
we select one randomly.

MOHA algorithm

The essential ingredients of genetic process in MOHA con-
sist of the problem-oriented chromosome encoding, the ini-
tialization, the operations to generate offsprings, and how
local search is integrated into.

Encoding and decoding To integrate the mapping and lo-
cal scheduling strategy, a gene is an identity of PE together
with a sequence of identities for the scheduled order of al-
located tasks. In a chromosome, only the occupied PEs are
recorded, as the mapping between PE and tile is fixed in

309

initialization, and the genetic process will not modify the re-
lation. And the indexes of PEs may not be continuous but
should be ordered w.r.t. their positions. When tasks are al-
located to unused PEs in the evolution process, the indexes
of the PEs will be inserted into the chromosome with the
indexes of the accommodated tasks. We need extra pointers
to separate the genes for occupied PEs in a chromosome, as
shown in Fig.3 (a). For the example in Fig.1(b), its encoding
is shown in SP1 of Fig.3(b). As four PEs are occupied in
SP1, we need three pointers to separate the genes.

The decoding of a chromosome is to extract physical lo-
cations of tasks w.r.t. the mapping information, the compu-
tation cost of every task w.r.t. the allocated PE, and the task
scheduling sequence within a PE.

Initialization A diversified population could provide a
greater chance to find the optimal, yet would result in slow
convergence. While an intensified population could con-
verge fast, yet would make the algorithm trap into local opti-
mum. Therefore, we randomly generate some candidates to
cover a more comprehensive solution domain, and construct
a solution according to TC, CR and SM heuristics for the
reduction of communication cost and a faster convergence.
Then they will be divided into various sub-populations by
the fast non-dominated sorting and crowding distance cal-
culation in NSGAII. Though only one solution is generated
by the heuristics, information obtained from heuristics can
be partially preserved in their offspring.

Randomly generated solutions in initialization and those
generated in the genetic process may not be feasible. We use
a repair operator to repeatedly check the feasibility of solu-
tions and ensure that each task starts after all its predecessors
have been executed. That is, the operator checks whether di-
rect or indirect dependency exists and the causality relation
is maintained from the beginning of a gene. Once a viola-
tion is detected, the task that should be scheduled earlier is
inserted before its direct or indirect successor. The process
terminates when no violation exists.

Genetic process We propose a uniform crossover and a
split (or merge) based mutation operator in the genetic pro-
cedure, to improve the feasibility and diversity of solutions.
The crossover operator is to bring the search process to new
promising regions to diversify the solutions. It performs after
a random selection of two parents from the dynamic elitist
population and the evolution population. Each task in the
offspring inherits the position from one of its parents ran-
domly. For example, two parents SP1 and SP2 are shown
in Fig.3 (b). Their child Sc in Fig.3(c) is generated from
crossover operator, where tasks t3 and t4 inherit the map-
ping from SP2, and the others inherit from those of SP1.

To avoid that the integrated local search on a fixed map-
ping is trapped into a local optimum, each individual is eval-
uated with a mutation probability. In the mutation opera-
tor, two operations can be selected with probability Po =
|P ′|/|P | (the ratio of occupied PEs). That is, when PE uti-
lization is low, we split clusters. Otherwise, we merge clus-
ters. In the split operator, a cluster with the highest compu-
tation cost is decomposed into two with the balanced load.
For example, the ratio of occupied PEs in the generated child

Sc of Fig.3(c) is low. In the mutation, the cluster in the last
PE containing two tasks is split into two and task t2 is allo-
cated to an available faster PE, as shown in Fig.3(d). In the
merge operator, two clusters with the lowest computation
costs are selected and merged. The new generated clusters
from split or merge operations will be allocated to the first
available PEs according to the SM heuristic. And CR heuris-
tic ensures that the number of tasks in every PE is under the
capacity constraint.

Pareto local search (LS) Based on solutions obtained
from the crossover and mutation operations, we apply a
Pareto local search at the end of a genetic step to enhance the
intensive searching capability. The key of the procedure is an
insertion-based neighborhood comparison. Given a candi-
date solution S and tasks t and t′, if we insert task t in front of
task t′ and keep relative positions of other tasks unchanged,
we can obtain a neighbor solution of S. We use neighbor(St)
to denote the set of neighbors of S by inserting t into other
positions, without destroying the precedence relation of the
rest of tasks to save the repairing effort. In the main Pareto
local search loop, a task t of solution S is randomly selected,
and checked to find a solution that can dominate S from its
neighborhood space. Specifically, if neighbor(St) is better
than S based on Pareto optimal evaluation, it will replace S
for further exploitation and the iteration is restarted to look
for a better neighborhood. Meanwhile, the elitist population
is updated. Otherwise, another task will be checked and the
iteration will be continued. This process continues until the
times of iteration reach the maximum limit.

Experimentation

MOHA together with NSGAII is implemented in C++. The
experimentation runs on a PC with intel 2.2 GHz processor
and 8.0 GB memory. The effectiveness of the model and the
efficiency of MOHA are evaluated with randomly generated
cases from TGFF tool (Dick, Rhodes, and Wolf 1998) and
a set of real benchmarks: H264 and MP3 decoders, TMNR
procedure, Multi-Window Display (MWD) application, Liv-
ermore Loop (FFT loop), and Bufferfly (FFT butterfly).

Experimental setup

The setting of parameters for computation and communi-
cation cost in the constraint model can be found in (Yang
et al. 2016). We assume that two types of PEs with vari-
ous frequencies but the same capacity are available. Except
for the fine-grained H264 case that is deployed in various
scales of platforms, all other experimentations take a 2×2
2D mesh NoC as the target platform. We generate small and
large-scale random cases. To check the sensitivity of various
methods to computation load, the volume of computation
from every case has been multiplied three times (suffixed
with “-m” for the original, and “-p” for after multiplication).

We adopt our implementation of NSGAII as the baseline
without any heuristics. Both MOHA and NSGAII share the
same parameter setting to reach a fair comparison: the size of
population is 30, and the probability of mutation operation is
0.1. They are executed 5 times on each instance with a time
limit of 1000 seconds, and the average value is recorded. For

310

Table 3: Comparison between exact and heuristic methods

Case |T | |E| MOHA NSGAII MILP CP Z3
num. num. num. time num. time num. time

5-m 5 4 3 2(=)+2(�) 2(=) 82.57 3(=) 13.35 3(=) 3.68
5-p 5 4 3 3(=) 2(=) 106.20 3(=) 17.75 3(=) 6.49
7-m 7 6 2 2(=) 2(=) 114.20 2(=) 46.14 2(=) 9.14
7-p 7 6 2 2(=) 2(=) 154.50 2(=) 75.16 2(=) 19.85
8-m 8 7 2 2(=) 2(=) 497.65 2(=) 59.70 2(=) 12.92
8-p 8 7 2 2(=) 2(=) 323.48 2(=) 130.87 2(=) 23.13
10-m 10 9 1 1(=) 1(=) 2620.71 1(=) - 1(=) 93.45

fine-grained H264 case, the time limit is set to 3600 seconds.
The iteration limit of local search in MOHA is set to 5.

Evaluation on MOHA

We compare the quality of solutions between MOHA,
NSGAII, and exact methods for small-scale cases with
makespan and energy optimization, and the effectiveness of
various heuristics in MOHA with NSGAII for large-scale
and real cases with three objectives.

Comparison on the quality of solutions The compari-
son with exact solving techniques involves popular tools Z3
(supporting multi-objective optimization and providing all
Pareto fronts) for SMT solver, CPLEX for MILP and CP
solvers (called iteratively to search for better solutions and
obtain the Pareto fronts). We construct various formats of
models1 w.r.t. the proposed constraint model and the fea-
tures of the corresponding solvers, and build the procedures
to search for Pareto fronts with MILP and CP solvers.

When given two optimization objectives, CPLEX (for
both MILP and CP) cannot finish optimization within a time
limit (3600 seconds) for case 10-p. When given three ob-
jectives, the MILP solver fails to provide any result within
several days, and Z3 can only provide solutions for TMNR,
MWD and MP3 decoder within 10 hours. Hence, we com-
pare MOHA with CPLEX and Z3 using small-scale cases
for makespan and energy minimization.

In Table 3, the time cost above 3600 seconds is denoted by
“-”, the legend num. in MOHA shows the number of gener-
ated non-dominated solutions. The other columns with leg-
end num. also show the relation between the generated solu-
tions with MOHA, where � means that solutions of NSGAII
are dominated by those of MOHA, and = means that solu-
tions of the methods are the same.

In the experimentation, MOHA can find all the Pareto
fronts. The performances of MOHA and NSGAII are sim-
ilar. However, in the first case, though NSGAII can find four
solutions, two of them are dominated by those of MOHA.
And the other two are in MOHA. Z3 can always find all the
solutions quickly, for the constraints can be encoded as logic
formulas and the optimization process is fast for small-scale
cases. Compared with the MILP solver, the better perfor-
mance of CP solver is achieved from the logic constraint
reasoning and the scheduling-oriented features. The perfor-
mance of the three exact methods decreases with the increas-
ing number of tasks and the increasing load of computation.

1Available from https://github.com/LIIHWF/ICAPS2020

Heuristics comparison with various metrics To check
the effectiveness of the heuristics, we present the compar-
ison with NSGAII from Set Coverage (Zitzler et al. 2003) to
reflect the percentage of dominance measured between dif-
ferent heuristics and algorithms, and hyper volume indicator
IH (Zitzler and Thiele 1999) to reflect both dominance de-
gree and distribution of Pareto fronts for various algorithms:

• Let A and B be two approximations of the Pareto front
of a multi-objective optimization problem. We define
C(A,B) as the percentage of the solutions in B that are
dominated by at least one solution in A, where C(A,B)
is denoted by C and C(B,A) is denoted by C ′.

• Let S be the set of final non-dominated points, and r=
(r1, r2, ..., rm)T be a reference point in the objective
space that is dominated by all Pareto optimal objective
vectors. Then IH is the volume of the region dominated
by S and bounded by r2.

We consider the two metrics together. Informally speak-
ing, the larger value of the same metric indicates better per-
formance. We present three groups of comparison among the
two metrics in Fig.4: C1: with local search (I1) and without
it (I ′1); C2: with task clustering (I2) and with random ini-
tialization (I ′2), and C3: with MOHA (I3) and with NSGAII
(I ′3). In the figure, zero valuation leads to a missing column.

Compared with the results of C1 and C ′
1 in Fig.4a, MOHA

can find better solutions with the LS process. For TMNR,
using LS or not can both find five solutions. Among the two
groups of solutions, three of them are the same, and the other
two have no dominance relation. Therefore, both C1 and C ′

1
are zero. However, the volume of using LS (I1) is larger than
that of without LS (I ′1), showing that the results of using LS
are closer to the Pareto fronts. For MP3-decoder, the number
of solutions found with LS is larger than the case without LS.
However, there is no dominance relation either. Though the
step of LS increases the duration of a genetic process, the
quality of solutions with LS is better, as illustrated by the
comparison between I1 and I ′1.

The results in Fig.4b show that though random initializa-
tion can generate some non-dominated solutions (C ′

2 > 0),
and the difference of volumes is not quite obvious, many so-
lutions without task clustering are dominated by those with
the heuristic. For MWD and TMNR, both can find the same
solutions and their C2 and C ′

2 (I2 and I ′2) are the same. For
MWD, TMNR and MP3-decoder, their scales are smaller,
and the dependence relations are simple. Therefore, the ad-
vantage of applying the heuristics separately is not quite ob-
vious in Fig.4a and Fig.4b.

In the third comparison in Fig.4c, the percentage of dom-
inance with MOHA is much better than that with NSGAII.
That is, by applying the heuristics, MOHA can always find
more and better solutions. In randomly generated cases, the
computation complexity of MOHA becomes higher with the
increasing number of tasks, which spends more time in find-
ing non-dominated solutions. Although NSGAII sometimes
can find some solutions that dominate part of solutions with
MOHA (where C3 �= C ′

3 and both C3 and C ′
3 > 0), the vol-

2All the values are normalized into [0,1] for a fair comparison

311

 0

0.5

 1

1.5

 2

20-m
20-p

80-m
80-p

M
W

D
TM

NR

M
P3-decoder

H264-coarse

FFT-loop

FFT-butterfly

C3 C'3 I3 I'3

(a) local search

 0

0.5

 1

1.5

 2

20-m
20-p

80-m
80-p

M
W

D
TM

NR

M
P3-decoder

H264-coarse

FFT-loop

FFT-butterfly

C3 C'3 I3 I'3

(b) initialization

 0

 0.5

 1

 1.5

 2

20-m
20-p

80-m
80-p

M
W

D
TM

NR

M
P3-decoder

H264-coarse

FFT-loop

FFT-butterfly

C3 C'3 I3 I'3

(c) MOHA and NSGAII

Figure 4: Comparison between various heuristics and NSGAII

Table 4: Contention-aware strategy comparison

Case |T | |E| SPC CC PaCC PrCC
MWD 12 12 2666 2488 1878 1488
TMNR 14 16 2590 2340 1812 1800
H264-coarse 14 36 89743 86330 85329 83490
Mp3-decoder 16 16 33329 33253 33253 33253
FFT-loop 28 27 19219 12684 12351 12187
FFT-butterfly 32 48 17028 10523 10273 10189

ume with NSGAII is always smaller than that with MOHA.
The fact demonstrates that the quality of solutions generated
from MOHA is better than that from NSGAII.

Effectiveness for contention-aware optimization

To evaluate the effectiveness of Constraint 14 and Objec-
tive 22 in avoiding contention, we conduct the following
comparison for real benchmarks: 1) with sequentializing
all potential contention (SPC) in scheduling, by forbid-
ding any overlapped communication whose routes involve
shared links; 2) only with Constraint 14 (CC) that just sep-
arates nearly simultaneous task-to-task communication with
shared links; 3) with path-contention minimization proposed
in (Chou and Marculescu 2008) and CC (PaCC); and 4) with
Objective 22 and CC (PrCC). That is, the comparison of the
last three follows same mapping and scheduling constraints
but various optimization goals. We employ makespan to
evaluate their performance for real benchmarks.

In Table 4, the makespan of SPC is the largest. The
makespan of PrCC is smaller than that of CC and PaCC
in most cases. That is, without spatial contention reduction,
only introducing latency to avoid contention (such as SPC
and CC) is usually less efficient. In path-based contention
minimization (PaCC), every communication path overlap is
regarded as a contention, which may cause higher commu-
nication cost for scattered tasks, or lower parallel execution
of tasks for communication cost reduction. Thus, its perfor-
mance is worse than PrCC. For Mp3-decoder with few paral-
lelizable tasks, the last three methods obtain the same result.

Evaluation on various platforms

We consider applying fine-grained H264 (with 264 tasks) to
various NoC platforms (2×2, 3×3, 4×4 and 5×5, respec-
tively). According to the distributions of solutions shown
in Fig.5, we have the following observations. First, the in-

Figure 5: Platform specific solutions for fine-grained H264

creasing number of PEs leads to the increasing energy con-
sumption, for the introduced communication and additional
latency. Second, parallel execution of tasks on more avail-
able PEs shortens the makespan. Third, the smaller number
of PEs results in higher degree of contention. However, for
the 3 × 3 NoC platform, though from Fig.5(a) it is not easy
to compare the valuations of makespan in the solutions with
the cases of 4× 4 and 5× 5 platforms, the energy costs are
smaller than those in the two cases. And as demonstrated in
Fig.5(b), the values of contention in the solutions are smaller
than the case of 2 × 2 platform. Therefore, the 3 × 3 plat-
form may be a trade-off between parallel computation and
the introduced communication cost.

Conclusion

We address the mapping and scheduling problem on
NoC-based platforms for both time and energy efficient
contention-aware applications. In mapping, contention de-
gree (the proportion of shared physical links to the product
of actual lengths) is evaluated and minimized to reduce spa-
tial contention. In scheduling, a non-overlapping criterion is
applied to separate potential contentions. For makespan and
energy minimization, we propose a clustering heuristic to
organize related tasks for mapping, and a capacity sensitive
heuristic to balance the allocated tasks to a PE. To accelerate
convergence, we further integrate a local search into the ge-
netic process. The extensive experimentation validates the
effectiveness of the constraint model, and the efficiency of
MOHA in optimizing real applications.

Acknowledgments

This work has been partly funded by Key Research
Program of Frontier Sciences, CAS, under Grant No.

312

QYZDJ-SSW-JSC036, the CAS-INRIA major project un-
der No.GJHZ1844, NSFC under Grant No.61976050, and
project of Jilin Provincial Science and Technology Depart-
ment under Grant No. 20190302109GX.

References

Bolanos, F.; Rivera, F.; Aedo, J. E.; and Bagherzadeh, N.
2013. From UML specifications to mapping and schedul-
ing of tasks into a NoC, with reliability considerations. JSA
59(7):429–440.
Chai, S.; Li, Y.; Wang, J.; and Wu, C. 2014. A list simulated
annealing algorithm for task scheduling on network-on-chip.
JCP 9(1):176–182.
Chou, C.-L., and Marculescu, R. 2008. Contention-aware
application mapping for network-on-chip communication
architectures. In ICCD, 164–169.
CPLEX, IBM ILOG. 2009. V12. 1: User manual for
CPLEX. International Business Machines Corporation
46(53):157.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient SMT
solver. In TACAS, 337–340. Springer.
Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. 2002.
A fast and elitist multiobjective genetic algorithm: NSGA-
II. IEEE Trans. Evol. Comput. 6(2):182–197.
Dick, R. P.; Rhodes, D. L.; and Wolf, W. 1998. TGFF:
task graphs for free. In CODES/ CASHE, 97–101. IEEE
Computer Society.
He, O.; Dong, S.; Jang, W.; Bian, J.; and Pan, D. Z. 2012.
Unism: Unified scheduling and mapping for general net-
works on chip. TVLSI 20(8):1496–1509.
Hu, J., and Marculescu, R. 2003. Energy-aware mapping for
tile-based NoC architectures under performance constraints.
In ASP-DAC, 233–239.
Li, D., and Wu, J. 2016. Energy-efficient contention-
aware application mapping and scheduling on NoC-based
MPSoCs. JPDC 96:1–11.
Mehran, A.; Saeidi, S.; Khademzadeh, A.; and Afzali-
Kusha, A. 2007. Spiral: A heuristic mapping algorithm for
network on chip. IEICE Electronics Express 4(15):478–484.
Nedjah, N., and de Macedo Mourelle, L. 2014. Applica-
tion mapping in network-on-chip using evolutionary multi-
objective optimization. In Hardware for Soft Computing and
Soft Computing for Hardware. Springer. 155–171.
Neubauer, K.; Wanko, P.; Schaub, T.; and Haubelt, C.
2018. Exact multi-objective design space exploration using
ASPmT. In DATE, 257–260. IEEE.
Sahu, P. K., and Chattopadhyay, S. 2013. A survey on appli-
cation mapping strategies for network-on-chip design. JSA
59:60–76.
Tino, A., and Khan, G. N. 2011. Multi-objective tabu search
based topology generation technique for application-specific
network-on-chip architectures. In DATE, 1–6.
Yang, L.; Liu, W.; Jiang, W.; Li, M.; Yi, J.; and Sha, E. H.-M.
2016. Application mapping and scheduling for network-on-

chip-based multiprocessor system-on-chip with fine-grain
communication optimization. TVLSI 24(10):3027–3040.
Zitzler, E., and Thiele, L. 1999. Multiobjective evolutionary
algorithms: a comparative case study and the strength pareto
approach. IEEE Trans. Evol. Comput. 3(4):257–271.
Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; and
Da Fonseca, V. G. 2003. Performance assessment of mul-
tiobjective optimizers: an analysis and review. IEEE Trans.
Evol. Comput. 7(2):117–132.

313

