
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Privacy Preserving Planning in Stochastic Environments

Guy Shani, Roni Stern, Tommy Hefner
Ben Gurion University of the Negev, SISE Dept., Be’er Sheva, Israel

Abstract

Collaborative privacy preserving planning (CPPP) has gained
much attention in the past decade. To date, CPPP has focused
on domains with deterministic action effects. In this paper,
we extend CPPP to domains with stochastic action effects. We
show how such environments can be modeled as an MDP. We
then focus on the popular Real-Time Dynamic Programming
(RTDP) algorithm for computing value functions for MDPs,
extending it to the stochastic CPPP setting. We provide two
versions of RTDP: a complete version identical to executing
centralized RTDP, and an approximate version that sends sig-
nificantly fewer messages and computes competitive policies
in practice. We experiment on domains adapted from the de-
terministic CPPP literature.

1 Introduction

Designing autonomous agents that act collaboratively is an
important goal. A fundamental requirement of such collabo-
ration is to plan for multiple agents acting to achieve a com-
mon set of goals. Collaborative privacy-preserving planning
(CPPP ) is a multi-agent planning task in which agents need
to achieve a common set of goals without revealing certain
private information (Brafman and Domshlak 2008). In par-
ticular, in CPPP an individual agent may have a set of private
facts and actions that it does not share with the other agents.
CPPP has important motivating examples, such as planning
for organizations that outsource some of their tasks.

In this paper we extend the CPPP framework to stochas-
tic domains, where actions may have different effects with
varying probabilities. In the planning community, stochas-
tic domains are typically modeled using Markov decision
processes (MDPs) (Kolobov 2012, e.g.). We suggest an MDP
formalization for privacy preserving stochastic problems.

A popular approach for solving goal based MDPs is the
Real-Time Dynamic Programming (RTDP) algorithm (Barto,
Bradtke, and Singh 1995), computing a value function, esti-
mating the expected cost to the goal from each state. RTDP
executes trajectories in the state space, updating the value
function along the trajectory, and is guaranteed, under some
restrictions, to converge to the optimal value function. We
adapt RTDP to our stochastic CPPP setting, showing how

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents execute jointly state space trajectories, resulting in
the distributed RTDP algorithm (DRTDP).

The complete version of DRTDP follows the same trajec-
tories that will be computed on a centralized MDP. To do
so, DRTDP requires a constant synchronization between the
agents, which results in many messages. We thus suggest
an approximate DRTDP version that requires synchroniza-
tion only following public actions, which we call the Pub-
lic Sync RTDP (PS-RTDP). This approximate DRTDP is not
guaranteed to converge, and in particular, its trajectories may
get into private cycles, requiring restarting the trajectory.

We compare the two versions over a set of domains
adapted from the deterministic CPPP literature (Štolba,
Komenda, and Kovacs 2015), showing that both versions
converge to similar expected costs, while PS-RTDP requires
as much as an order of magnitude fewer messages.

2 Background

We briefly review background on CPPP, MDPs, and RTDP.

Collaborative Privacy Preserving Planning An MA-
STRIPS problem (Brafman and Domshlak 2013) is repre-
sented by a tuple 〈P, {Ai}ki=1, I, G〉 where: k is the number
of agents, P is a finite set of primitive propositions (facts),
Ai is the set of actions agent i can perform, I is the start
state, and G is the goal condition.

Privacy-preserving MA-STRIPS extends MA-STRIPS by
defining sets of variables and actions as private, known only
to a single agent. privatei(P ) and privatei(Ai) denote the
variables and actions, respectively, that are private to agent
i. public(P ) is the set of public facts in P . publici(Ai), the
complement of privatei(Ai) w.r.t. Ai, is the set of public
actions of agent i. Some preconditions and effects of public
actions may be private, and the action obtained by removing
these private elements is called its public projection, and it is
known to other agents. All agents are aware of the execution
of a public action, and view the public effects of the action.
Goals can be public, or private to one agent.

MAFS (Nissim and Brafman 2014) is a popular algorithm
for CPPP — a distributed algorithm in which every agent
runs a best-first search to reach the goal. Agents maintain
an open list of states, and in every iteration choose a state
from the open list to expand, generating all its children and
adding them to the open list (avoiding duplicates). Whenever

258



an agent expands a state that was generated by applying a
public action, it also broadcasts this state to all other agents.
An agent that receives a state adds it to the open list.

To preserve privacy, the private part of a state is obfus-
cated when broadcasting it, e.g., by replacing the private
facts with some index, such that only the broadcasting agent
knows how to map this state index to the corresponding pri-
vate facts. Once the goal is reached, the agent achieving the
goal informs all others, and the search process stops.

Markov Decision Processes In many domains there can
be several alternative action effects. First, actions may fail,
e.g., in the Logistics domain, loading a package may fail,
and the package would remain where it was. Second, actions
may have unwanted effects. For example, the driver may en-
ter a wrong destination into the navigation app, and drive to
the wrong location. In many cases one can have a stochastic
model specifying the probability for each effect to occur.

Such planning domains can be modeled by Markov Deci-
sion Processes (MDPs) (Kolobov 2012). In automated plan-
ning, an MDP is a tuple 〈P,A, I,G,C〉 where P is a finite
set of propositions, A is a finite set of actions, I is the start
state, G is the goal condition, and C is a cost function. The
set of states of the MDP S is the set of all possible assign-
ments to the propositions in P . An action a ∈ A is defined
by preconditions pre(a) as above. However, the action ef-
fects eff (a) is a set of stochastic effects 〈φi, pi〉, where φi is
a conjunction of positive and negative literals, and pi is the
probability that this specific effect would occur. As some ef-
fect must always occur,

∑
i pi = 1. For a pair of states s, s′,

we denote by tr(s, a, s′) the probability that the agent would
arrive at state s′ by executing a at state s. If s |= G, then
tr(s, a, s) = 1, ∀a ∈ A. That is, goal states are absorbing.
The cost function assigns a cost to executing an action a at
a state s. The cost for any action at a goal state s |= G is 0,
while executing an action at any other state incurs a positive
cost. Hence, the agent strives to arrive at a goal state.

A solution for an MDP is a policy, a mapping π : S → A,
assigning an action to every state. A policy that minimizes
the expected cost for reaching the goal is an optimal solu-
tion to an MDP. Many MDP algorithms compute a policy by
first computing a value function V : S → A assigning a
value to each state, estimating the expected cost for achiev-
ing the goal. The value iteration algorithm computes a value
function by iteratively applying the Bellman update:

Q(s, a) = C(s, a) +
∑

s′
tr(s, a, s′)V (s′) (1)

V (s) = minaQ(s, a) (2)

over every state until convergence. The resulting policy is:
πV (s) = argminaC(s, a).

The RTDP algorithm (Algorithm 1) (Kolobov 2012, e.g.)
operates by launching simulated trajectories in state space,
starting from the initial state. During a trajectory, at each
state s, the algorithm selects a heuristically best action a,
and then selects the next state from the tr(s, a, ·) distribu-
tion. When RTDP reaches a goal state, the trajectory is ter-
minated, and a new one is launched. Bellman updates are
used to update the value function along the trajectory. If the

Algorithm 1: RTDP
1 RTDP()
2 ∀s ∈ S, a ∈ A,Q(s, a)← 0, V (s)← 0
3 while V has not converged do
4 s← s0
5 while s �|= G do
6 a∗ ← argminaQ(s, a)
7 Q(s, a) = C(s, a) +

∑
s′ tr(s, a, s

′)V (s′)
8 V (s)← mina′Q(s, a′)
9 sample s′ from tr(s, a∗, ·)

10 s← s′

value function is initialized optimistically (e.g. to 0), RTDP
converges to the optimal value function.

3 Privacy Preserving MDPs

We extend the definition of CPPP to stochastic domains,
modeled as an MDP, with each agent viewing only a part
of the complete MDP. More formally, a stochastic collabora-
tive privacy preserving planning problem (SCPPP) is a tuple:
〈P, {Ai}ki=1, tr, I, G,C〉 where k is the number of agents,
P is a finite set of primitive propositions (facts), Ai is the
set of actions agent i can perform, I is the start state, G is
the goal condition, and C is a cost function. As in a CPPP
problem, privatei(P ) and privatei(Ai) denote private vari-
ables and action of agent i. public(P ) is the set of public
facts in P , and publici(Ai) is the set of public actions of
agent i. As in an MDP, actions have stochastic effects, i.e.
eff (a) = {〈φi, pi〉} where pi is the probability that effect φi

would occur. As in an MDP, C assigns a cost for executing
an action at a state. tr is a transition function, specifying the
probability of moving from states s to s′ using action a.

While in classical CPPP problems a solution is a sequence
of public and private actions, in an SCPPP problem the so-
lution is a policy, determining at each step which agent
should execute an action, and which action must be exe-
cuted. Hence, the policy of an agent i is a mapping πi :
Si → Ai ∪ {noop}, where Si is the set of local states —
assignments to the private propositions of i and the public
propositions. Such a policy either chooses an action to exe-
cute at a given state, or lets another agent perform an action.

In this paper we focus on policies that do not allow paral-
lel execution, that is, for each state s of the system, there is
exactly one agent where πi(si) �= noop, where si is the lo-
cal view of agent i of the global state s. We leave extensions
that allow for parallel executions where more than one agent
executes an action at each step to future research.

Complete DRTDP We now present our distributed RTDP
(DRTDP) algorithm for solving privacy preserving MDP
problems. DRTDP operates by running a trajectory that is ad-
vanced by one agent at a time. That is, similar to the for-
ward search of MAFS, the trajectory begins with one agent
but can then be advanced by other agents. As in MAFS,
DRTDP requires message passing between the agents. Like
MAFS, messages contain a public state, and indexes of pri-
vate states. However, as opposed to MAFS, messages also

259



Algorithm 2: DRTDP for agent i
1 DRTDP(i)
2 ∀s ∈ S, a ∈ A,Qi(s, a)← 0, Vi(s)← 0
3 while true do
4 process-messages()
5 if sic �= null then
6 advance-trajectory()
7 process-message()
8 foreach Message m = 〈s, t, v, j〉 do
9 if m.type = Q-value request then

10 send to m.j 〈m.s,Q-value response, Vi(s), i〉
11 if m.type = Q-value response then
12 if m.v < Vi(s) then
13 Vi(s) = m.v, besti(s)← m.j
14 if m.type = trajectory then

15 sic ← m.s
16 advance-trajectory()

17 a∗ = argminaQi(s
i
c, a)

18 update(sic, a∗)
19 sample s′ from tr(sic, a

∗, ·)
20 sic ←choose-next-agent(s′)
21 choose-next-agent(s)
22 if s ⊆ G then
23 broadcast & wait 〈s0, Q-value request,×, i〉
24 s← s0
25 if best(s) = i then return s
26 else send to best(s) 〈s, trajectory,×, i〉, return null
27 update(s, a)

28 foreach s′ ∈ tr(s, a, ·) do

29 broadcast & wait 〈s′, Q-value request,×, i〉
30 Qi(s, a) = C(s, a) +

∑
s′ tr(s, a, s

′)Vi(s
′)

31 Vi(s)← mina′Qi(s, a
′)

contain the current values for the states in the message.
In the complete DRTDP, at each step, a single agent is re-

sponsible for advancing the trajectory. This agent requests
all other agents to send it their estimated cost to the goal
from the current state for their best action. The agent sending
the best expected cost is chosen to execute its action and se-
lect the next state. This is repeated until the goal is reached.
Each agent i maintains the functions Qi(s, a) and Vi(s).

Algorithm 2 presents a simplified version of our dis-
tributed RTDP method. Each agent continuously processes
all received messages (line 4). A message m is a tuple
〈s, t, v, i〉 where s is a state, represented by the public facts
and the private state indexes of all agents, v is a (possibly
empty) value, i the sending agent, and t is the message type.
There can be 3 types of messages: (1) Q-value request: agent
i is requesting all agents to send their values for the state s.
(2) Q-value response: agent i is answering a Q-value request
message with its value for the state s. The receiving agent
checks if it has received a better value, and if so, changes
Vi(s), also recording the sending agent in besti(s) (line 13).
(3) Trajectory: agent i transfers responsibility of advancing
the trajectory from s to the receiving agent.

The private variable sic maintains the current state of the
trajectory for agent i, which can be null, if the trajectory
is currently under the responsibility of another agent. If

Algorithm 3: PS-RTDP for agent i
1 advance-trajectory()

2 a∗ = mina Qi(s
i
c, a)

3 sample s′ from tr(sic, a
∗, ·)

4 if private cycle detected then
5 restart trajectory
6 if a∗ is a private action then

7 local-update(sic, a∗), sic ← s′

8 else

9 update(sic, a∗), sic ←choose-next-agent(s′)
10 local-update(s, a)

11 Qi(s, a) = C(s, a) +
∑

s′ tr(s, a, s
′)mina′ Qi(s

′, a′)
12 Vi(s)← mina Qi(s, a)

sic �= null, then i is responsible for advancing the trajec-
tory (line 6). When receiving a trajectory message, sic is set
to the received state. When agent i receives responsibility
for a trajectory, it first selects its best action a∗ (line 17). At
this point, we can limit our attention to the actions of agent
i, because we already compared the values from all other
agents, and i reported the best expected cost.

We then update the Q-function and the value function.
The only Q-value that changes is Qi(s

i
c, a

∗) of agent i
whose action is executed. Hence, agent i requests (line 29)
all other agents to send their values for all possible next
states after executing a∗ at sic. After all values have been
received, we update Qi(s

i
c, a

∗) and Vi(s
i
c) (line 30).

After updating the value function, the agent selects the
next possible state s′, and then must choose the agent that
receives the responsibility to advance the trajectory for s′.
First, if s′ is a goal state, then the agent must start a new tra-
jectory. To do that, the agent sends a request to all agents for
their best value for the initial state s0. If s′ is not a goal state,
recall that during the value function update the agent has al-
ready requested values from all other agents for all possible
next states, including s′ (line 29). Hence, agent i already
maintains the best agent to handle s′ in besti(s

′). If the best
next agent is i, then it sets sic to s′. Otherwise, it sends a tra-
jectory message to besti(s

′), transferring responsibility for
the trajectory, and sets sic to null. This algorithm results in
identical trajectories to the ones generated by RTDP on the
joint problem. Thus, the cost added for preserving privacy is
only the cost of the message passing mechanism.

Public Synchronization RTDP The approximate version
of DRTDP, which we call Public Sync RTDP (PS-RTDP),
relies on the intuition that often there is no need to interleave
the private actions of different agents. That is, as in MAFS,
following a private action of agent i, the next action should
also be of agent i. Hence, in PS-RTDP, an agent chosen to
execute the next action continues to execute additional ac-
tions until it executes a public action. Then, the agents vote,
as in the complete DRTDP on which agent takes ownership
of the trajectory and progresses it farther.

Algorithm 3 shows the differences between the algo-
rithms. In PS-RTDP, the agent responsible for advancing a
trajectory considers only its own actions. If the selected ac-
tion is private, then the agent updates the value using only

260



Domain # Actions # Facts Best Cost Expansions × 10ˆ4 Messages × 10ˆ4 # trajectories + restarts Total Time (sec)

blocks-2-2 26 26 (4.58 / 4.52) (0.025 / 0.045) (0.135 / 0.038) (40 / 40 + 41) (0.068 / 0.062)
blocks-3-3 129 63 (7.48 / 7.44) (0.120 / 0.202) (1.274 / 0.455) (60 / 90 + 127) (0.516 / 0.473)
blocks-4-3 315 99 (9.7 / 9.72) (0.713 / 0.840) (7.636 / 2.394) (80 / 130 + 224) (4.1 / 3.5)
blocks-5-2 422 107 (11.98 / 12.36) (5.247 / 5.412) (30.434 / 9.366) (150 / 380 + 691) (35.3 / 29.8)
blocks-6-2 746 146 (14.8 / 16.5) (68.322 / 68.977) (399.718 / 117.096) (900 / 2140 + 7057) (497.8 / 427.7)
depot-2-3 69 49 (11.2 / 11.4) (0.276 / 0.973) (2.844 / 3.219) (90 / 650 + 62) (1.2 / 3.0)
depot-3-3 149 74 (13.48 / 13.22) (2.894 / 3.152) (29.708 / 8.126) (220 / 160 + 483) (22.7 / 15.6)
depot-3-4 334 91 (16.76 / 16.76) (9.273 / 11.765) (141.352 / 44.033) (410 / 240 + 2515) (79.8 / 55.8)
depot-2-5 245 71 (11.4 / 11.14) (4.342 / 5.050) (89.343 / 23.417) (350 / 170 + 1389) (55.7 / 23.9)
depot-3-5 407 113 (16.78 / 16.78) (55.045 / 59.236) (1136.297 / 289.422) (2330 / 740 + 10437) (715.4 / 344.8)

logistics-1-3 49 27 (12.78 / 12.62) (0.371 / 0.191) (4.208 / 0.164) (110 / 40 + 102) (1.1 / 0.217)
logistics-2-3 69 34 (20.38 / 20.78) (4.203 / 2.516) (47.815 / 3.494) (440 / 140 + 792) (13.9 / 3.5)
logistics-2-4 80 40 (20.82 / 20.84) (13.437 / 7.174) (224.140 / 14.711) (1130 / 170 + 2440) (54.4 / 10.9)
logistics-2-5 203 70 (27.0 / 21.58) (122.934 / 40.523) (2705.937 / 103.567) (2134 / 220 + 14162) (848.5 / 81.7)
logistics-3-4 104 48 (26.8 / 27.22) (152.786 / 109.649) (2570.205 / 250.775) (8010 / 770 + 27091) (720.6 / 186.0)

Table 1: Empirical comparison of the DRTDP and PS-RTDP. Cell format is DRTDP / PS-RTDP.

its own Q-values (line 7), and remains responsible for the
trajectory. If a∗ is a public action, however, the agent uses
the value function update mechanism, and selects the next
agent to take responsibility as in Algorithm 2 (line 27).

As all messages are sent by the global update mechanism
and the next agent selection process, reducing calls to these
phases reduces the number of messages significantly.

PS-RTDP is no longer guaranteed to converge. One rea-
son is that an agent chosen to advance the trajectory may
get stuck in a loop of private actions, without being able to
reach the goal, or execute any public action. For example, in
the Logistics domain, agent 1 may unload a package at lo-
cation A. As all agents currently have Q-values of 0, the tie
breaking mechanism decided that an agent with no access
to A takes the trajectory. That agent has no public actions
available, and can hence only advance the trajectory by pri-
vate driving actions, never releasing responsibility to other
agents. We therefore add a private cycle detection mecha-
nism (line 4). If a cycle is detected, we restart the trajectory
from s0. The sensitivity of the cycle detection is important,
as cycles may arise due to stochastic effects. Detecting a cy-
cle too soon may make the algorithm ignorant to a possible
path towards the goal. Detecting a cycle too late may cause
the algorithm to be much slower than the complete DRTDP.

4 Empirical Analysis

We now provide empirical analysis on domains adapted
from the CPPP literature, comparing the complete DRTDP
and the approximate DRTDP algorithms, implemented in
Python. All experiments were run on Google cloud running
a Xeon CPU with two 2GHz cores, and 1.8GB user RAM.
The domains were adapted by adding stochastic effects. For
example, in the blocks world domain, when picking a block
it may either be successfully picked, stay where it was, or
fall on the table. We also added different capabilities and
success probabilities for different agents for completing dif-
ferent tasks, requiring smarter policies for optimization. For
example, we added block types, where each arm can lift only
a subset of block types, with varying success probabilities.

On each problem we stop the algorithms after 10 RTDP
trajectories, and estimate the average cost over 50 policy ex-

ecutions. We terminate once the policy stops improving.
Table 1 shows the results. In many domains the approxi-

mate DRTDP generated orders of magnitude fewer messages
than the complete version, while converging to policies of
similar quality. In all domains both methods expanded a sim-
ilar number of states, but often the approximate version re-
quires fewer goal reaching trajectories, not counting restarts
after loops, that can be much shorter.

In the blocks domain, the approximate RTDP generated
about one third of the messages. On the other hand, it of-
ten required many more trajectories to converge, especially
for the larger problems, and hence resulted in only slightly
lower runtime. Only in the largest blocks problem, PS-RTDP
resulted in significantly higher average cost. This is because
in blocks world there is a relatively small number of private
actions, and hence the public version is not very different.

In Logistics, the PS-RTDP sends in many cases fewer than
1
10 of the messages, and is hence considerably faster on
many problems. In Logistics, PS-RTDP also required much
fewer trajectories to converge. In Depot, as in blocks world,
the number of messages sent by PS-RTDP is about one third
of the messages sent by the complete DRTDP. In this do-
main, however, the approximate version required about half
the time before converging, especially on larger problems.

5 Conclusion and Future Work

We presented two algorithms for CPPP in stochastic environ-
ments. DRTDP is a distributed, privacy preserving adaptation
of RTDP, which is identical in execution to RTDP on the joint
problem. PS-RTDP is an approximation of DRTDP that shares
only public changes between agents to reduce the amount of
messages during planning. Experiments show that PS-RTDP
sends significantly less messages than DRTDP, sending an
order of magnitude fewer messages in some cases. Future
research can advance multiple trajectories simultaneously,
allowing agents that do not currently advance a trajectory
to start a new one. Both DRTDP and PS-RTDP assume se-
quential action execution. We will investigate an extension
to concurrent execution.

261



6 Acknowledgments

This research was supported by ISF grant #210/17 to Roni
Stern.
This research was also supported by the ISF fund under un-
der grant #1210/18.

References

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
intelligence 72(1-2):81–138.
Brafman, R. I., and Domshlak, C. 2008. From one to
many: Planning for loosely coupled multi-agent systems. In
ICAPS, 28–35.
Brafman, R. I., and Domshlak, C. 2013. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence 198:52–71.
Kolobov, A. 2012. Planning with markov decision pro-
cesses: An ai perspective. Synthesis Lectures on Artificial
Intelligence and Machine Learning 6(1):1–210.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. JAIR 51:293–332.
Štolba, M.; Komenda, A.; and Kovacs, D. L. 2015. Compe-
tition of distributed and multiagent planners (codmap). The
International Planning Competition (WIPC-15) 24.

262


