
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

POMDP + Information-Decay: Incorporating
Defender’s Behaviour in Autonomous Penetration Testing

Jonathon Schwartz,1 Hanna Kurniawati,1 Edwin El-Mahassni2

{jonathon.Schwartz, hanna.kurniawati}@anu.edu.au, Edwin.El-Mahassni@dst.defence.gov.au
1Research School of Computer Science, Australian National University
2Defence Science and Technology, Australian Department of Defence

Abstract

Penetration testing (pen-testing) aims to assess vulnerabili-
ties in a computer network by emulating possible attacks. Au-
tonomous pen-testing allows frequent and regular pen-testing
to be performed, which is increasingly necessary as networks
become larger and more complex. Autonomous pen-testing
is a planning under uncertainty problem, where the uncer-
tainty is caused by partial observability of the network, lack
of reliability of attack tools, and possible changes in the net-
work that are triggered by the network administrator (the de-
fender). Approaches that account for the first two causes of
uncertainty have been developed based on the mathematically
principled framework, Partially Observable Markov Decision
Process (POMDP). However, they do not account for the third
type of uncertainty. On the other hand, work that accounts
for the defender’s actions do not account for both partial ob-
servability and unreliability of the attack tools. This paper
proposes a POMDP-based autonomous pen-testing frame-
work that accounts for the defender’s behaviour, thereby ac-
counting for all of the above three causes of uncertainty.
Key to our model is the observation that the defender’s ac-
tions can be abstracted into two types: Network analysis,
which does not alter the network, and active defence oper-
ations, which alter the network. This observation enables us
to represent the defender’s behaviour as a single variable: An
information decay factor. This variable is based on the ex-
pected time the defender takes to move from analysing to
actively defending the network, and therefore represents the
decay of a pen-tester’s knowledge about the network. We pro-
pose D-PenTesting, which assumes the decay factor is known
prior to execution, and LD-PenTesting, which learns the de-
cay factor as it attempts to break into the network. Sim-
ulation tests on two benchmark scenarios indicate that D-
PenTesting and LD-PenTesting outperform existing POMDP-
based pen-tester and is more robust than one that incorporates
a POMDP-based defender.

Introduction

Penetration testing (pen-testing) aims to identify vulnerabil-
ities in a computer network by emulating a real attack. It
is essential to ensure network security. However, due to the
highly skilled and expensive specialists required, pen-testing

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is performed infrequently, if at all, which is not ideal as net-
works become larger and more complex. These difficulties
have led to the proposal of autonomous pen-testing. In this
paper, we focus on a component of autonomous pen-testing:
The problem of deciding which tools to use when, assuming
the pen-tester is a single agent.

The above problem is a planning under uncertainty prob-
lem, where uncertainty is caused by (i) partial observabil-
ity of the network properties and its vulnerabilities, (ii) the
lack of reliability of the tools used, and (iii) the possible
changes to the system triggered by the network administra-
tor (aka the defender). The first two causes of uncertainty
have been modelled in various prior work using the Partially
Observable Markov Decision Process (POMDP) framework
(Sarraute, Buffet, and Hoffmann 2011; Hoffmann 2015). A
POMDP agent acknowledges he or she never knows its ex-
act state, and therefore, it estimates its current state as a dis-
tribution over the state space, called beliefs, and decides the
best action to perform with respect to beliefs, rather than sin-
gle states. Such a framework fits well for modelling the first
two types of uncertainty in pen-testing problem. However,
incorporating the defender’s behaviour is more difficult. To
this end, autonomous pen-testing relies on the game theo-
retic framework (Liang and Xiao 2012). However, current
game theoretic approaches do not account for partial observ-
ability of the network or unreliable attack tools.

This paper proposes a POMDP-based pen-tester that takes
into account network changes triggered by the defender.
To this end, we develop a compact defender model based
on the observation that a pen-tester’s knowledge about the
defender’s actions and strategies are only gained via ob-
servations about changes in the network. Therefore, we
can abstract the defender’s actions into two types: Net-
work analysis, which does not change the network, and
active defence operation, which alters the network proper-
ties. Based on this abstraction, we model the defender’s be-
haviour as a Markovian Arrival Process (Asmussen 2010;
Neuts 1979). In this paper, we adopt the simplest Markovian
Arrival Process, the Bernoulli process, and model the de-
fender’s behaviour simply as the parameter for this Bernoulli
process. From the defender’s viewpoint, this parameter indi-
cates the expected time the defender takes to switch from

235

analysing to actively defending the network. From the pen-
tester viewpoint, it represents the probability that the de-
fender alters the network and compromises information the
pen-tester has about the network. Therefore, we call this
Bernoulli parameter information decay factor.

Utilising the above model, we propose a POMDP-based
pen-tester, called D-PenTesting, that incorporates the de-
fender by augmenting the uncertainty in the effect of ac-
tions with the decay factor. Since the decay factor may
differ according to a particular defender, its value is gen-
erally unknown in advance. Hence, we also propose a
Bayesian Reinforcement Learning (BRL) pen-tester, called
LD-PenTesting, that learns the decay factor as it attempts to
break into the network. LD-PenTesting frames the learning
problem as BRL and solves it as yet another POMDP. We
tested both D-PenTesting and LD-PenTesting on two pen-
testing scenarios that were introduced in previous work on
POMDP-based pen-testing (Sarraute, Buffet, and Hoffmann
2012) and stochastic-game-based pen-testing (Lye and Wing
2005). In both scenarios, D-PenTesting and LD-PenTesting
outperform existing POMDP-based pen-testing methods and
are more robust than an autonomous pen-testing agent that
incorporates a POMDP-based defender.

Background and Related Work

POMDP Formally, a POMDP is a tuple
〈S,A, T,O, Z,R, γ〉 (Kaelbling, Littman, and Cassan-
dra 1998). At each time-step, a POMDP agent is in a state
s ∈ S, executes an action a ∈ A, perceives an observation
o ∈ O, and moves to the next state s′ ∈ S. The next state is
distributed according to T (s, a, s′), which is a conditional
probability function P (s′|s, a) that represents uncertainty in
the effect of actions. The observation o perceived depends
on the observation function Z, which is a conditional
probability function P (o|s, a) that represents uncertainty in
sensing. The notation R is a state-action dependent reward
function, from which the objective function is derived. The
notations γ ∈ (0, 1) is the discount factor to ensure that an
infinite horizon POMDP problem remains a well-defined
optimisation problem.

The solution to a POMDP problem is an optimal
policy π∗, that maps beliefs to actions in order to
maximise the expected total reward, i.e. V ∗(b) =
maxa∈A

[
R(b, a) + γ

∑
o∈O Pr(o|a, b)V ∗(τ(b, a, o))

]
,

where R(b, a) =
∑

s∈S R(s, a)b(s) and Pr(o|a, b) =∑
s′∈S Z(s′, a, o)

∑
s∈S T (s, a, s′). The function τ com-

putes the updated belief after the agent executes a from b
and perceives o.

Bayesian Reinforcement Learning (BRL) Formally, re-
inforcement Learning (RL) is the problem of finding a
Markov Decision Processes (MDP) solution when the transi-
tion and/or reward function is unknown or partially known.
MDP is a fully observed version of POMDP, meaning the
effects of actions are non-deterministic but, once an action
is performed, the agent’s state is fully revealed. POMDP
can be viewed as MDP in the belief space because, the
subsequent belief of a POMDP agent after it performs an
action and perceives an observation is deterministic. How-

ever, the belief evolution for MDP in the belief space de-
pends on pairs of action–observation rather than action
alone. Therefore, finding a POMDP policy when the transi-
tion/observation/reward functions are unknown or partially
known is an RL problem too.

Interestingly, RL can be solved as a POMDP, too.
This approach for solving RL is called Bayesian RL
(BRL)(Ghavamzadeh et al. 2015). It represents model un-
certainty stochastically and leverages Bayesian inference to
learn the model from observations, while finding a good pol-
icy to achieve the agent’s goal. In BRL, the POMDP state
space consists of a joint product between the state space
of the system and the model parameters being learned. The
POMDP beliefs then represent uncertainty on both the sys-
tem’s state and on the model, while the policy represents
the best action to perform, so as to simultaneously optimise
model learning and goal achievement. This then allows the
RL agent to balance model learning and goal achievement,
in the sense of learning the model just enough to accomplish
the goal well, rather than learning the best model possible.

Markov Arrival Process (MAP) MAP models an arrival
event as an absorption in an absorbing Markov Chain that
evolves from a transient state. Once the Markov Chain ar-
rives in an absorbing state, it resets to a transient state that
may depend on the state where absorption occurs. A nice
property of MAP is that it can approximate any stationary
point process arbitrarily closely(Ibe 2013). In this paper, we
apply the simplest type of MAP, the Bernoulli Process.

Pen-testing A good review of developments with respect
to pen-testing and AI planning can be found in (Hoffmann
2015) and for game theory and cyber security in (Liang and
Xiao 2012; Merrick et al. 2016).

Early research and success in autonomous pen-testing
came with the development of attack graphs, which involve
modelling individual attack actions in terms of preconditions
and post conditions (Swiler and Phillips 1998; Lippmann
and Ingols 2005; Ammann, Wijesekera, and Kaushik 2002).
Combining attack graphs with AI planning made it possible
to generate attack paths through a target system to identify
vulnerabilities and has been applied in commercial systems
(Boddy et al. 2005; Lucangeli, Sarraute, and Richarte 2010).
However, the classical planning approach requires complete
knowledge of the network topology and host configurations.
Additionally, it assumes that host configurations are static
and actions are monotonic; meaning once an attack asset is
gained, it cannot be lost. These restrictions make classical
planning limited when trying to model the uncertainty in-
herent in realistic pen-testing.

Framing the pen-testing problem as a POMDP models
partial observability in autonomous pen-testing (Sarraute,
Buffet, and Hoffmann 2011). This approach removed the
requirement that each host’s configuration be known at
the start of an attack. Additionally, by incorporating this
POMDP based pen-tester into a hierarchical model, it was
shown that it could scale to large networks and handle ac-
tions that may cause a host to crash (Sarraute, Buffet, and
Hoffmann 2012). Simpler models for planning under uncer-
tainty have also been proposed for autonomous pen-testing

236

that have better scaling properties (Durkota and Lisỳ 2014;
Shmaryahu et al. 2018). Although able to more realistically
model pen-testing compared to classical planning, these ap-
proaches still assume monotonic actions, static host config-
urations and the absence of a defender.

To model both the attacker and defender, many studies
have used game theoretic approaches to network security
(Lye and Wing 2005; Alpcan and Basar 2006; Nguyen, Alp-
can, and Basar 2009; Liang and Xiao 2012). However, these
studies have either framed the problem as a fully observable
stochastic game or have not accounted for both partial ob-
servability of the network and stochastic actions.

Taking a step back, pen-testing is essentially a Partially
Observable Stochastic Games (POSG) problem(Hansen,
Bernstein, and Zilberstein 2004). The pen-tester must find
a strategy to beat the defender, despite partial informa-
tion and observation about the state of the system and de-
fender, and despite uncertainty in how its actions affect
the system. POSG is a generalisation of POMDP to multi-
agent with possibly conflicting reward. This is a very pow-
erful framework but, it is even harder than POMDP to
solve, and despite advances in POMDPs, finding a good
POSG policy remains an open problem. Therefore, most
autonomous pen-testing relaxes the problem by account-
ing for only partial-observability or defender’s behaviour, as
briefly discussed above. Simplified POSG model, such as
Interactive-POMDP(Gmytrasiewicz and Doshi 2004), and
their solutions(Doshi and Gmytrasiewicz 2009; Hoang and
Low 2013) have been proposed. However, they require in-
formation about transition functions of the defender, which
is difficult to know and learn. This paper proposes a further
model simplification by combining POMDP and MAP.

Problem Formulation

We define the POMDP model of a D-PenTesting agent with
decay factor d ∈ [0, 1] as Pd = 〈S,A, Td, O, Z,R, γ〉.

The state space is defined as S = S1×S2×· · ·×Sn, where
each state variable represents a property of the network and
n is a finite natural number that represents the number of net-
work properties the agent might alter. This network property
can be relatively primitive such as, whether the ssh port of
a machine is open, or relatively high level, such as whether
the network has been compromised.

The action space A represents the set of actions available
to the pen-tester. Each action a ∈ A is associated with an af-
fected set, denoted as I(a). An affected set of an action con-
sists of all the state variable indices that correspond to the
network properties “directly affected” by the action. Here,
“directly affected” means that either the particular network
properties are post-conditions of the action or they are the
properties observed by the action if the action is a pure in-
formation gathering action such as, scanning ssh port.

Although the action space in this model consists of only
the pen-tester’s actions, the transition function Td considers
both the pen-tester’s and defender’s actions. A defender’s
action is implicitly accounted by the decay factor d, which
represents the probability that the value of a state variable is
changed by the defender. Before describing the exact transi-

tion function, we will first describe the model and assump-
tions of the defender in D-PenTesting.

A D-PenTesting agent only considers the defender’s ac-
tions that might alter network properties that the pen-tester
agent might alter, i.e., properties represented by at least one
of the state variables in S. More precisely, D-PenTesting as-
sumes that the set of possible actions that the defender might
perform is Adef = Adef

1 × Adef
2 × · · · × Adef

n , where each
variable Adef

i for i ∈ [1, n] has two values: An action to
assess whether the network property represented by Si has
been altered by an attacker and a patching action that nul-
lifies the attacker action(s) on Si. The first action does not
change the state of the D-PenTesting agent, while the sec-
ond obviously, might.

D-PenTesting then assumes a typical defender’s strategy,
which starts by analysing the network leading to perform-
ing a patch that nullifies the attacker’s actions. However for
simplicity, D-PenTesting assumes that the effect of the de-
fender’s actions on a state variable is independent from its
effect on different state variables. The defender’s move from
analysing to patching the network properties related to Si

(i ∈ [1, n]) can naturally be cast as a Markovian Arrival
Process.

In this paper, we adopted the simplest Markovian Arrival
Process, which is the Bernoulli Process. The success proba-
bility pi of the Bernoulli Process represents the probability
that at the current time-step, the defender nullifies the at-
tacker’s action related to Si. D-PenTesting assumes the de-
fender has the same capability in analysing attacks related to
various different state variables, and therefore uses the same
success probability for all i ∈ [1, n], which is denoted as the
decay factor d.

Now, we can describe the transition function Td in more
detail. Without loss of generality, suppose the action per-
formed is a ∈ A and the affected set is I(a), then
the transition function is: Td (

∏n
i=1 S

′
i |

∏n
i=1 Si , a) =∏

j �∈I(a) Td

(
S′
j | Sj , a

) · Td

(∏
i∈I(a) S

′
i |

∏n
k=1 Sk , a

)
The transition for Sj where j �∈ I(a) is then

Td

(
S′
j = s′j | Sj = sj , a

)
=

{
d · 1

|S′
j |−1 s′j �= sj

1− d Otherwise
(1)

The first line in eq.(1) represents the case when the value
of Sj is changed by the defender. The probability that the de-
fender made the change is d. In the simplest case, the exact
value the defender changes Sj into is assumed to be uniform.
However, it is also simple enough to incorporate different
distributions over the values of Sj if additional information

is known. The transition Td

(∏
i∈I(a) S

′
i |

∏n
k=1 Sk , a

)
will be affected only by the reliability (i.e. probability of suc-
cess) of the action performed by the pen-tester, i.e., the de-
fender’s action is not counted. The reason is, D-PenTesting
assumes that the defender cannot change the network prop-
erties affected by the pen-tester within the same time that the
properties are being modified by the pen-tester. Note that
for pure information gathering action, the action does not
change the values of the state variables.

237

To perceive an observation about a property of the net-
work, generally, a pen-tester must probe the network with
the appropriate tools. The agent may perceive information
about multiple state variables at once and the observation
function itself may or may not be perfect.

A high reward is given whenever the network is compro-
mised and small cost is given for each step. Rewards can
also be used to reduce the chances of being caught.

Note that the decay factor d in Td does not directly affect
the observation and reward functions. Rather, it affects the
state of the network and the pen-tester’s understanding about
the state of the network, which is reflected in the belief.

Now, the extremely simplified defender model may cast
doubts on the ability of D-PenTesting to handle deceptions
such as honeypots. Interestingly, this simple defender model
does not prevent a D-PenTesting agent from avoiding decep-
tions, as long as the honeypots can be identified with non-
zero probability. Avoiding deception, such as honeypots, is
then a matter of setting the appropriate penalty to discourage
D-PenTesting from entering.

Learning The Decay Factor

The decay factor d essentially represents how fast a defender
is able to analyse and act to nullify the work of an attacker.
This speed will likely differ from one defender to another,
and therefore needs to be learned while the pen-tester as-
sesses the network.

The above learning problem can naturally be framed as a
BRL problem. Here, BRL balances the effort for learning a
behaviour model of the defender (in this case, represented
as the decay factor) and breaking into the network by learn-
ing a good enough model for making good decisions, rather
than learning the most accurate model possible. We call this
BRL-based pen-testing agent, LD-PenTesting. To compute a
good strategy for an LD-PenTesting agent, we cast the BRL
framing of the problem as yet another POMDP and solve the
POMDP approximately using existing solvers. The policy of
a LD-PenTesting agent is a strategy for the agent to break
into the network, while learning the defender’s behaviour.

Suppose Pd = 〈S,A, Td, O, Z,R, γ〉 is the POMDP
model of the D-PenTesting agent. Then, the correspond-
ing LD-PenTesting agent is defined as a POMDP P =
〈S,A, T,O, Z,R, γ〉, where:

• P.S = Pd.S × D, where D is the model parameter,
which in this case is the set of possible values for the de-
cay factor. To reduce computational complexity, we dis-
cretise D up to a certain resolution, denoted as δ. This
state space definition means that the belief of the LD-
PenTesting agent represents the uncertainty of the pen-
tester in both the state of the network and the defender’s
behaviour, where the defender’s behaviour refers to its
speed in moving from analysing to patching the network.

• P.A = Pd.A. The action space is unchanged.

• The transition function differs slightly. Assuming the
model parameter does not change over time, the transition

function of P can be computed as:

P.T (〈s, d〉, a, 〈s′, d′〉) = P (s′, d′ | s, d, a)
= P (s′ | d′s, d, a) · P (d′ | s, d, a)
= P (s′ | d′, s, d, a) ·Δdd′

= Pd.Td(s, a, s
′) ·Δdd′

where Δdd′ is the Kronecker Delta function, Δdd′ = 1
whenever d = d′ and 0 otherwise. Note that although we
assume the parameter does not change, the pen-tester’s
understanding about the model parameter might change
over time, which is reflected in the belief of the pen-tester.

• P.O = Pd.O, P.Z(〈s, d〉, a, o) = Pd.Z(s, a, o),
P.R(〈s, d〉, a) = Pd.R(s, a). As described in the pre-
vious section, the observation space and the observation
and reward functions are not affected directly by the de-
cay factor. LD-PenTesting learns the model parameter in-
directly, in the sense that the transition function under
different decay factors results in different states, leading
to different observations being perceived. Given the same
action and a different decay factor, the probability of per-
ceiving the particular observation differs and this differ-
ing probability will result in a different Bayesian estimate
about the state of the network and the decay factor.

The simplified model of the defender enables us to con-
struct a compact POMDP representation of the BRL prob-
lem. In this paper, for comparison purposes, we solve this
BRL using an off-line POMDP solver. However, both D-
PenTesting and LD-PenTesting are general enough to be
used with any POMDP solver, including on-line solvers such
as those found in (Silver and Veness 2010; Somani et al.
2013; Kurniawati and Yadav 2013), in a straightforward
manner, which will improve scalability.

Note that since LD-PenTesting learns the defender’s be-
haviour during execution, it relaxes the MAP (and Bernoulli
Process) requirement that the defender’s behaviour is sta-
tionary. Moreover, this is true even when we use off-line
POMDP solver because during off-line computation, LD-
PenTesting computes the attack strategies under various dis-
tributions over the decay factor. In terms of problem size,
LD-PenTesting only increases the size of the state space of
its corresponding D-PenTesting agent by 1

δ fold.

Experiment Scenarios

We test our approach using two different scenarios in simu-
lation. The first is based on (Sarraute, Buffet, and Hoffmann
2012), where pen-testing is modelled as a POMDP but did
not incorporate defender’s behaviour. The second is based
on (Lye and Wing 2005), where cyber security operations
are modelled as stochastic games, incorporating actions of
both the pen-tester and the defender, but without incorporat-
ing uncertainty. We extend both scenarios so that each incor-
porates uncertainty and the defenders actions. Table 1 shows
the POMDP size of D-PenTesting and LD-PenTesting for
each scenario. The rest of this section presents the scenar-
ios, with detailed components provided in the supplemen-
tary materials.

238

Table 1: POMDP problem size for each scenario and agent.
Min steps is the minimum number of actions to reach the
goal, and a lower bound on the minimum planning horizon.

Scenario,
pen-testing agent

|S| |A| |O| Min
steps

1, D 3072 20 6 1
1, LD (δ = 0.1) 30720 20 6 1

2, D 128 8 2 5
2, LD (δ = 0.1) 1280 8 2 5

Experiment Scenario 1

The first scenario involves a single host where the goal of
the pen-tester is to control the host (Sarraute, Buffet, and
Hoffmann 2012).

State The state for this scenario is S = C×T×K1×· · ·×
Kn, where C represents whether the host has been success-
fully controlled, T represents if the pen-tester has given up
the attack, and Ki for i ∈ [1, n] represents a component of
the hosts configuration. Both C and T variables are fully
observable and the scenario ends when either becomes true.

The host configuration components include the OS of the
host and each of the ports targeted by the pen-testers avail-
able attack actions. The exact OS and ports considered are
in supplementary materials.

Pen-tester

• Actions: Along with a terminate action which voluntarily
ends the attack, we consider two types of actions: scans
and attack actions. Scan actions allow the pen-tester to
acquire information about the configuration of the host.
The agent has a scan-OS action, for scanning the hosts
OS, along with a port-scan action for each port included
in the state, for detecting if a port is open or closed. A list
of the attacks are in supplementary materials.

• Transition: Attack actions are deterministic and, given
their preconditions are met, will always result in the
host becoming controlled. For example, the vsftpd-234
requires os=linux and port 21=open, if these state con-
ditions are met this action will succeed. The uncertainty
for the pen-tester comes from having no knowledge of the
initial configuration of the host and uncertainty due to the
actions of the defender. The latter, we represent by the
decay factor. In D-PenTesting the decay factor is fixed,
while in LD-PenTesting it is learned.

• Observations and Observation function: The attack and
terminate actions affect the fully observable part of the
state, namely the controlled and terminated state variables
and thus receive their observations directly from fully ob-
servable changes in the state. The OS and port scan ac-
tions return an accurate observation of the state variable
that they target.

• Rewards: In line with the original study we use a cost of
10 for both port scans and attack actions and a cost of 50
for an OS scan. The attacker receives zero reward for us-
ing the terminate action and moving into the terminated

state, while they receive a large reward of +9000 for suc-
cessfully controlling the host.

• Initial belief: The pen-tester starts with no knowledge of
the host configuration. The belief is uniformly distributed
across the possible values for each state variable.

Defender To provide an opponent for evaluation purposes,
we extend the original paper and incorporate a defender into
our scenario. The strategy and actions of the defender are not
incorporated into the planning of the pen-tester at all and are
used only during evaluation.

• Actions: The defender has an action for controlling each
aspect of the host configuration. Specifically, for each port
the defender has an open-port and close-port action. For
the OS the defender has an action to change the host to
a specific OS: change-os-linux, change-os-windows and
change-os-openBSD. We also include a do-nothing, that
has no effect on the state.

• Strategies: We test our approach against two different de-
fender strategies: no defender and random defender. The
random defender simply chooses an action uniformly at
random from all available actions at each time step. This
strategy is used to test how well each pen-tester can han-
dle random changes to the state.

Experiment Scenario 2

The second scenario is based on a stochastic-game involving
a pen-tester and defender operating on a small network of
two machines (Lye and Wing 2005). We specifically focus
on the stealing confidential data scenario (scenario 3, sec-
tion 4.3) from the original paper, where the goal of the pen-
tester is to steal data from the workstation machine. Figure 1
shows a high-level graph for the pen-tester and defender. In
the original scenario, the state was fully observed. We mod-
ify the scenario to make the state partially observable.

State The state represents the current state of an attack on
the network. Each state variable is binary and corresponds to
a different stage in the attack. The state variables for the sce-
nario can be seen in figure 1, where each node in the graph,
except the “Normal Operation” node, corresponds to a state
variable. The “Normal Operation” node simply represents
the case where all state variables are false. The scenario ends
when the pen-tester steals the data from the workstation.

Pen-tester

• Actions and Transition Function: Figure 1 shows each
of the possible pen-tester actions, their cost and the ef-
fect they have on the state (solid edges). The pen-tester
also has a do-nothing action which has zero cost and has
no effect on the state. Each action has associated precon-
ditions, cost, and success probability. The preconditions
define the state required for the action to have a chance to
succeed. The success probability defines the chance the
action will succeed, given its preconditions are satisfied.
The cost and success probability values were chosen to
match the original study.

239

Figure 1: Graph representation for scenario 2. Each node
represents a different stage of the attack. The “Normal oper-
ation” node represents when no attack is being performed.
The values in brackets within each node are the reward
for the pen-tester and defender, respectively. The solid line
edges correspond to actions by the pen-tester, while dashed
line edges are defender actions. Each action has the cost and
success probability under the actions name.

• Observations and Observation Function: For each ac-
tion performed, the pen-tester receives an observation;
success if the action succeeded and failure if it failed.

• Rewards: In addition to the cost associated with perform-
ing each action the pen-tester receives a reward of +999
for successfully stealing the workstation data and 0 for
any other state.

Defender As was the case for scenario 1, the strategy and
actions of the defender are used only for evaluation but not
for planning, with the exception of Oracle-PenTesting which
we discuss in the next section.

• Actions and Observations: All defender actions, with
the exception of monitor, are shown in figure 1, along with
their costs and success probabilities. The monitor action
has no effect on the state but allows the defender to make
a noisy observation of the current state. This is similar
to how an Intrusion Detection System (IDS) alerts sys-
tem administrators of a potential attack. We chose a suc-
cess probability of 0.9 for the monitor action to account
for false positives and negatives common to an IDS. The
monitor action has a cost of 1.

• Rewards: The goal of the defender is to prevent the pen-
tester from stealing the data from the workstation. With
that in mind, the defender receives different rewards for
each state depending on how close the state is to the pen-
tester stealing the data. Figure 1 shows the reward corre-
sponding to each stage of the attack.

• Strategies: As with scenario 1, we test each pen-tester
agent against no defender and random defender strategies.
We also test against a defender policy generated by solv-
ing the defender POMDP (which we hereby refer to as the
defender POMDP strategy).

Results and Discussion

We ran experiments on the two scenarios described above
in order to: (i) find the parameters for D-PenTesting and
LD-PenTesting agents and analyse the sensitivity of perfor-
mance with respect to parameters, and (ii) compare perfor-
mance of D-PenTesting and LD-PenTesting agents against
other pen-testing agents.

Experimental Setup

Experiments were run on a machine with an Intel Xeon
Silver 2.1 GHz CPU and 128 GB of RAM. We used the
Approximate POMDP Planning toolkit (APPL) (Du et al.
2014), which provides an efficient C++ implementation of
the SARSOP algorithm (Kurniawati, Hsu, and Lee 2008).

For planning, using a discount factor of γ = 0.95, we
ran SARSOP until the planning time of 1 hour or the target
precision of ε = 0.001 was reached. The exact solving times
of each agent is presented in supplementary materials.

We evaluated the performance of each agent by running
simulations using APPL. We ran a total of 1000 simulations
for each experiment with each simulation running for a max-
imum of 100 time steps. At each time step during the simu-
lations, each player performed an action, with the pen-tester
always going first, followed by the defender. For each simu-
lation, the pen-tester won if they managed to reach the goal
within the time step limit, otherwise the defender won.

Defenders For scenario 1, we evaluated each PenTesting
agent against two defender strategies: no defender and ran-
dom defender. For Scenario 2, we also evaluated agents
against a POMDP defender.

POMDP-PenTesting As a baseline, we compare D-
PenTesting and LD-PenTesting against the POMDP pen-
tester approach with no decay factor (referred to as POMDP-
PenTesting) (Sarraute, Buffet, and Hoffmann 2011; 2012).

Oracle-PenTesting Additionally, we compare D-
PenTesting and LD-PenTesting against a stronger pen-tester
agent: Oracle-PenTesting. We augment the POMDP-
PenTesting agent by adding the defender’s action as a fully
observable variable to the agents state. During planning,
the Oracle-PenTesting agent has access to the defender
POMDP agent’s policy and incorporates this into its
transition function. Note, however, that Oracle-PenTesting
remains a POMDP agent, and not a Partially Observable
Stochastic Game agent. During each simulation, at each step

240

Figure 2: D-PenTesting performance, against each defender,
with decay factor, at intervals of 0.05, ∈ [0, 0.95]. (a) and (b)
show results for scenario 1 and 2, respectively. Decay factor
0.0 is equivalent to POMDP-PenTesting.

we set the fully observable defender action state variable of
the Oracle-PenTesting agent to be the next action of the de-
fender. This is done for all defender strategies (no defender,
random and POMDP). In this way Oracle-PenTesting has
full information about the defenders next action along with
the effects of the action on the next state.

Unfortunately, we could only include the Oracle-
PenTesting agent as a comparison for scenario 2. For sce-
nario 1 we were unable to create a POMDP defender, as
it would require significant modifications to the underly-
ing problem formulation, which causes comparison with the
original approaches to become infeasible.

Parameter Selection

D-PenTesting We evaluated the performance of D-
PenTesting using different decay factors, against each de-
fender strategy, on both scenarios. We ran experiments for
multiple decay factors ∈ [0, 0.95] at an interval of 0.05.
For these experiments, POMDP-PenTesting is equivalent to
when the decay factor is 0.0. Figure 2 shows the expected
discounted return of D-PenTesting for both scenarios. Tables
of full results are supplied in the supplementary materials.

When no defender is present, for scenario 1 performance
of D-PenTesting is consistent up to a decay factor of 0.45,
with performance declining significantly for decay factors
above 0.45. For scenario 2 with no defender, the percentage
of simulations where the pen-tester reached the goal (or win
rate) is 100% for all tested decay factors. However, the per-
formance in terms of expected discount return declines as
the decay rate increases. The decline is quite slow when the
decay factor is below 0.5, with decline occurring faster for
higher decay factors.

Against the random defender, for both scenarios, we see
a similar trend to when no defender is present. The expected
discounted return is fairly constant up to a decay factor of
around 0.5, before it begins to decline more rapidly.

This trend in performance can be attributed to overly con-
servative behaviour of D-PenTesting for high decay factors.
We have observed that for larger decay factors (>= 0.5),

Figure 3: LD-PenTesting performance against each defender
for different decay discretization resolution, δ, values (0.1,
0.125, 0.2 and 0.25). (a) and (b) show results for scenarios 1
and 2, respectively.

where the agent expects faster changes to the state, the D-
PenTesting agent becomes increasingly conservative result-
ing in many repeated actions. This results in many wasted
actions and a decline in performance. For scenario 1, for de-
cay factors >= 0.7, this even resulted in agents repeatedly
performing the same subset of actions leaving them unable
to successfully control the host in the cases when the host
was not vulnerable to the subset of actions performed.

LD-PenTesting To evaluate LD-PenTesting, we ran ex-
periments using four different decay discretization resolu-
tion values of δ: 0.1, 0.125, 0.2 and 0.25. These were chosen
based on the results from D-PenTesting, where we observed
that performance for both scenarios tended to be consistent
over decay factor intervals of 0.1 or larger.

Figure 3 shows the performance of LD-PenTesting for
both scenarios. The expected discounted return was rela-
tively consistent across the different δ values, against all de-
fender strategies, across both scenarios. This indicates that
at least for the scenarios tested, the δ has little effect on the
possible performance.

Parameter Sensitivity Based on the results shown in fig-
ures 2 and 3, we can see that both D-PenTesting and
LD-PenTesting are quite insensitive to parameter selection.
For D-PenTesting, performance was reasonably consistent
for decay factors ∈ [0.05, 0.45]. For LD-PenTesting, perfor-
mance was consistent for each δ value tested.

Pen-Tester Comparison

Figure 4 shows a comparison of the performance of each
pen-tester agent for both scenarios. For D-PenTesting we
chose the best decay factor for each defender strategy (sce-
nario 1: no defender = 0.1, random = 0.05, and scenario 2:
no defender = 0.05, random = 0.2, POMDP = 0.45). For LD-
PenTesting we show results for the agent with δ = 0.1.

Against no defender, performance of LD-PenTesting is
slightly worse than that of the best D-PenTesting agent,
which can be explained by the cost of learning in LD-
PenTesting. When there is no defender the correct decay fac-

241

tor is 0.0. For the LD-PenTesting agent it cannot observe the
decay factor directly and instead infers it through the tran-
sition dynamics, hence it will always have some uncertainty
over the correct value. This uncertainty incurs a learning cost
in the form of more repeated actions. This cost is emphasised
when the planning horizon is longer; as it is in scenario 2
where the difference in performance is most notable. How-
ever, even with this extra cost, against no defender, the ex-
pected discounted return of LD-PenTesting is only slightly
lower than that of D-PenTesting and POMDP-PenTesting
and win rate is comparable across all three agents for both
scenarios.

For the random and POMDP defenders, performance was
comparable between D-PenTesting and LD-PenTesting. The
consistency of performance between these two approaches
can be explained by their insensitivity to parameter selec-
tion. This meant that learning a good decay factor would be
relatively easy for the LD-PenTesting agent since the range
of good decay factors is quite large.

When compared with POMDP-PenTesting, when there
is no defender, we see comparable performance with D-
PenTesting and LD-PenTesting, except for scenario 2 where
the performance of LD-PenTesting is slightly worse (dis-
cussed above). Against the random and POMDP defenders
D-PenTesting and LD-PenTesting significantly outperform
POMDP-PenTesting. This illustrates the superior advan-
tage D-PenTesting and LD-PenTesting have over POMDP-
PenTesting in the presence of a defender and dynamic
changes to the state.

When compared with Oracle-PenTesting we see that, in
terms of expected discounted return, D-PenTesting and LD-
PenTesting outperform Oracle-PenTesting against the ran-
dom defender. When we incorporate the defender policy into
the Oracle-PenTesting agent we essentially fit the pen-tester
agent to a specific defender policy, hence why the Oracle-
PenTesting agent performs significantly worse against the
random defender than against the POMDP defender (i.e.
the policy it had planned with is wrong). The better perfor-
mance of D-PenTesting and LD-PenTesting versus Oracle-
PenTesting, against a random defender, suggests that D-
PenTesting and LD-PenTesting agents can be more robust
to different defender behaviour than an agent designed to
counter a specific defender strategy.

As expected, Oracle-PenTesting outperforms D-
PenTesting and LD-PenTesting against the POMDP
defender. However, both D-PenTesting and LD-PenTesting
are still able to achieve a 100% win rate and a good expected
discounted return that is significantly higher than that of
POMDP-PenTesting. This indicate D-PenTesting and LD-
PenTesting are able to perform well against a reasonable
defender strategy. This further supports that incorporating
decay into the pen-tester model can help improve agent
robustness against different defender strategies.

Summary

This paper presented POMDP-based pen-testing models, D-
PenTesting and LD-PenTesting. They have been designed to
handle the three main sources of uncertainty in autonomous

Figure 4: Comparison between the different pen-testing
agents for scenarios 1 (a and c) and 2 (b and d). (a) and (b)
show the win rate, and (c) and (d) show expected discounted
return (± 95% CI), for each pen-tester agent against each
defender strategy.

pen-testing: partial observability of the network and its vul-
nerabilities, lack of reliability of pen-testing tools, and pos-
sible changes triggered by the defender. Based on an obser-
vation that a pen-tester’s knowledge about the defender’s ac-
tions and strategies are gained in an indirect manner, via the
network, we abstract the defender’s actions into two types:
Network analysis (which does not change the network) and
defensive cyber operations (which alter the network prop-
erties). This abstraction enables us to model the defender’s
behaviour as a single variable, namely the decay factor. D-
PenTesting incorporates this variable in its transition func-
tion, assuming the decay factor is known a priori. LD-
PenTesting learns the decay factor as it attempts to break into
the network, by framing the problem as BRL, solved as yet
another POMDP problem. Experiments on two benchmark
scenarios indicate D-PenTesting and LD-PenTesting outper-
form the POMDP-based pen-testing approach that does not
account for the defender’s behaviour and is more robust than
autonomous pen-testing that assumes a POMDP-based de-
fender.

Future work abounds. This work indicates that even a sim-
ple defender’s model can substantially improve the capabil-
ity of autonomous pen-testing. We are interested in better
understanding the limits of this approach by testing it against
more powerful defenders (Ahmadi et al. 2018). Another av-
enue is to apply the proposed concept to on-line POMDP
solvers for scalability. Last but not least is to remove as-
sumptions, such as the independence and identical capabil-
ity of the defender in assessing different network properties.

242

Supplementary Materials

Supplementary materials are available at:
http://rdl.cecs.anu.edu.au/papers/icaps20pomdp.pdf .

Acknowledgement

We thank Michael Docking for early discussion of this work.

References

Ahmadi, M.; Cubuktepe, M.; Jansen, N.; Junges, S.; Katoen,
J.-P.; and Topcu, U. 2018. The partially observable games
we play for cyber deception.
Alpcan, T., and Basar, T. 2006. An intrusion detection
game with limited observations. In 12th Int. Symp. on Dy-
namic Games and Applications, Sophia Antipolis, France,
volume 26. Citeseer.
Ammann, P.; Wijesekera, D.; and Kaushik, S. 2002. Scal-
able, graph-based network vulnerability analysis. In Pro-
ceedings of the 9th ACM Conference on Computer and Com-
munications Security, 217–224. ACM.
Asmussen, S. 2010. Applied probability and queues
(stochastic modeling and applied probability series vol. 51).
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In ICAPS, 12–21.
Doshi, P., and Gmytrasiewicz, P. J. 2009. Monte carlo sam-
pling methods for approximating interactive pomdps. Jour-
nal of Artificial Intelligence Research 34:297–337.
Du, Y.; S.W.Png; H.Kurniawati; S.C.W.Ong; W.S.Lee; and
D.Hsu. 2014. Approximate POMDP planning toolkit
(APPL). http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/.
Durkota, K., and Lisỳ, V. 2014. Computing optimal policies
for attack graphs with action failures and costs. In STAIRS,
101–110.
Ghavamzadeh, M.; Mannor, S.; Pineau, J.; Tamar, A.; et al.
2015. Bayesian reinforcement learning: A survey. Founda-
tions and Trends R© in Machine Learning 8(5-6):359–483.
Gmytrasiewicz, P. J., and Doshi, P. 2004. Interactive
pomdps: Properties and preliminary results. In Interna-
tional Conference on Autonomous Agents: Proceedings of
the Third International Joint Conference on Autonomous
Agents and Multiagent Systems-, volume 3, 1374–1375.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic programming for partially observable stochastic
games. In AAAI, volume 4, 709–715.
Hoang, T. N., and Low, K. H. 2013. Interactive pomdp lite:
Towards practical planning to predict and exploit intentions
for interacting with self-interested agents. In Twenty-Third
International Joint Conference on Artificial Intelligence.
Hoffmann, J. 2015. Simulated penetration testing: From
“dijkstra” to “turing test++”. In Twenty-Fifth International
Conference on Automated Planning and Scheduling.
Ibe, O. 2013. Markov processes for stochastic modeling.
Newnes.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence 101(1-2):99–134.
Kurniawati, H., and Yadav, V. 2013. An Online POMDP
Solver for Uncertainty Planning in Dynamic Environment.
In Proc. Int. Symp. on Robotics Research.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. Sarsop: Ef-
ficient point-based pomdp planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
systems, volume 2008. Zurich, Switzerland.
Liang, X., and Xiao, Y. 2012. Game theory for net-
work security. IEEE Communications Surveys & Tutorials
15(1):472–486.
Lippmann, R. P., and Ingols, K. W. 2005. An annotated
review of past papers on attack graphs. Technical report,
Massachusetts Ins. of Tech. Lexington Lincoln Lab.
Lucangeli, J.; Sarraute, C.; and Richarte, G. 2010. Attack
planning in the real world. In Workshop on Intelligent Secu-
rity (SecArt 2010).
Lye, K.-w., and Wing, J. M. 2005. Game strategies in net-
work security. International Journal of Information Security
4(1-2):71–86.
Merrick, K.; Hardhienata, M.; Shafi, K.; and Hu, J. 2016. A
survey of game theoretic approaches to modelling decision-
making in information warfare scenarios. Future Internet
8(3):34.
Neuts, M. F. 1979. A versatile markovian point process.
Journal of Applied Probability 16(4):764–779.
Nguyen, K. C.; Alpcan, T.; and Basar, T. 2009. Security
games with incomplete information. In 2009 IEEE Interna-
tional Conference on Communications, 1–6. IEEE.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2011. Penetration
testing== pomdp solving? In Working Notes for the 2011
IJCAI Workshop on Intelligent Security (SecArt), 66.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2012. Pomdps
make better hackers: Accounting for uncertainty in penetra-
tion testing. In Twenty-Sixth AAAI Conference on Artificial
Intelligence.
Shmaryahu, D.; Shani, G.; Hoffmann, J.; and Steinmetz, M.
2018. Simulated penetration testing as contingent planning.
In Twenty-Eighth International Conference on Automated
Planning and Scheduling.
Silver, D., and Veness, J. 2010. Monte-carlo planning in
large pomdps. In Advances in neural information processing
systems, 2164–2172.
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. Despot:
Online pomdp planning with regularization. In Advances in
neural information processing systems, 1772–1780.
Swiler, L. P., and Phillips, C. 1998. A graph-based system
for network-vulnerability analysis. Technical report, Sandia
National Labs., Albuquerque, NM (United States).

243

