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Abstract

Recently, a new decomposition based relaxation has been
proposed for numeric planning problems. Roughly, this re-
laxation is grounded on the identification of regression-based
necessary conditions for the satisfaction of sets of numeric
subgoals. So far, it has been used to define novel heuristics
that are able to provide great guidance in problems exhibit-
ing a pronounced numeric structure. This paper investigates
how to further exploit this relaxation; it does so by intro-
ducing the notion of the multi-repetition relaxed plan. The
multi-repetition plan annotates actions with the number of
times such actions need to be executed. We use this struc-
ture for different purposes: extraction of a concrete relaxed
plan based heuristic, definition of subgoaling based helpful
actions, and definition of what we call up-to-jumping actions.
Up-to-jumping actions allow us to deeply leverage from the
metric structure of the problem and devise an informed search
strategy that can collapse several decision steps. We experi-
mentally analyze a forward state space planner equipped with
these novel mechanisms across several planning benchmarks,
showing the benefit of the ideas presented in the paper.

Introduction

Automated planning studies how an agent can organize its
actions to achieve some desired objective. This task can be
described under different environment assumptions, and dif-
ferent languages can be employed to represent it in a more or
less concise manner (Geffner and Bonet 2013). One of such
languages is numeric planning. Numeric planning is the ex-
tension of classical planning where a state also contains nu-
meric information. In numeric planning, actions can change
both propositional and numeric variables. Both pieces of in-
formation can then participate in the definition of the condi-
tions that determine when actions are executable in a given
state, or when the goal is reached. Numeric planning has
been formalized in PDDL2.1 (Fox and Long 2003) through
the notion of numeric fluents. The result is a language that
can be used to model the peculiarity of a domain of interest
in a hybrid way, using both purely propositional and numeric
structures. Planning with numeric state variables is conve-
nient when the domain features metric information that is
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difficult to compile away using propositional logic. For in-
stance, consider an underwater or aerial vehicle. The posi-
tion of the vehicle can be modelled through propositions by
discretising the position into classes and encoding each class
with a different proposition. However, when the discretisa-
tion has to be fine-grained and the area inside which the
vehicle moves is large, the number of propositions is huge
and this compromises the efficacy and the efficiency of plan-
ners especially for those grounding action parameters before
search. Although numeric planning is in general undecidable
(Helmert 2002), it is still important to investigate how plan-
ning systems supporting numeric variables can practically
scale up over instances where solution plans are not limited
to just a few actions, especially when these planners are used
in robotic contexts (Löhr et al. 2012).

Numeric planning has seen an increasing attention in the
literature over the last years (e.g., (Gerevini, Saetti, and Se-
rina 2012; Aldinger, Mattmüller, and Göbelbecker 2015;
Scala et al. 2016; Piacentini et al. 2018; Bofill, Espasa, and
Villaret 2017)), and novel relaxation based heuristics tar-
geting a fragment of it have been defined (Scala, Haslum,
and Thiébaux 2016; Piacentini et al. 2018). Following this
line of research, and with the long-term goal of closing the
performance gap between purely classical/propositional and
numeric planners, we focus on the subgoaling-based relax-
ation and explore it for the design of novel search guid-
ance mechanisms. We start by showing that the subgoal-
ing relaxation and relative heuristics can be used for the
extraction of a richer relaxed plan representation that we
call multi-repetition relaxed plan. We construct such a rep-
resentation by reworking Keyder and Geffner (2007)’s re-
sults through the lens of numeric planning. Our procedure
intertwines numeric and propositional justifications for re-
peated action executions by exploiting the necessary con-
ditions underlying the subgoaling based decomposition and
the notion of possible achievers. Then, we show how to use
the constructed multi-repetition relaxed plan to devise i) a
novel cost-sensitive relaxed plan based heuristic ii) a novel
mechanism for helpful actions selection, and iii) the notion
of up-to-jumping actions, which is yet another way to focus
the search towards what the relaxation has provided. It does
so by dynamically creating shortcuts in the search space.

After a detailed presentation of the proposed techniques,
we empirically evaluate our proposal over a large set of
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benchmarks. Our analysis reveals that, on a state-space
search planner, in particular the combination of subgoal-
ing helpful actions and up-to-jumping actions provides great
search-guidance across the majority of the problem in-
stances under evaluation.

Background

We assume a ground planning formalism equivalent to
PDDL 2.1 level 2 of which we only summarize the rele-
vant aspects here. For a more thorough description of the
syntax and semantics of the language, have a look at the
seminal paper by Fox and Long (2003). A planning problem
Π =̇ 〈F,X,A, s0, G〉 consists of propositional and numeric
state variables (F and X respectively), actions (A), an initial
state (s0) and a goal (G). A state assigns a truth value to each
proposition in F and a rational number to each state variable
in X . A numeric condition takes the form ξ � k, where ξ
is an arithmetic expression over X , � ∈ {≤, <,=, >,≥}
and k ∈ Q is a constant. Action preconditions and the goal
G are sets (conjunctions) of numeric conditions and propo-
sitions. Action effects assign boolean (propositional) vari-
ables and/or increase/decrease/assign the value of numeric
variables by an arithmetic expression; pre(a) and eff(a) in-
dicate preconditions and effects of action a, respectively.

An action a is applicable in a state s iff pre(a) is sat-
isfied in s and both numeric and propositional effects do
not induce conflicting assignments. The application of an
action a in a state s yields a state s′ where the values of
the propositional and numeric variables are changed accord-
ing to eff(a). All state variables not touched by the action
remain unchanged (frame axiom). A sequence of actions
〈a0, ..., an−1〉 is said to be a valid plan if, when iteratively
applied in s0, it is such that each action is applicable in
the state resulting from the prefix before it (si |= pre(ai)),
and the last state sn satisfies the goal, sn |= G. Each ac-
tion ai has a cost λ(ai) ∈ Q≥0 and the cost of a plan
π = 〈a0, ..., an−1〉 is

∑
0≤i<|π| λ(ai); a plan is said to be

optimal if its cost is minimal over all valid plans. Finally,
with S(Π) we indicate the state space induced by planning
problem Π, and with Sol(Π) the set of all valid plans for Π.
When clear from the context, we will omit the variable sets
in the problem tuple Π (e.g, Π =̇ 〈s0, A,G〉).

In this paper we are interested in the fragment of numeric
planning where all preconditions and goals are either propo-
sitional or simple numeric conditions, that is:

Definition 1 (Simple Numeric Planning (Scala, Haslum, and
Thiébaux 2016)). Let Π be a numeric planning problem. A
numeric condition ξ� k is simple iff ξ is a linear arithmetic
expression and all variables in ξ are affected only by action
effects that increase/decrease them by constant values. Prob-
lem Π is simple iff all numeric preconditions of its actions
and goals are simple.

The Subgoaling-Based Relaxation

The subgoaling-based relaxation targets the structure of
simple numeric problem by reasoning over actions that
contribute positively to the achievement of linear numeric

conditions using the notion of m-times-regressor (Scala,
Haslum, and Thiébaux 2016):
Definition 2 (m-times-regressor). Let c=̇

(∑
x∈X wx,cx

)
+

wn,c � 0 (with � ∈ {≤, <,>,≥}, wx,c and wn,c ∈ Q) be a
simple numeric condition. The m-times regressor cr(a,m) of
c through action a is:

cr(a,m) =̇
∑
x∈X

wx,c(kx,am+ x) + wn,c � 0 (1)

where m ∈ N, and kx,a is the constant additive effect of a
on x (i.e., 〈x,+=, kx,a〉 ∈ eff(a)).

Definition 3 (Possible Achiever). We say that action a is a
possible achiever of c in a state s if there exists an m ∈ N
such that s |= cr(a,m).

In the case of a simple numeric condition, all elements
of Eq. 1 except m are constant values extracted from the
action description. This results in the regression being a lin-
ear function of the action repetitions, thus having a constant
derivative. An important aspect is that, thanks to this prop-
erty, the actions that possibly achieve a given condition can
be detected statically (independently from any state), and
this is a necessary condition for satisfying the linear numeric
condition. Moreover, even though the number m of repe-
titions needed to actually achieve the condition is a state-
dependent computation, this can be performed by solving a
simple mathematical expression. In particular, we denote by
m(s, a, c) the number of times an action needs to be exe-
cuted to make condition c satisfied from s through a.

The numeric subgoaling relaxation (Scala, Haslum, and
Thiébaux 2016) uses the notion of possible achiever to over-
approximate reachable numeric conditions recursively. This
principle can be used to derive admissible or inadmissible
heuristic estimates. In this paper we make mainly use of the
inadmissible formulation:

ĥadd
hbd(s, c) =̇⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s |= c

min
a∈ach(c)

(
λ(a) + ĥadd

hbd

(
s, pre(a))

)
if c is PC

min
a∈A ,m̂∈Q≥0

s|=cr(a,m̂)

(
m̂λ(a) + ĥadd

hbd(s, pre(a))
)

if c is SC

∑
c′⊂c:|c′|=1

ĥadd
hbd(s, c

′) if |c| > 1

(2)

where, when c is a propositional condition, ach(c) denotes
the set of all actions that achieve the condition. PC denotes
when a condition is propositional, and SC when it is a sim-
ple numeric condition. Let us recall that subscript hbd stands
for HyBriD, and the little hat on the h stands for the inte-
grality constraint relaxation (i.e., m ∈ N≥0 � m̂ ∈ Q≥0).
With a slight abuse of notation, we use ĥadd

hbd to denote both
the estimate and the underlying relaxation.
Example 1. Consider the instance of the SAILING domain
(Scala, Haslum, and Thiébaux 2016) shown in Figure 1.
SAILING models the problem of controlling a sailing boat in
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Figure 1: An instance of the SAILING domain.

an unbounded area. We assume the wind is fixed and blows
from the north. Propositional variables model the presence
of the boat in one of the two grayed areas; numerical vari-
ables model the Cartesian coordinates of the boat. Initially
the boat is at the origin and is tasked to reach the two grayed
areas; the numeric effects of the actions are sketched in the
figure (there is no precondition for these actions); actions
a1 and a2, both with λ(a1) = λ(a2) = 1, mark whether
the boat has achieved the two grayed areas; the inequalities
denote the numeric conditions of a1 and a2 – in red those
not satisfied in the initial state.

Under ĥadd
hbd relaxation, the possible achievers of condi-

tions y − x ≥ 10 and y − x ≥ 20 are Go-W and Go-NW;
these conditions require 3.3̄ and 6.6̄ fractional executions of
either one of these actions. Similarly, 3.3̄ and 6.6̄ reps of ei-
ther Go-E or Go-NE achieve conditions y + x ≥ 10 and
y + x ≥ 20. Thus, for ĥadd

hbd , the cost of reaching the goals
from the initial state is the sum of the costs of the following
actions: the 2 actions a1 and a2; the 3.3̄ reps of an action
achieving y − x ≥ 10 ; the 3.3̄ reps of an action achieving
y+x ≥ 10; the 6.6̄ reps of an action achieving y−x ≥ 20;
and the 6.6̄ reps of an action achieving y + x ≥ 20. So,
ĥadd
hbd estimates 22. In contrast, the optimal (integer) cost is

only 16. The estimate of ĥadd
hbd is greatly pessimistic essen-

tially because it ignores positive interactions among actions
altogether, i.e., it ignores that moving the sailing boat to the
nearest grayed area also contributes to get close to the far-
thest grayed one.

Multi-Repetition Relaxed Plan

This section describes how to extract what we call a multi-
repetition relaxed plan (MRP hereinafter) from the subgoal-
ing relaxation. Then we see how the MRP is used for heuris-
tic estimation, and for eliciting further problem structure,
such as helpful actions and the new up-to-jumping actions.
This method is based on the observation that, despite the in-
trinsic complexity of managing numeric state variables, the
formulation presented by Keyder and Geffner (2007) can be
extended to support propositional and numeric reasoning at
the same time. We do so by studying the problem from the
subgoaling relaxation standpoint. Intuitively, subgoals lead
to reasoning on estimating the cost of achieving formulae
rather than variable values, therefore by-passing the problem

of dealing with an infinite state space. The following recur-
sive formulation synthesizes the MRP extraction for numeric
planning problems under the subgoaling relaxation ĥadd

hbd :

π(s, c)=̇

⎧⎪⎪⎨
⎪⎪⎩

{} if s |= c

{(a,m(s, a, c))}∪ π(s, pre(a)) if |c| = 1

with a= best(s, c)⋃
c′∈c π(s, c

′) if |c| > 1

(3)

best(s, c) =̇ argmin
a∈A ,m̂∈Q≥0

s|=cr(a,m̂)

(m̂λ(a) + ĥadd
hbd(s, pre(a)))

The recursive definition of π in Eq. 3 incrementally con-
structs a set of pairs, each involving an action instance and
a natural number. The construction exploits the commit-
ment established in the ĥadd

hbd(s, c) computation. This is per-
formed using function best as specified in Eq. 3. Once the
action is established through such a function, the regression
conjoins the MRP for its action preconditions with a pair
〈·, ·〉 ∈ A × N; the pair links the established achiever with
the ceiling of the action counter �m̂	 that is necessary to en-
able the numeric subgoal through that action. As explained
by Scala, Haslum, and Thiébaux (2016), in simple numeric
planning this operation amounts at looking at the rate of in-
fluence of the action on the targeted condition. Here, since
we want to construct an explicit relaxed plan, we round up
the fractional repetitions; this gets the action effects to sat-
isfy the constraint.

Note that, the above best function uses the inadmissible
estimate ĥadd

hbd , in contrast to the original classical planning
formulation (Keyder and Geffner 2007), that instead uses
hmax. However, the numeric analogous of hmax as defined
by Scala, Haslum, and Thiébaux (2016), ĥmax

hbd , introduces
a further decomposition in the establishment of the achiever
for a single numeric condition. This has the effect of decou-
pling the established achiever from its precondition. That is
why we started from ĥadd

hbd .
To obtain a formulation that is more aligned with the pure

classical version of the heuristic, we use a slightly differ-
ent variant of ĥadd

hbd where we treat the conjunctive case the
same way this would be dealt with in the classical case, i.e.,
maximising instead of summing, and leave everything else
unchanged. More precisely, we substitute in Eq. 2 the case
where |c| > 1 with the following:

max
c′⊂c:|c′|=1

ĥadd
hbd(s, c

′)

Note that, since the operator maximizes among a hetero-
geneous set made of numeric and propositional conditions,
when there are only propositional variables, the formula-
tion nicely mimics its purely propositional version. We also
tested experimentally the effect of the former version, but
did not observe any significant difference to justify a differ-
ent treatment for the numeric case.

Since there is an infinite set of MRPs, an obvious ques-
tion is whether the addition of numeric variables in the plan
extraction mechanism makes its construction possible and
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effective in general. It is easy to see that, not only this is
possible, but it also is polynomial in the size of the problem.

Proposition 1. If the function ĥadd
hbd(s,G) 
= ∞, the compu-

tation of the MRP as defined in Eq. 3 terminates in a finite
number of steps, and can be accomplished in polynomial
time in the size of the input problem.

Proof Sketch. The proof relies on the following facts: i) the
recursion in Eq. 3 is only formulated on the subgoals of the
problem, not on the numeric values of the variables; ii) the
computation of the best achiever can be computed before-
hand for all relevant subgoals using a label-correcting algo-
rithm (Scala, Haslum, and Thiébaux 2016); iii) the recur-
sion reaches always the base case where the precondition
of the selected action is satisfied. Once the best achievers
are calculated (which takes polynomial time), the backward
procedure is a greedy process that only appends the already
established achiever to the working relaxed plan.

From a high level perspective, the main difference with
the popular relaxed-plan extraction used by METRIC-FF
(Hoffmann 2003) is in the fact that the MRP keeps intact and
more explicit the numeric relationships among actions and
subgoals. Indeed, METRIC-FF relaxed-plan extraction pro-
cedure backchains from the goals, too. However, each nu-
meric condition in METRIC-FF extraction is deconstructed
in a number of simpler conditions, each of which consists
of one numeric variable and a constant. These simpler con-
ditions identify a (further) numeric state variable based de-
composition that is then used by METRIC-FF to find justi-
fications for the addition of new actions in the relaxed plan.
Also, in simple numeric planning, METRIC-FF’s relaxed-
plan extraction for the achievement of a deconstructed con-
dition c at a given level l is simplified by adding all the ac-
tions at any level l′ ≤ l that contribute to the satisfaction
of c. Differently, each element in the MRP approximates the
action choice(s) using a subgoal oriented justification, and
is guided by the minimisation of ĥadd

hbd; therefore, it does not
lose the relationship among numeric variables belonging to
the same condition, and provides a way to restrict the action
selection. As we will see, this is not only more precise, but
also provides an easy access to heuristic computation as well
as to the formulation of novel helpful actions and of what we
call up-to-jumping actions.

A MRP based heuristic

A straightforward way to use the MRP to devise a heuristic
function is by summing the costs of each action that occurs
in all pairs in the MRP, multiplied by the number of repeti-
tions associated to that action in the pair. However, this may
easily result in an inaccurate estimate. In fact, as it is possi-
ble to observe, the MRP can contain pairs sharing the same
action but having different counters; this arises in problems
where the same action can achieve different numeric sub-
goals; e.g., in our SAILING problem, multiple executions of
Go-E or Go-NE can achieve both conditions y + x ≥ 10

and y + x ≥ 20. As we have seen before, ĥadd
hbd ignores this

problem and yields a highly pessimistic estimate.

To overcome this issue we devise an MRP based heuristic
that merges pairs containing the same action, and maximizes
the relative counters; more formally:

hMRP
max (s) =̇

∑
a∈{a�|(a�,m�)∈π}

c(a) · max
(a,m′)∈π(s)

{
m′} (4)

An obvious alternative formulation is keeping the min-
imum counter instead of the maximum one. Notice, how-
ever, that such a formulation would lead to severe under-
approximation of the actual cost. A smarter formulation
would be combining the sum and the max of the repetitions;
this could be beneficial in some situations where there is a
pronounced presence of negative interactions between the
actions. It is not clear how to capture this negative implica-
tions in a principled manner, and therefore we leave a more
profound investigation of this aspect as a future work. Let
us keep in mind though that an optimal selection is NP-hard,
since computing an optimal solution of the delete-free relax-
ation of a classical planning problem is NP-hard (Bylander
1994) and this is obviously a subcase of our task.
Example 2 (Continuing on SAILING). Let us contrast the
relaxed plan computed by METRIC-FF heuristic and the es-
timate hMRP

max from the initial state. METRIC-FF constructs
a relaxed planning graph encompassing 4 (action) levels,
numbered from 0 to 3. Condition y − x ≥ 20 at level 3 is
deconstructed into y ≥ 9 and (−x) ≥ 18, i.e., the maxi-
mum value of y and (−x) reachable after three time steps
is required to be achieved by relaxed plan π. The same is
applied to y + x ≥ 20 at level 3, and to y − x ≥ 10 and
x + y ≥ 10 at level 2. The plan extraction will include ac-
tion a2 at level 3, and action a1 at level 2; then, in the
first three levels we find all the actions supporting the de-
constructed conditions: Go-NW and Go-NE increasing y,
Go-SW and Go-W increasing (−x), and Go-SE and Go-E
increasing x. Under unitary action costs, METRIC-FF’s es-
timate is 1 + 1 + 3 · (2 + 2 + 2) = 20.

Under the assumption that our best function over ĥadd
hbd

always breaks ties the same way, a concrete MRP that can
be generated is the following: pairs (a1, 1), (a2, 1), (Go-
NW, 4), (Go-NE, 4), (Go-NW, 7), (Go-NE, 7). According to
Eq. 4, the heuristic cost derived from hMRP

max is 16, which is
also the cost of the optimal plan solving the actual problem.

Subgoaling Helpful Actions

One of the powerful aspects of having a concrete plan rep-
resentation solving a problem relaxation is the fact that
it makes more explicit which set of subgoals is useful to
achieve in order to have a solution that is (at least) “re-
laxed applicable”; these subgoals are extracted by looking
at all actions’ preconditions selected to form a relaxed plan
to achieve a goal, and the goal itself.

An idea that exploits such subgoals to tighten the rela-
tion between the actual search and the relaxation is that of
using helpful actions (Hoffmann 2003), also referred to as
preferred operators (Richter and Helmert 2009). An action
is said to be helpful if it achieves at least one precondition
of the relaxed plan. The idea is to use helpful actions as a
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means to eagerly guide the search towards those successor
states with shorter relaxed plan length. The use of helpful ac-
tions in search has hugely extended the reach of classical and
numeric planners in the past (Hoffmann and Nebel 2001;
Hoffmann 2003), and is also exploited to speed up satisfic-
ing planner in many ways, for instance in limiting the search
of enforced-hill-climbing, or in systems using multiple pri-
ority queues, one of which is only dedicated to the search
space entailed by the use of preferred operators (Richter and
Westphal 2010; Richter and Helmert 2009).

Motivated by the success of helpful actions, this section
shows that there is quite a simple mechanism for getting
helpful actions that are based on the subgoaling relaxation,
too. The idea is about exploiting the decomposition-based
principle of the subgoaling relaxation for the case of simple
numeric planning by reasoning about the multi-repetition re-
laxed plan, and the notion of possible achiever.

Let π(s) be the MRP computed for a problem Π on a state
s following Eq. 3, the set of subgoaling helpful actions for
s are those that are applicable in s and are possible achiev-
ers (in the classical or numeric sense) of some other action
precondition or goals in π. More formally:

Definition 4 (Subgoaling Helpful Actions). An action a
is said to be helpful in a state s w.r.t. relaxed plan π
iff: i) a is applicable in s and ii) there exists a g ∈⋃

(a′,m′)∈π pre(a
′) ∪ G where s � g, and g ∈ eff(a)+ or

∃m̂ ∈ Q≥0 · s |= gr(a,m̂) (acc. Def. 2). We denote with H(s)
the set of all helpful actions in s

Example 3 (Continuing on SAILING). The subgoaling help-
ful actions are those achieving the numeric conditions y −
x ≥ 10, x + y ≥ 10, y − x ≥ 20, x + y ≥ 20 of ac-
tions a1 and a2 in the MRP, i.e., Go-NW, Go-W, Go-NE,
Go-E. In contrast, the classical helpful actions defined by
METRIC-FF also include Go-SW and Go-SE that increase
variables (−x) and x, respectively, but that do not con-
tribute at all to reach the grayed areas. Substantially, the de-
construction of numeric subgoals used by METRIC-FF dur-
ing the relaxed plan extraction results in a poor selection of
helpful actions.

Observing the example one may be inclined to conjec-
ture that, in general, tighter relaxations (as it is the case
when comparing the subgoaling relaxation with the interval
based relaxation (Li et al. 2018)) lead to less helpful actions
because the conditions under which actions are considered
helpful are harder to be satisfied. However, note that, tighter
relaxations may lead to more subgoals to be achieved, too,
and therefore potentially more actions to be considered as
helpful. Thereby, the use of helpful actions from different re-
laxations can lead to quite different explorations of the state
space, and it is difficult to provide some general argument
about which state space is better to be explored from a the-
oretical standpoint. In our experiments we will use helpful
actions as a pruning technique in a forward state space plan-
ner, i.e., we will generate only successors reachable by help-
ful actions. Note that, as for classical planning (Hoffmann
and Nebel 2001), this makes the search incomplete; our ex-
periments evaluates whether this is useful anyway.

Up-To-Jumping Actions

The multi-repetition relaxed plan is not only useful because
it gives a way to devise subgoaling based helpful actions,
but also because it makes explicit when, at least from a re-
laxation point of view, the same action needs to be repeated
several times to make a condition satisfied. Consider the
SAILING example. It is easy to see that the sailing boat can
achieve a position where y − x ≥ 10 by executing at least
4 times either Go-NW or Go-W; every other sequencing of
actions will only make the plan unnecessarily longer.

Motivated by situations as in this example, we introduce
the notion of up-to-jumping action.
Definition 5 (Up-to-jumping Action, Syntax and Seman-
tics). An up-to-jumping action is a pair (a,m) where a ∈ A
and m ∈ N. An up-to-jumping action (a,m) is executable
in a state s if the precondition of a are satisfied in s (as a
regular action); the state resulting form executing (a,m) in
s is obtained by repeating the execution of a until either it is
executed m times or a state where the preconditions of a are
not satisfied is generated by m′ < m executions of a.

We extract up-to-jumping actions from the MRP, consid-
ering only those actions that are required to be repeated
more than once. Moreover, among those pairs in MRP cor-
responding to the same action we only keep the pair with the
minimum number of repetitions. More formally, let π be an
MRP, the set J(s) of up-to-jumping actions is defined as:

J(s)={(a,m) | (a,m) ∈ π,m > 1, ∀(a,m′)∈π m ≤ m′}
Example 4 (Continuing on SAILING). According to the set
of actions in the MRP mentioned in Example 2, our set J
of up-to-jumping actions consists of pairs (Go-NW, 4) and
(Go-NE, 4). Note that the prefix of any optimal plan is ei-
ther (Go-NW, 4) or (Go-NE, 4), and such a prefix is exactly
one of the up-to-jumping actions in J . Note that, if the def-
inition of J kept the pairs which maximise the number of
repetitions for a given action, instead of those that minimise
such a number, the (first) computed plan would firstly reach
the farthest grayed area and only subsequently the nearest
one, i.e., its quality would be much worse.
Proposition 2 (Soundness and Incompleteness with up–
to-jumping actions). Let s be a state and S be the set of
states obtained using applicable actions in the problem ac-
tions set A; let S′ be the successor states obtained by ap-
plying actions from the heterogeneous set A′ =̇ {a | a ∈
A · �(a,m) ∈ J(s)} ∪ J(s). It follows that:
• Soundness:⋃

s′∈S′
Sol(〈s′, A′, G〉) 
= ∅ ⇒ ⋃

s′′∈S

Sol(〈s′′, A,G〉) 
= ∅
• Incompleteness:⋃

s′∈S′
Sol(〈s′, A′, G〉) = ∅ 
⇒ ⋃

s′′∈S

Sol(〈s′′, A,G〉) = ∅

Proof Sketch. (Soundness) Let s be a state; every state s′
obtained by using an action from J(s) can be reached with
regular actions only, too.
(Incompleteness) Intuitively, an up-to-jumping action can
hide a state that needs to be traversed to reach the goal.
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Consider a planning domain with propositional variables
F =̇ {p, q, r}, numeric variables X =̇ {x}, and actions
A=̇{a, b, c}. Consider an initial state s0 assigning true to p,
false to both q and r, and 0 to x. Take as a goal G a formula
that requires p true and x ≥ 2. Let pre(a) =̇ {r, x ≤ 1},
eff(a) =̇ {q = �}, pre(b) =̇ ∅ and eff(b) =̇ {r = �, p =
⊥, x+= 1}, pre(c) =̇ {q}, eff(c) =̇ {p = �}. The MRP
constructed starting from s0 contains pair (b, 2), which is
also the only up-to-jumping action at hand. The state s′ ob-
tained from s0 by applying b twice makes variable x equal to
2, and hence from s′ action a becomes not applicable any-
more. Since there is no way of recovering from this situa-
tion, s′ becomes a dead-end state. Indeed, a valid plan for
the problem is 〈b, a, b, c〉. The prefix 〈b, a, b〉 cannot be ex-
plored if we do not split the up-to-jumping action (b, 2).

In order to deal with this incompleteness, in our experi-
ments, we use up-to-jumping actions only in addition to the
regular actions, which, in turn, may be affected by helpful
action pruning or not; although this increases the branching
factor, the depth of the search tree can be reduced, for some
situations. On the other hand, it also introduces a degree of
sub-optimality if used in a greedy setting. There are so two
trade-offs: one is trading branching-factor for depth of the
search tree; the other one applies to greedy search and con-
cerns sacrificing quality of the solution for runtime. Both
will be evaluated experimentally.

Related Work

Our work builds on relaxed plan heuristics and helpful ac-
tions developed for classical propositional planning. In par-
ticular, Keyder and Geffner (2007) observed that the adop-
tion of a relaxed planning graph structure is not necessary
for the construction of a relaxed plan; this can indeed be
obtained directly using the recursive formulation of hmax,
yielding a crisper definition of the procedure, and, more im-
portantly, making it possible to use the relaxed plan in a cost-
sensitive manner. We show that a similar mechanism can be
devised in numeric planning under the condition of using a
subgoaling based relaxation over a simple numeric planning
problem. Besides the obvious extension to support numeric
reasoning, another difference w.r.t. the work of Keyder and
Geffner (2007) is that we obtain best achievers using a ver-
sion of the subgoaling heuristic that provides a compromise
between ĥadd

hbd and ĥmax
hbd ; this is motivated by the fact that

the admissible version of the subgoaling relaxation heuristic
ĥmax
hbd adds a relaxation estimating single conditions, too.
Relaxed plan heuristics and helpful actions in numeric

planning have already been studied, but only using the
interval-based relaxation (Hoffmann 2003; Gerevini, Saetti,
and Serina 2004; Aldinger, Mattmüller, and Göbelbecker
2015). In particular, METRIC-FF’s heuristic and helpful
actions have thoroughly influenced the literature on nu-
meric planning, e.g., (Gerevini, Saetti, and Serina 2008;
Coles et al. 2010; 2014). Our techniques differ from those
grounded on interval-based relaxation: we reason about sub-
goals and actions rather than about variables and actions. We
expect that the mechanisms developed from this interpreta-

tion are more powerful, e.g., up-to-jumping actions; as we
will see, our experiments confirm this expectation.

Other numeric planners (i.e., (Aldinger and Nebel 2017),
(Scala et al. 2016)) exploiting the interval-based relaxation
or other abstractions (Illanes and McIlraith 2017) have re-
cently appeared in the literature. However, in contrast to
our work, they do not consider the simple numeric planning
case, but focus on more general, non-linear numeric plan-
ning. As a consequence, when the problem does not involve
complex, non-linear constructs, they perform even worse
than METRIC-FF. It is important to note that our focus on
simple numeric planning is not limiting, but complementary;
similarly to the extension of ĥadd

hbd , ĥadd
hbd+ (Scala, Haslum,

and Thiébaux 2016), our techniques can still be adopted
in more expressive settings using a decomposition/recursive
schema. For instance, one can extract a plan ignoring the
complex (non-simple) subgoals, and then add the cost given
by another heuristic (e.g., based on interval relaxation) for
all those subgoals that are required by the relaxed-plan, but
are not achieved yet. Alternatively, one can apply our mech-
anisms to the simple numeric planning effect-abstraction of
linear problems presented by Li et al. (2018). Studying the
effect of these choices is future work.

Related is the field that studies macro-actions (e.g.,
(Chrpa, Vallati, and McCluskey 2014; Botea et al. 2005;
Korf 1985; Scala 2014; Scala and Torasso 2015)), and all
techniques speeding up search by unrolling relaxed plans in
state-space planners (e.g., (Vidal 2004)). An up-to-jumping
action can be seen as a standard macro action with the dif-
ference being that it is computed deductively (instead of in-
ductively), and is dynamically extracted from a relaxation.
MARVIN (Coles and Smith 2007) extracts macros during
the search, too, but it uses them to escape from previously
encountered plateau. The usage of up-to-jumping actions in
a forward state-space search poses issues similar to those
raised by the usage of macro-actions, and techniques similar
to those used by MARVIN for detecting the most promising
situations could in principle be used in our context, too.

Implementation and Experiments

Our experimental analysis evaluates the usefulness of the
techniques introduced in this paper. In particular, we in-
tended to measure the effectiveness of the multi-repetition
relaxed plan structure when this is exploited for the extrac-
tion of (i) the estimate hMRP

max , (ii) the subgoaling helpful
actions, and (iii) the up-to-jumping actions. For this rea-
son, we consider four different configurations in a forward
state space planner guided by a greedy best-first search
(f(n) = h(n)). With ĥadd

hbd we denote a configuration where
the planner is guided by the additive heuristic presented in
(Scala, Haslum, and Thiébaux 2016); this is the baseline in
our experiments. For the new contributions we use hMRP

max to
indicate the configuration where the same planner is guided
by hMRP

max ; with hMRP
max + H and hMRP

max + HJ we denote
two variants of hMRP

max where we branch over only help-
ful actions (hMRP

max + H) and helpful actions plus up-to-
jumping actions (hMRP

max +HJ) extracted from the MRP, re-
spectively. Note that up-to-jumping actions are not affected
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Figure 2: Left: Coverage vs Timeout analysis. x-axis displays number of solved instances against allotted time (y-axis). Right:
Scatter plotting node expansions of hMRP

max +HJ (x-axis) vs ĥadd
hbd (y-axis). Unsolved instances have been removed.

Domain ĥadd
hbd hMRP

max hMRP
max +H hMRP

max +HJ hMETRIC-FF

Heavily-Numeric
COUNTERS (11) 6 6 9 11 1
COUNTERS-INV (11) 6 6 8 10 1
COUNTERS-RND (33) 26 26 33 32 8
GARDENING (51) 51 51 51 51 0
FARMLAND (50) 50 50 50 50 0
GROUPING (192) 159 156 168 178 17
SAILING (40) 37 40 40 40 3
From IPCs
DEPOTS (23) 10 16 18 19 3
ROVER (20) 11 11 12 12 10
SATELLITE (20) 7 10 14 14 7
SETTLERS (20) 4 4 6 6 1
ZENOTRAVEL (23) 22 23 23 23 22
DEPOTS (C)(23) 15 18 19 19 2
SATELLITE (C)(22) 4 4 4 4 7
ZENOTRAVEL (C)(23) 16 13 17 17 22

Total 424 434 472 486 104

Table 1: Coverage of systems across all domains. In paren-
thesis, the number of instances for a given domain.

by the helpful actions pruning in that they are themselves
constructed from helpful actions. We also add to our anal-
ysis the interval-based relaxation with the corresponding
helpful actions; we call this configuration hMETRIC-FF. All
subgoaling based mechanisms are built on top of ENHSP
(https://sites.google.com/view/enhsp/). For simulating con-
figuration hMETRIC-FF, we use METRIC-FF by disabling en-
forced hill climbing and enabling (interval-based) helpful
actions in a greedy best-first search. Every tested planner
addressed each problem instance by running up to 1800 sec-
onds with a memory cut of 16GB. Tests are performed on a
single core of a 4 Intel(R) Xeon(R) (2.30 GHz).
Benchmarks. We use domains from recent work in nu-
meric planning (Scala, Haslum, and Thiébaux 2016), Func-
tional STRIPS (Francès and Geffner 2016), and previous
International Planning Competitions. Our analysis puts par-
ticular emphasis on domains presenting a pronounced nu-
meric structure (hereinafter referred as Heavily-Numeric):
COUNTERS, SAILING, GARDENING, FARMLAND, GROUP-
ING. These problems involve mostly numeric effects and
numeric conditions. Their description is omitted here for
lack of space; for details have a look at (Scala, Haslum, and
Thiébaux 2016) and (Francès and Geffner 2016) papers. The
descriptions of the IPCs domains can be found in the paper

by Long and Fox (2003). For some IPC domains, we also
consider the action costs version. This is indicated with a
’C’ appended next to the domain name.
Results. The parameter under evaluation that we consider
most important is the coverage, i.e., the number of instances
solved by a system over all instances of our benchmark suite.
Table 1 and Figure 2 detail such an evaluation. The other
parameters we evaluated are run time, number of expanded
search nodes, and plan cost. These pieces of information are
given in Table 2. ĥadd

hbd and hMRP
max solve roughly the same

number of instances, but present strengths and weaknesses
in different domains. In all the instances of the three con-
sidered variants of the COUNTERS domain, both heuristics
lead to the same amount of node expansions. In this domain,
conjunctive goals are relaxed in the same manner by ĥadd

hbd

and hMRP
max . Moreover, as each of them is dealt with a differ-

ent achiever, there is no reason why hMRP
max should behave

differently; there are indeed no positive interactions that can
be captured by looking at the MRP. Instead, in GROUPING,
heuristic ĥadd

hbd is much more accurate leading to less search;
it seems that hMRP

max tends to be too optimistic. As expected,
hMRP
max is very effective in SAILING. Indeed, we observe not

only a significant reduction of node expansions, but also sig-
nificant improvements on the quality of the obtained plans.
This is due to the capability of hMRP

max to capture the positive
interactions among the sailing actions (see Figure 3 left).

The improvement is global with subgoaling helpful action
pruning activated, and there is no domain where our baseline
solves more problems than hMRP

max + H . Also the speed-up
is substantial. As it is indicated by Table 2, the reduction of
node expansions happens pretty much in every domain, and
we get savings of at least one order of magnitude. This situ-
ation confirms that using helpful actions is very beneficial in
numeric domains as it is in classical planning; this somewhat
contrasts to some earlier observations done in the seminal
work of METRIC-FF (Hoffmann 2003) about the effective-
ness of numeric helpful actions in preserving completeness.
Out of all our tested instances, only for one instance of DE-
POTS the use of subgoaling helpful action pruning wrongly
deemed it unsolvable. We think that this robustness is ex-
plained by the use of a tighter relaxation that seems bene-
ficial in strongly pronounced numeric problems, and is less
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Run Time Expansions Plan Cost
Domain # I ĥadd

hbd hMRP
max hMRP

max +H hMRP
max +HJ ĥadd

hbd hMRP
max hMRP

max +H hMRP
max +HJ ĥadd

hbd hMRP
max hMRP

max +H hMRP
max +HJ

Heavily-Numeric
COUNTERS 6 30.55 35.05 1.05 0.59 50780.67 50780.67 3887.67 80.83 77.0 77.0 81.5 69.5
COUNTERS-INV 6 50.6 62.66 1.95 1.53 83827.5 83827.5 8668.0 4610.0 119.5 119.5 134.5 136.67
COUNTERS-RND 26 70.06 80.21 1.08 50.69 42921.31 42921.31 2248.58 140053.23 197.85 197.85 202.12 247.27
GARDENING 51 21.37 48.45 9.01 9.18 212281.22 352309.63 46713.14 52180.06 1181.35 1151.71 1418.67 1498.8
FARMLAND 50 0.88 0.88 0.78 0.81 308.96 330.52 304.26 9.4 301.72 301.88 301.7 301.76
GROUPING 146 111.62 152.29 96.01 37.77 179.75 203.39 199.7 61.04 178.69 196.64 196.86 233.68
SAILING 37 65.74 1.13 0.98 53.67 309365.32 483.16 500.19 859102.08 754.78 452.51 452.73 560.49
From IPCs
DEPOTS 10 158.21 38.6 10.81 8.44 12177.2 11103.5 4111.0 4111.0 53.7 71.4 67.2 67.2
ROVER 9 2.66 1.94 1.7 1.62 9421.22 473.78 25.0 25.0 22.67 24.22 20.0 20.0
SATELLITE 7 61.86 221.09 1.53 1.46 613349.86 1166805.29 2210.57 2210.57 23.0 27.86 22.14 22.14
SETTLERS 4 198.6 202.55 2.98 37.22 39151.5 47393.5 2089.0 66561.75 70.5 75.25 100.25 119.5
ZENOTRAVEL 22 123.96 32.04 24.3 25.07 171.09 70.09 94.05 94.05 46.55 43.32 44.73 44.73
DEPOTS (C) 14 112.03 10.88 9.26 8.31 8211.64 851.64 1932.71 1932.71 113.57 149.57 128.36 128.36
SATELLITE (C) 2 1.06 1.31 0.85 0.93 263.0 1976.0 587.5 587.5 112.34 112.34 150.6 150.6
ZENOTRAVEL (C) 13 8.29 6.14 1.03 1.02 174.0 1174.38 299.62 299.62 37431.54 42418.92 29215.85 29215.85

Table 2: Average run-time, node expansions and plan cost for all configurations. The evaluation considers instances those solved
by all systems (# I is the number of such instances). Bold indicates best values within 5%.

evident in problems from the IPC. In fact, in the IPC do-
mains, also METRIC-FF achieves good performances.
hMRP
max with helpful and up-to-jumping actions obtains

the highest coverage. This is more pronounced with limited
computational time (Figure 2 left). This configuration solves
all instances of COUNTERS. Note that there is a big jump of
difficulty among small and large instances in COUNTERS.
The largest instance (40 counters) has an optimal plan of 780
actions, while the optimal plan of the immediately smaller
instance (36 counters) involves 630 actions. Another domain
benefiting from this configuration is GROUPING. Here the
planner generates quite an interesting sequences of moving
actions. Same thing happens in SAILING. The situation for
this latter is however more complicated. Figure 3 left shows
that, for the majority of the instances, the configuration us-
ing up-to-jumping actions allowed the planner to quickly
converge towards a solution. However, in a few cases, the
up-to-jumping actions make the search more difficult. The
best performance of the up-to-jumping actions setting is in
FARMLAND (Figure 3 right). Here, we observe a reduction
of node expansions going up to one order of magnitude when
compared to hMRP

max and helpful actions. Figure 2 also shows
an overall substantial improvement in terms of number of
expanded nodes w.r.t. the baseline ĥadd

hbd .
Regarding plan quality, the use of up-to-jumping actions

make the search greedier, pretty much across all the tested
domains; e.g., in the GARDENING domain, we observed
an average increase of almost fifty percent. Interestingly,
there is no clear winner across all domains; configurations
seem quite complementary. Remarkable are the results of the
MRP based mechanisms in SAILING. In particular hMRP

max
almost halves (on the average) the size of the plan; as we
have seen in our example throughout the paper, this is ex-
plained by a more principled handling of the positive inter-
actions between actions.

We also tested hMRP
max with up-to-jumping actions only,

but found this configuration rather unsatisfactory. By limit-
ing the branching factor, the helpful actions pruning com-
pensates at best the overhead of adding up-to-jumping ac-

Figure 3: SAILING (left) and FARMLAND (right) number of
expanded nodes across all instances.

tions into the search. This proves to be extremely prolific.
Yet, there are situations needing further investigations; as
observable from Table 1 and Figure 3 left, the full configu-
ration loses an instance of COUNTERS-RND and took long
time for a couple of instances in SAILING. It is likely that
the up-to-jumping actions greedy nature hided some action
in the search tree that could have made the search shorter;
a possible explanation for this can be found in the integral
approximation that is performed whilst building the MRP.

The addition of helpful actions takes the subgoaling relax-
ation to be competitive with hMETRIC-FF over IPC domains,
too. These domains all present a heavy classical structure
and hMETRIC-FF greatly handles them by leveraging from the
efficacy of FF’s propositional reasoning. The subgoaling
helpful actions seems to provide an effective means to put
classical and numeric reasoning in synergy.

Conclusion

We have studied how to exploit structural information from
the subgoaling relaxation. We did so by exploiting a novel
characterization of the relaxed plan, called multi-repetition
relaxed plan (MRP), that is aimed at keeping more intact the
numeric structure of the problem and the relation between
actions and subgoals. We have proposed techniques to ex-
tract such an MRP from subgoaling relaxation and, starting
from the MRP, novel ways to enhance the search: the former
is an extension of well known helpful actions; the latter is a
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novel mechanism allowing to collapse many decision steps.
An experimental analysis in the paper demonstrates the

benefit of these new notions and methods in the context
of greedy-best-first search, but it can be the case that they
can be powerful tools also in other search schemas (e.g.,
enforced-hill-climbing, or search schema based on the use
of multi priority-queues (Richter and Helmert 2009; Richter
and Westphal 2010)). Another important aspect that is worth
to explore is finding the right way of combining different
heuristics together, an approach that, if done properly, can be
quite fruitfully (Röger and Helmert 2010). We look forward
to investigate these aspects in our immediate future work.
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Scala, E.; Haslum, P.; Thiébaux, S.; and Ramı́rez, M. 2016.
Interval-based relaxation for general numeric planning. In ECAI,
volume 285 of Frontiers in Artificial Intelligence and Applications,
655–663. IOS Press.
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