
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Efficient Robot Planning for Achieving Multiple
Independent Partially Observable Tasks That Evolve over Time

Anahita Mohseni-Kabir,1 Manuela Veloso,1 Maxim Likhachev1

1School of Computer Science, Carnegie Mellon University
{anahitam, maxim, mmv}@cs.cmu.edu

Abstract

We focus on domains where a robot is required to accom-
plish a set of tasks that are partially observable and evolve
independently of each other according to their dynamics. An
example domain is a restaurant setting where a robot waiter
should take care of an ongoing stream of tasks, namely serv-
ing a number of tables, including delivering food to the tables
and checking on customers. An action that the robot should
take next at any point of time typically depends on the du-
ration of possible actions, the state of each table, and how
these tables evolve over time, e.g., the food becomes cold af-
ter a few time steps. As most of these domains are dynamic
and tasks are frequently being added and removed, the robot
typically needs to plan for a short h-step horizon to quickly
decide on the next action and replans at each time step. A con-
ventional approach to deal with this problem is to combine
all the tasks’ states and robot actions into one large model
and to compute an h-step optimal policy for this combined
model. For the problems that we are interested in, the number
of tasks, e.g., the number of tables in the restaurant domain,
can be large making this planning approach computationally
impractical. The observation that we make however is that in
many domains the number of tasks that the robot can accom-
plish within h-steps is very limited. We present an algorithm
that exploits this observation and decomposes the problem
into a series of much smaller planning problems, the solution
to which gives us an optimal solution. We demonstrate the
efficiency of our algorithm on the restaurant domain.

Introduction

Many robotics applications, such as waiting tables in a
restaurant and robots in search and rescue, involve a robot
acting in a stochastic environment under partial observa-
bality while completing multiple independent tasks. For in-
stance, consider the restaurant setting where a robot is wait-
ing multiple tables. The robot waiter should take care of an
ongoing stream of tasks, including taking food orders, deliv-
ering food and drinks, and checking on customers. The tasks
are partially observable as the robot cannot directly observe
what people want and their degree of satisfaction. Although
in such domains the dynamics of each task is independent

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of one another, they all share a single robot that attends to
them, and an optimal policy for the robot should consider all
tasks at each step. Many of these multi-task domains can be
very dynamic with tasks being added and removed at each
time step, e.g., a customer leaves or a table wants to order
an extra dish. Thus, the robot only needs to plan for a short
horizon of actions as any long-term plan quickly becomes
sub-optimal or even infeasible after a few time steps.

A conventional planning approach for such domains is
to combine all the tasks’ states and actions into one large
model and compute the h-step optimal policy for the com-
bined model at each time step. However, this approach is
impractical if the number of tasks are large. In this work,
we leverage the structure of the problem, namely the inde-
pendency between the tasks, and the observation that given
a short horizon only a subset of tasks can be accomplished
within this horizon.

We utilize Partially Observable Markov Decision Process
(POMDP) representation. POMDP is a powerful mathemat-
ical tool to model the robot’s sequential decision making un-
der uncertainty (Cassandra 1998). However, planning algo-
rithms for POMDPs can only handle small state and action
spaces and consequently do not scale well as the number
of tasks increase. The combined model of the robot and all
tasks grow as the number of tasks grow.

Many works have proposed approaches to speed
up POMDP solvers by using point-based meth-
ods (Shani, Pineau, and Kaplow 2013), hierarchical
planning (Theocharous and Kaelbling 2004), clustering and
compression of belief space (Roy, Gordon, and Thrun 2005;
Smith, Thompson, and Wettergreen 2007), factored
representation (Shani et al. 2008), and online POMDP
approaches (Ross et al. 2008). We leverage online POMDP
approaches which only compute the optimal policy for the
current information state and a small horizon of contingency
plans. We are interested in domains in which a robot has
to attend to multiple independent tasks whereas the above
approaches do not make the independency assumption and
address the combined model directly.

Our algorithm decomposes the problem into a series of
smaller planning problems. In particular, a robot attending
to a single task can be represented as a standalone smaller

202

POMDP. We show how to compute lower and upper bounds
on the cost of an optimal solution involving N tasks. Using
these insights, we develop an algorithm that searches over
possible subsets of N tasks, solving each optimally until
a provably globally optimal solution is found. We test our
approach on a simplified restaurant environment in simula-
tion. We present how we model the waiting table task as a
robot planning problem and show the effectiveness of our
approach compared to the combined model, a hierarchical
POMDP approach, and a related paper (Shani 2013).

The paper is structured as follows. We begin by discussing
the difference between our current work and the related
work. We then introduce a motivating example, namely the
restaurant domain. We then describe our notation, provide
a pseudo code for the algorithm, and prove the optimality
of the approach. Finally, we discuss the performance of the
algorithm compared to the existing approaches.

Related Work
There is extensive research on speeding up POMDP solvers
using different variations of the point-based value iteration
method (Pineau et al. 2003). These methods (Shani, Pineau,
and Kaplow 2013) focus on various aspects of the point-
based value iteration, specifically the selection of the belief
space subset and the order of value function updates of the
belief space. It has been shown that these approaches gener-
ate good, approximate policies for large domains.

Other methods for scaling up POMDPs leverage factored
representations in the form of decision trees (Boutilier and
Poole 1996) or graphs (Bahar et al. 1997; Shani et al. 2008),
specifically Algebraic Decision Diagrams (ADDs). Even
though ADDs expedite planning by utilizing the limited de-
pendencies between the state variables, they fail to com-
pactly represent the POMDP when the policy is dependent
on all the variables (Shani 2013).

Some research for scaling up POMDPs compresses the
state space (Poupart and Boutilier 2003; Roy, Gordon, and
Thrun 2005) by mapping each high-dimensional belief state
into low-dimensional compressed belief or by bounding the
number of non-zero values within each belief point (Wray
and Zilberstein 2017). (Li, Cheung, and Liu 2009) proposes
an approach to cluster belief states and combine it with be-
lief compression to further improve POMDP tractability.

Research on hierarchical POMDP planning (HPOMDP)
includes learning how to perform a set of subtasks in-
dependently, and then learning a high-level policy to se-
quence the subtasks (Theocharous and Kaelbling 2004). A
method (Foka and Trahanias 2007) focuses on clustering the
belief space to decompose a flat POMDP into a HPOMDP
that has coarser discretization at higher levels for both state
and action space and then solving the HPOMDP. Another
method uses hierarchical finite-state controllers to scale-up
planning and to provide theoretical guarantees on the quality
of the computed policy (Hansen and Zhou 2003). Different
from all these approaches, the tasks in our domains are inde-
pendent and the robot can execute them in any order, i.e., no
task provides a precondition for another task. Our approach
not only considers executing the tasks in a sequence but also
interleaving the tasks’ execution when more rewarding.

All the above approaches expedite planning in some way
by using approximation methods, using compression or
clustering techniques, or assuming some factored or hier-
archical structure in the domain. We consider a structure in
our domain, namely the independency among the tasks, that
differs from the assumptions made in the previous methods.
Our approach can leverage the above methods to further ex-
pedite planning when finding solutions for subsets of tasks.

The restless multi-arm bandit problem (RMAB) (Whittle
1988; Weber and Weiss 1990) concerns the optimal alloca-
tion of resources over time among a collection of bandits (or
tasks) which are in competition. At each time step, an al-
gorithm should decide which bandits should be active, i.e.,
follow their optimal policy, and which bandits should be pas-
sive, i.e., evolve to a new state. The optimization is to find a
policy for sequential selection of active bandits. These prob-
lems can be modeled as Markov Decision Process (MDP),
are intractable (Glazebrook, Ruiz-Hernandez, and Kirk-
bride 2006), and have shown to have near-optimal heuris-
tic solutions on real-world problems (Liu and Zhao 2010;
Deo et al. 2013). Differently, our approach 1) takes into ac-
count the partial observablity of the state space, 2) is fast and
provably optimal given a short horizon, and 3) does not limit
the robot’s action to be passive or active; the robot’s action
set is a union of all POMDPs’ action sets.

The closest work to ours is by (Shani 2013), who devel-
oped an algorithm to decompose a factored POMDP into a
set of restricted POMDPs (or tasks). They solve each iden-
tified task separately, create a set of models with all pos-
sible combinations of the subsets of the tasks, solve them,
and combine the policies of the smaller models into a pol-
icy for the complete model. Their work mostly focuses on
how to decompose a factored POMDP into a set of smaller
POMDPs, whereas our work assumes that the robot has a
predefined set of tasks, efficiently removes subsets of tasks
that have a low solution quality, and then creates a set of
smaller models from the remaining subsets and solves them.
We compare against this method in the experiments section.

Motivating Domain: Waiting Tables in a

Restaurant

As illustrated in Fig. 1, we consider a restaurant setting with
one robot and multiple tables which go through the dining
process independently of each other. The robot has its own
state variables such as position and can perform services
such as go to a table, and deliver food to a table. The robot
can only execute one action at each time that depends on
the duration of possible actions, the state of each table, and
how these tables evolve, e.g., the table becomes unsatisfied
if it is not served soon. The state of the table can include
both observable variables such as wait time and partially ob-
servable variables such as satisfaction. To enable the robot
to perform the waiting tables task, we model each table, the
state of the robot and the actions that can be applied to this
particular table as a POMDP. This POMDP representation
enables the robot to reason about the uncertainty in humans’
internal state and its own actions and how the dining process
evolves over time after a sequence of action executions.

203

Figure 1: The robot operates in a restaurant with 3 tables,
T1, T2, and T3. The robot builds a POMDP model for each
table in the restaurant by using its own state and service ac-
tions, the table’s state and the human’s state. The robot has
N POMDP models for a restaurant with N tables.

Problem Formulation

We focus on domains where one robot is addressing a set
of N independent tasks. At each time step the robot decides
what action should be executed with respect to which task.
We model each task, the robot’s state and the actions that can
be applied to the task as a POMDP and call it client POMDP.
In this section, we first explain how we represent the client
POMDP. We then discuss how the N client POMDPs are
combined into one large POMDP model called an agent
POMDP. Finally, we discuss how we use the independence
property among the N client POMDPs to compute the agent
POMDP’s solution.

Client POMDP

The client POMDP for task i is represented as a tuple
(Si, Ai, Zi, Ti, Oi, Ri, γ,H), where Si = SR × SCi de-
notes the state space, sr ∈ SR denotes the robot’s state (it is
shared between the client POMDPs), and sci ∈ SCi repre-
sents the other state variables that are specific to task i. For
example, in our restaurant domain, sr contains the robot’s
position, and sci contains state variables such as level of
satisfaction. Ai denotes the robot’s action space which con-
tains a special action called no operation (no op). Zi de-
notes the robot’s observation space which assumes there is
no partial observability on the robot’s state and only contains
task i’s observation space ZCi, Zi = ZCi. For example,
zci contains table i’s neediness. The robot takes an action
a ∈ Ai and transitions from a state s ∈ Si to s′ ∈ Si with
probability Ti(s, a, s

′) = Pr(sc′i|sci, a) Pr(sr′|sr, a) where
s = (sr, sci) and s′ = (sr′, sc′i); the robot’s actions are de-
terministic with respect to the robot’s state so Pr(sr′|sr, a)
is either 0 or 1. The robot makes an observation z ∈ Zi,
and receives a reward equal to Ri(sr, sci, a). The probabil-
ity function Oi(s

′, a, z) = Pr(zi|sc′i, a) models noisy sen-

sor observations. The discount factor γ specifies how much
immediate reward is favored over more distant reward, and
H denotes the robot’s horizon.

The robot’s objective is to choose actions at each time
step to maximize its expected future discounted reward:
E

[∑H
t=0 γ

tri,t

]
, where ri,t is the reward gained at time t

from POMDP i. In POMDP planning, the robot keeps a
probability distribution over the states Si, which is called
a belief state Bi. POMDP planning searches for a policy
π : Bi → A that maximize the expected future discounted
reward at each belief b ∈ Bi. After executing an action,
the robot’s belief is updated by Eq. 1, where Pr(z|bi, a), the
probability of observing z after doing action a in belief bi,
is a normalizing constant.

bi(s
′) =

Oi(z|s′, a) ∑
s∈Si

Ti(s
′|s, a)bi(s)

Pr(z|bi, a)
(1)

The optimal return at stage t, V ∗
i,t(b), can be iteratively com-

puted by Eq. 2.

Q∗
i,t(bi, a) =

∑
s∈Si

bi(s)Ri(s, a) + γ
∑
z∈Zi

Pr(z|bi, a)V ∗
i,t−1(b

a
i,z)

V ∗
i,t(bi) = max

a∈Ai

[
Q∗

i,t(bi, a)
] (2)

The value of following a deterministic trajectory τ at be-
lief state bi and continuing according to the rest of τ for the
remaining t− 1 steps is computed by Eq. 3.

V τ
i,t(bi) =

∑
s∈Si

bi(s)Ri(s, τt) + γ
∑
z∈Zi

Pr(z|bi, τt)V τ
i,t−1(b

τt
i,z)

(3)

For the no op action, the reward function only depends
on the state variables that are specific to the client POMDP
Ri(sr, sci, no op) = Ri(sci, no op).

Agent POMDP

We call a POMDP created from multiple client POMDPs
agent POMDP (or robot POMDP). Formally, the agent
POMDP for a domain with N tasks is represented by
(N,S,A,Z, T,O,R, γ,H) where S = SR×SC1×SC2×
. . . × SCN , s ∈ S represents the agent POMDP’s state.
Let P = {i ∈ N : i ≤ N}. The robot’s action set A
(Eq. 4) contains vectors of length N in which except one el-
ement, all other elements are no op. The observation space is
Z = Z1×Z2×. . .×ZN . The robot’s probability distribution
over the states S is b ∈ B where B = B1×B2× . . .×BN .
We assume that the agent POMDP’s reward function is addi-

tive in terms of its underlying tasks E
[

N∑
i=1

H∑
t=0

γtri,t

]
, where

ri,t is the reward gained at time t from task i.

A = ∪
i∈P

∪
a∈Ai

length N︷ ︸︸ ︷
[no op...no op, a︸︷︷︸

ith element

, no op...no op] (4)

204

The properties in Def. 1 should hold for a set of N client
POMDPs to be independent. The N client POMDPs can
only share robot’s state space and the no op action. The tran-
sition and observation functions of different client POMDP
models are independent of one another.

Definition 1 We call a set of N client POMDPs indepen-
dent iff ∀i, j ∈ P , a ∈ Ai and i �= j, the following holds:

1. SCi ∩ SCj = ∅
2. Zi ∩ Zj = ∅
3. (Ai \ {no op}) ∩ (Aj \ {no op}) = ∅
4. Pr(sc′i|sc1, sc2, . . . , scN , a) = Pr(sc′i|sci, a)
5. Pr(zi|sc′1, sc′2, . . . , sc′N , a) = Pr(zi|sc′i, a)

Given that the tasks are independent and the reward is ad-
ditive, R(s, a) =

∑
i∈P Ri(si, a[i]), the optimal return at

stage t, V ∗
t (b), can be iteratively computed as follows:

Pr(z|b, a) =
∏
k∈P

Pr(zk|bk, a[k]) (5)

V ∗
t (b) = max

a∈A

[∑
i∈P

∑
s∈Si

bi(s)Ri(s, a[i])

+ γ
∑
z∈Z

Pr(z|b, a)V ∗
t−1(b

a
z)
] (6)

Definition 2 We introduce a parameter k∗ which repre-
sents the maximum number of tasks that the robot can po-
tentially attend to within H steps. For example, k∗ can be
set to 	Hl
 where ∀i, j ∈ P and i �= j, l is the minimum
number of time steps that the robot takes to transition from
task i to task j and affect the task j’s state variables scj .

In the next section, we provide a pseudocode for the al-
gorithm by assuming an arbitrary k. We then show that our
approach is optimal for k ≥ k∗ and discuss its performance
with different values for k compared to the other methods.

Approach

We exploit the observation that in some domains the number
of tasks that the robot can accomplish within h-steps is lim-
ited. We present an algorithm that exploits this observation
and decomposes the problem into a series of much smaller
planning problems, the solution to which gives us an opti-
mal solution. We denote a subset of k tasks out of P as tpl
or k-tuple, tpl ⊆ P . We refer to a set including all combi-
nations of k out of N tasks,

(
N
k

)
tasks, as tpls or k-tuples

tpls = {tpl ∈ P(P) : |tpl| = k}. The issue is the planner
does not know apriori which k tasks it should consider.

Proposed Method

Alg. 1 provides a pseudo code of the main loop of our ap-
proach. We follow the online POMDP planning framework
where the planning and execution steps are interleaved un-
til all the tasks are terminated (line 2). P represents a set of
POMDPs. During the planning phase, the algorithm com-
putes the best action to execute given the POMDPs’ belief

Algorithm 1: Online Planner for Multiple Independent
Tasks (env,P,H,k)

1 MultiTaskPOMDPPlanner (env, P, H, k)
2 while not AllTasksDone() do
3 a← SelectAction(P, H, k)
4 observations← Step(env, a)
5 UpdateBeliefs(P,observations)

state (line 3). The execution step executes the selected action
(line 4) and updates the belief state of the POMDPs based
on the obtained observation (line 5). The robot replans after
each action execution. All the baseline algorithms that we
compare against modify SelectAction in some way.

Algorithm 2: Our Method (P ,H ,k)
1 SelectAction (P ,H ,k)
2 τ ← array [1..H] filled with no op; Qbest ← −∞
3 V ∗,V τ , Q∗ ← empty array [1..|P |]
4 for p ∈ P do
5 V ∗[p],V τ [p],Q∗[p]← SolvePomdp(p,H)
6 LB ← LowerBound(V ∗,V τ)
7 tpls← BestKTuples(P ,V τ ,Q∗,LB,k)
8 for tpl ∈ tpls do
9 amax, Qmax ← SolveAgentPOMDP(tpl,H)

10 if Qmax > Qbest then
11 abest ← amax; Qbest ← Qmax

12 return abest
13 BestKTuples (P , V τ , Q∗, LB, k)
14 tpls← a set with all combinations of k out of P
15 for tpl ∈ tpls do
16 UBtpl ←

max
a∈Atpl

(
∑
p∈tpl

Q∗[p, a[p]]) +
∑

q∈P\tpl
V τ [q]

17 if UBtpl < LB then
18 remove tpl from tpls
19 return tpls
20 LowerBound (V ∗, V τ)

21 return max
p∈P

(V ∗[p] +
∑

q∈P\{p}
V τ [q])

Overview of the algorithm (Alg. 2) We first solve each
client POMDP separately (lines 4-5). We use the solutions
of the client POMDPs to compute a lower bound on the op-
timal value of the agent POMDP with N tasks (Function
LowerBound, line 6). We consider a set with all possible
combinations of k tasks (k-tuples). We use the solutions of
the client POMDPs to compute an upper bound on the value
of an agent POMDP created from a k-tuple and use the lower
bound to remove the ineffective candidate k-tuples (Func-
tion BestKTuples). For each remaining candidate k-tuple
(line 8), we build and solve the agent POMDP model created
from the k-tuple optimally to get an action and the Q-value
associated with it (line 9). The action from the k-tuple with
the maximum Q-value is selected (lines 10-11) by the robot.

205

Compute lower bound To compute a lower bound on the
optimal value of the agent POMDP with N tasks (Func-
tion LowerBound), the robot only considers one client
POMDP in its horizon H and will perform no op on the other
POMDPs. For a client POMDP p out of N POMDPs, the al-
gorithm sums up the optimal V-value of the pth POMDP
(V ∗

p) and the value of performing no op on the other
POMDPs (

∑
V τ
q , line 21). The sum with the maximum

value is returned. This calculation provides a lower bound
on the value of the agent POMDP since it does not take into
account that 1) the optimal policy might involve switching
from one task to another, or 2) an action other than a table’s
optimal action might be optimal in the agent POMDP.

Find best k-tuples To remove the ineffective POMDP tu-
ples, we compute an upper bound on the value of each k-
tuple. We start with all

(
N
k

)
k-tuples (line 14). For each k-

tuple (line 15) if its computed upper bound UBtpl is lower
than the lower bound (line 17), we remove it from the can-
didate k-tuples set (line 18).

To compute a k-tuple’s upper bound, we assume that the
robot only considers the selected k tasks and performs no
op on the other POMDPs (

∑
V τ
q , line 16). For the selected

k-tuple, the robot executes one of the actions from the k-
tuples’ set of valid actions Atpl which only considers the ac-
tions associated with the POMDPs in tpl (Eq. 7). We assume
that after executing the first action, each of the k POMDPs
follow their optimal policies Q∗

p(b, a[p]). This breaks the as-
sumption that the robot cannot address all the tasks in paral-
lel and gives an upper bound on the value of the k-tuple.

Optimality Proofs

Given Def. 1 and an assumption that we define later in this
section, we prove that Alg. 2 computes an optimal solution
for the agent POMDP with N tasks.

Some notation:

• V ∗
p,t: the optimal value of the client POMDP p at time t.

• V ∗
P,t: the optimal value of the agent POMDP created from

the N tasks at time t (Eq. 6).
• Atpl: only considers the actions associated with the

POMDPs in a given k-tuple and performs no op on the
other POMDPs, Eq. 7. In this equation, the union is only
over tpl ⊆ P , so Atpl ⊆ A.

Atpl = ∪
i∈tpl

∪
a∈Ai

length N︷ ︸︸ ︷
[no op...no op, a︸︷︷︸

ith element

, no op...no op] (7)

• V ∗
tpl,t: the optimal value of the agent POMDP created

from only the client POMDPs in tpl at time t.
V ∗
tpl,t(btpl) = max

a∈Atpl

Q∗
tpl,t(btpl, a)

= max
a∈Atpl

[immediate reward︷ ︸︸ ︷∑
i∈tpl

∑
s∈Si

bi(s)Ri(s, a[i]) +

γ
∑

z∈Ztpl

Pr(z|btpl, a)V ∗
tpl,t−1(b

a
tpl,z)

]

(8)

• U∗
tpl,t: the optimal value of the agent POMDP created

from the client POMDPs in P at time t with action set
Atpl. Intuitively, V ∗

tpl,t considers the value of the client
POMDPs in tpl, but U∗

tpl,t also considers the utility of
performing no op on the POMDPs that are not in tpl.

U∗
tpl,t(b) = max

a∈Atpl

[∑
i∈P

∑
s∈Si

bi(s)Ri(s, a[i])

+ γ
∑
z∈Z

Pr(z|b, a)U∗
tpl,t−1(b

a
z)
] (9)

Assumption 1 The robot has a short horizon H and can
only consider k∗ tasks in its horizon (Def. 2). Under this as-
sumption, the optimal value for the agent POMDP is called
V̂ ∗
P .
As mentioned earlier, U∗

tpl,t considers the action sets of
all the POMDPs that are in tpl and performs no op on the
POMDPs that are not in tpl (Eq. 9). Given Def. 1 and Ass.
1, to compute V̂ ∗

P,t, the robot can take a maximum over U∗
tpl,t

where |tpl| = k, k ≥ k∗ for all possible tpl ∈ tpls.

V̂ ∗
P,t(b) = max

tpl∈tpls
U∗

tpl,t(b) (10)

Lemma 1 Eq. 11 provides a lower bound on the value of
the agent POMDP created from set P .

max
p∈P

(V ∗
p,t(bp) +

∑
q∈P\{p}

V τ
q,t(bq)) ≤ V̂ ∗

P,t(b) (11)

Proof: We compute U∗
{p},t (or U∗

p,t) by using Eq. 9 where
the robot only considers POMDP p for horizon H , tpl =
{p}, and performs no op on the other POMDPs over that
horizon. In Eq. 9, the maximum is taken over Ap, whereas
in Eq. 6, the maximum is taken over A. We know Ap ⊆
A as it follows from Eq. 7, thus U∗

p,t is a lower bound on
V̂ ∗
P,t, and Eq. 12 holds. We will show that U∗

p,t is in fact

V ∗
p,t(bp) +

∑
q∈P\{p}

V τ
q,t(bq).

∀p ∈ P : U∗
p,t(b) ≤ V̂ ∗

P,t(b) ⇒ (max
p∈P

U∗
p,t(b)) ≤ V̂ ∗

P,t(b) (12)

Using Eq. 5, we expand Eq. 9 as follows:

U∗
p,t(b) = max

a∈Ap

[∑
i∈P

∑
s∈Si

bi(s)Ri(s, a[i])

+ γ
∑

z1∈Z1

Pr(z1|b1, no op) . . .
∑

zN∈ZN

Pr(zN |bN , no op)

︸ ︷︷ ︸
does not include

∑
zp∈Zp∑

zp∈ZP

Pr(zp|bp, a[p])U∗
p,t−1(b

a
z)
]

(13)

The proof goes by mathematical induction. If H = 1 and
assuming that U∗

p,0(b) = 0, the following equation holds.

206

U∗
p,t(b) = max

a∈Ap

[∑
i∈P

∑
s∈Si

bi(s)Ri(s, a[i])
]
=

V τ
1,1(b1) + . . .+ V ∗

p,1(bp) + . . .+ V τ
N,1(bN)

If H = t − 1, we assume Eq. 14 where τ is a trajectory
consisting of only no ops, τ = no op[1..H], and show that
Eq. 14 also holds for H = t. Intuitively, Eq. 14 holds since
the reward is additive, the POMDPs are independent, and
the no op actions are executed in parallel while the robot
addresses POMDP p.

U∗
p,t−1(b) = V τ

1,t−1(b1) + . . .+ V ∗
p,t−1(bp) + . . .+ V τ

N,t−1(bN)

(14)

We substitute Eq. 14 in Eq. 13. Given Def. 1, for a specific
Zi, we can marginalize out the sum over Zjs (j �= i) to
obtain:

U∗
p,t(b) = V ∗

p,t(bp) + V τ
1,t(b1) + . . .+ V τ

N,t(bN)︸ ︷︷ ︸
does not include Vp

= V ∗
p,t(bp) +

∑
q∈P\{p}

V τ
q,t(bq)

(15)

Thus, Eq. 15 holds for every H = t.

Lemma 2 Under Ass. 1, the optimal value of the agent
POMDP created from the set P can be computed by Eq. 16.

V̂ ∗
P,t(b) = max

tpl∈tpls
U∗

tpl,t(b)

= max
tpl∈tpls

(V ∗
tpl,t(btpl) +

∑
q∈P\tpl

V τ
q,t(bq))

(16)

Proof: If we show Eq. 17 holds, under Ass. 1, Eq. 16 fol-
lows from Eq. 10 and Eq. 17.

U∗
tpl,t(b) = V ∗

tpl,t(btpl) +
∑

q∈P\tpl
V τ
q,t(bq) (17)

We consider an agent POMDP with the set of tasks tpl
and call it Ptpl. We then build a new set of client POMDPs
as follows: A = {Ptpl} ∪ {q|q ∈ P \ tpl}. Since all the
members of P follow Def. 1, the POMDPs in the set A also
follow Def. 1 and are independent; thus, Eq. 17 follows from
Eq. 15.

Lemma 3 For a given tpl, Eq. 18 provides an upper bound
on the value of U∗

tpl,t.

U∗
tpl,t(b) ≤ max

a∈Atpl

(
∑
p∈tpl

Q∗
p,t(bp, a[p])) +

∑
q∈P\tpl

V τ
q,t(bq) (18)

Proof: Substituting U∗
tpl from Eq. 17 in Eq. 18:

V ∗
tpl,t(btpl) ≤ max

a∈Atpl

(
∑
p∈tpl

Q∗
p,t(bp, a[p]]) (19)

Thus, we only need to show that Eq. 19 holds. We use Eq. 2
to compute the Q∗ of POMDP p and take a sum of the Q∗s
over all members of tpl:

∑
p∈tpl

Q∗
p,t(bp, a[p]) =

immediate reward (IR)︷ ︸︸ ︷∑
p∈tpl

∑
s∈Sp

bp(s)Rp(s, a[p])

+ γ
∑
p∈tpl

∑
z∈Zp

Pr(z|bp, a[p])V ∗
p,t−1(b

a[p]
p,z)

(20)

The immediate reward IR operand in Eq. 20 and Eq. 8 are
equal, so we only need to show the inequality for the second
operand. For time step t−1, if the robot could address all the
k tasks in parallel, we could compute an upper bound on the
value of V ∗

tpl,t−1(b
a
tpl,z) by summing over the optimal value

of each POMDP in tpl, (m,n, o, . . .) ∈ tpl, Eq. 21. This can
be proved using a similar induction procedure that we used
earlier.

V ∗
tpl,t−1(b

a
tpl,z) ≤ V ∗

m,t−1(b
a[m]
m,zm) + . . .+ V *

n,t−1(b
a[n]
n,zn)+

. . .+ V ∗
o,t−1(b

a[o]
o,zo) =

∑
q∈tpl

V ∗
q,t−1(b

a[q]
q,zq)

(21)

Substituting Eq. 21 in Eq. 8:

Q∗
tpl,t(btpl, a) ≤ IR+

∑
p∈tpl

∑
z∈Zp

Pr(z|bp, a[p])V ∗
p,t−1(b

a[p]
p,z)

=
∑
p∈tpl

Q∗
p,t(bp, a[p])

(22)

Thus, V ∗
tpl,t(btpl) ≤ maxa∈Atpl

∑
p∈tpl

Q∗
p,t(bp, a[p]).

Therefore, Alg. 2 computes an optimal solution for the
agent POMDP created from set P . The proof should follow
from Lemma 1, 2 and 3.

Experiments

We call our approach method-k, method-2 (A) or method-3
(F), as we evaluate it for different values for k (2 or 3). We
compare our method against the following baselines.

• Agent POMDP (B): We use the agent POMDP model
that we described in the approach section.

• N-samples-k (C,G): We use the approach by (Shani
2013) where they select N k-tuples from all possible com-
binations of k-tuples and solve them optimally. They iter-
ate over the set P ; for each task they randomly select k−1
additional tasks from set P . We refer to the N-samples-2
method as C and the N-samples-3 method as G.

207

• Hierarchical POMDP or HPOMDP (D): We represent
each task as a macro action; in total there are N macro ac-
tions for all the N tasks. We use the agent POMDP model
and replace its action set with the set of macro actions.
During planning when a macro action i, mi, gets selected,
the agent POMDP evolves according to the POMDP i’s
action set, while the other POMDPs evolve as no op has
been executed on them. Each macro action is atomic and
takes min(horizon,# time steps left till mi terminates)
time steps to get executed.
• Greedy (E): The robot solves each client POMDP

separately and selects an action according to
argmaxa∈A(

∑
p∈P Q∗

p(bp, a[p])). This approach
assumes that after the first action execution, for the
remaining horizon, the tasks can be executed at the same
time in parallel.

Restaurant Model

We run experiments in restaurant scenarios with 2 to 12 ta-
bles. The table’s model is described below where the value in
parenthesis shows the range of the variable. For simplicity,
we model only the satisfaction as an unobservable variable.
All other variables are observable.

• States S: S = {SR, SH, ST}.
– Robot’s state SR contains x and y (11× 11 grid).
– Human’s state SH contains satisfaction (6). The high-

est satisfaction is satmax = 5.
– Table’s state ST contains the following: food (4), wa-

ter (4), time since food or water has been served, cook-
ing status (3), time since food is ready, current request
(8), hand raise (2), and time since the hand has been
raised. The time related variables have timemax =
tables × satmax values which accounts for having
more time to service the customers when there are more
tables. When the food is ready to be served, the time
since request variable is equal to time since food is
ready, but when the food is not fully cooked time since
request = 0.

• Actions A: The full action space is the concatenation of
all actions A = {AN,AC,AS}.
– Navigation actions AN such as go to table i.
– Communication actions AC such as food is not ready.
– Service actions AS such as fill a water glass, serve

food, and get the bill. Depending on the table’s current
request, the appropriate service action gets executed.

• Transition function T : The outcome of executing an
action is deterministic for the observable variables and
stochastic for the satisfaction. Each table goes through a
consecutive sequence of 8 requests, such as wanting food
and wanting the bill. The time since request variable resets
to 0 when a table is served. The food and water variables
represent the table’s eating and drinking process and in-
crease after a couple of time steps until they reach their
maximum value. The satisfaction variable goes down by
one after timemax

satmax
time steps; if a customer is very sat-

isfied at the beginning and does not get served within

timemax, she becomes very unsatisfied. The actions in-
crease the time-related variables of the state by 1 except
the navigation actions which can take 1, 2, or 3 time steps
depending on where the robot is with respect to the tables.

• Reward function R: The reward function is as follows.
Servicing a table has a positive reward inversely propor-
tional to the table’s satisfaction (sat) to give higher pri-
ority to unsatisfied tables. If the table is unsatisfied and
waiting to be served, a negative reward is given.

time = min(time since request, 10)

R(s, serve) = 5 ∗ (satmax − sat′ + 1);R(s, go to) =
−dist
3

R(s, other actions) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2time sat′ = 0

−1.7time sat′ = 1

−1.4time sat′ = 2

1 sat′ = 3, 4, 5; sat′ > sat

0 otherwise

Given this model description, if horizon ≤ 4, the robot
can only address two tasks in its 4-step limited horizon, so
our algorithm computes an optimal solution if it considers
all the 2-tuples. If horizon = 5, the robot can address 3
tasks, so the algorithm should consider all the 3-tuples.

Simulation Setup

For each algorithm, we run 30 episodes each for 20 actions.
Each episode starts with a random initialization of the state
variables with its belief probability set to 1. The random ini-
tialization for each episode is the same across all algorithms.

Quantitative Results We compare our method in terms of
planning time and average reward against the baselines. For
each episode, we compute the average time that the plan-
ner takes to plan over 20 actions. The reward for each ac-
tion execution is the expected reward over the belief state
distribution r(b, a) =

∑
s∈S b(s)R(s, a). We report the av-

erage reward over 20 actions. To remove the variations that
results from the initial randomization, for each episode we
take the difference between the average reward of method-2
and other approaches.

Fig. 2 shows a comparison of the mean and standard de-
viation of the planning time for method-2 against the base-
lines. As the number of tables increase, the agent POMDP
approach has a higher positive slope than other approaches.
The planning time for different approaches mostly follow
B > A > C > D > E.

Fig. 3 shows the mean and standard deviation of the dif-
ference between the average reward of method-2 and that
of other approaches. We compare all the baselines against
a zero line which represents our approach. We proved ear-
lier that our approach is optimal, but an optimal action for
horizon H might not result in higher average return for an
episode because 1) an action that is optimal for a short hori-
zon might not be optimal for a longer horizon, and 2) dif-
ferent approaches have different tie-breaking strategies; i.e.,
actions with equal average returns for a short horizon would

208

Figure 2: Planning times for different horizons and number of tables. We could only run the agent POMDP for 30 episodes up
to a certain number of tables ≤ 6 (shown by the orange label on the x-axis). Beyond that we run the agent POMDP approach
for one episode and report the results in a table on each figure.

Figure 3: Difference between the average reward of our method and the other methods.

have different average returns for a longer horizon. This is
why for horizon 2 our approach performs exactly the same as
the agent POMDP approach, but other methods can perform
better. For the horizons other than 2, the average reward for
different approaches mostly follow B ≈ A > C.

We also compare the reward for each episode with the
same initialization across multiple algorithms. We report the
results in terms of the percentage of the episodes (out of
30) that the rewards are equal or one is better. For different
horizons, our approach’s reward is exactly the same as the
agent POMDP’s reward for 2,4,5, and 6 tables. For 3 tables
and horizons 3 and 6, the agent POMDP is better in 3% of
the episodes (one episode) because of having a different tie-
breaking strategy. For 5 tables and horizon 3, our approach
is better in 3% of the episodes.

Comparing the reward of method-2 against N-samples-2
for each episode, we observe that for 2 and 3 tables and
for different horizons, the rewards are exactly the same. For
horizon 2, if tables = 7, the rewards are exactly the same
in 87% of the episodes and N-samples-2 is better in 10% of
the episodes. For 11 tables, the rewards are exactly the same
in 77% of the episodes and our approach performs better in
13% of the episodes. For a longer horizon 3, if tables = 8,
the rewards of method-2 and N-samples-2 are exactly the
same 50% of the times and method-2 is better 27% of the
times. Thus, for horizon 2, our approach has a similar per-
formance as N-samples-2. Our algorithm mostly performs
better than N-samples-2 for horizons ≥ 3. For horizon 2,

our method does not benefit from considering 2-tuples, so
the HPOMDP approach provides similar average reward as
our algorithm. The HPOMDP approach performs better than
our approach when horizon is 2 and tables > 8 in 3% of the
episodes because of the tie-breaking strategy.

We run the algorithms on a simpler version of the restau-
rant that includes current request, hand raise, and time since
request as the table’s state ST , and has all the actions ex-
cept food is not ready yet and compare its performance with
different k values against other methods. As can be seen in
Fig. 5, given horizon 5, the planning time for different ap-
proaches mostly follow B > F > G > A > C. Comparing
method-2 and method-3, for horizon 5, if tables = 4, the
rewards are exactly the same. If tables = 6, 7, the rewards
are exactly the same in 67% of the cases and method-3 is
better in 23% of the episodes. If tables = 8, the rewards are
exactly the same in 77% of the cases and method-2 is better
in 13% of the cases. Both method-2 and method-3 perform
better that the other baselines.

In summary, we observe that our approach results in a
similar average reward compared to the agent POMDP ap-
proach while being significantly faster. Although our ap-
proach has a higher planning time compared to some of the
baselines, it has a higher average reward than them.

Qualitative Results Fig. 4 shows a sample output policy
for 5 tables. The leftmost figure shows the restaurant con-
figuration at time step 11 after Table 0 is served. Table 3

209

Figure 4: Example output policy for H = 4 and 5 tables. The histograms show the belief over satisfaction for different tables.
The leftmost bar is 0 (very unsatisfied) and the rightmost is 5 (very satisfied). The robot’s action is shown on top of each figure.
Each table’s request and the amount of time they have been waiting is shown above it.

Figure 5: Performance comparison between our approach
and other baselines when k = 2, 3. We run the algorithms
on a simpler version of the restaurant model.

has been waiting for 8 time steps and compared to others
is less satisfied, so the robot services it to increase the ta-
ble’s satisfaction. The robot then goes to Table 4 since it
soon becomes very unsatisfied. The robot then services Ta-
ble 1 as their food is ready before going to Table 2 to update
them that their food is not ready. The greedy approach se-
lects the no op action at time step 11 as it assumes that after
1 time step, it can service all tasks in parallel. Two consec-
utive go to actions appear frequently in the output policy of
the greedy approach, e.g., greedy selects go to T4 at time
step 12 instead of serving T3.

Discussion

Here, we provide a discussion on how much the effective-
ness of our approach depends on the parameters of the
model. In general if we apply the approach on a different
planning problem of similar complexity, the planning time
would still be similar to the planning time that we computed
for the restaurant model, and the optimality guarantees of
our approach would still hold. The HPOMDP, N-samples-
k, and greedy approaches do not have any optimality guar-
antees. On a different application domain which requires
switching among the tasks, we expect our method to per-
form better in terms of average reward than the HPOMDP
approach since the HPOMDP approach does not consider
switching between the tasks in each planning step. We also

expect our approach to perform better than N-samples-k
since N-samples-k samples from the subset of tasks whereas
our method finds an optimal solution by computing upper
and lower optimal value bounds for subsets of tasks to prune
the subsets.

The parameters of the reward function does not affect
our approach’s planning time and the optimality of our ap-
proach. However, the parameters will change the output pol-
icy of the robot, and how much better our approach is com-
pared to the other baseline approaches. For example, if the
negative reward for going from one table to another table
is high, the robot would prefer to stay as much as it can at
the current table, even if the other tables are very unsatis-
fied. This way of defining the reward function would make
our approach just a bit better than the HPOMDP approach in
terms of the average reward. The parameters are engineered
such that we can get a sensible and interesting output policy
as shown in Fig. 4 where the robot switches among multiple
tables instead of just servicing one table mostly.

The greedy approach sometimes outperforms the
HPOMDP approach since the domain requires the robot to
switch between the tables to keep the customers satisfied.
The HPOMDP approach assumes that only one table can
be serviced in the given horizon. When this assumption is
valid, for example for horizon 2, the HPOMDP approach
performs much better than the greedy approach. For longer
horizons (and more tables), this assumption becomes less
valid and the HPOMDP approach performs poorly. The
greedy approach does not provide an accurate estimate, but
can consider more than one task in the short horizon since it
assumes that the tasks can be executed at the same time in
parallel after the first action execution.

Conclusion

We proposed an algorithm to speed up POMDP planning
for domains where a robot is required to accomplish a set of
tasks that are partially observable and evolve independently
of each other. We exploited the observation that the number
of tasks that the robot can accomplish within a short horizon
is limited and presented an algorithm that leverages the solu-
tions to much smaller POMDP models to optimally solve the
combined model with all the tasks. We proved the optimality
of our approach and evaluated it on a restaurant setting.

210

Acknowledgments

This work was partially supported by Sony AI. The views
contained in this document are those of the authors only.

References

Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1997. Algebric de-
cision diagrams and their applications. Formal methods in
system design.
Boutilier, C., and Poole, D. 1996. Computing optimal poli-
cies for partially observable decision processes using com-
pact representations. In AAAI.
Cassandra, A. R. 1998. A survey of pomdp applications. In
AAAI fall symposium on planning with partially observable
Markov decision processes.
Deo, S.; Iravani, S.; Jiang, T.; Smilowitz, K.; and Samuel-
son, S. 2013. Improving health outcomes through better ca-
pacity allocation in a community-based chronic care model.
Operations Research.
Foka, A., and Trahanias, P. 2007. Real-time hierarchical
pomdps for autonomous robot navigation. Robotics and Au-
tonomous Systems.
Glazebrook, K. D.; Ruiz-Hernandez, D.; and Kirkbride, C.
2006. Some indexable families of restless bandit problems.
Advances in Applied Probability.
Hansen, E. A., and Zhou, R. 2003. Synthesis of hierarchical
finite-state controllers for pomdps. In ICAPS.
Li, X.; Cheung, W. K.; and Liu, J. 2009. Improving pomdp
tractability via belief compression and clustering. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics).
Liu, K., and Zhao, Q. 2010. Indexability of restless bandit
problems and optimality of whittle index for dynamic multi-
channel access. IEEE Transactions on Information Theory.
Pineau, J.; Gordon, G.; Thrun, S.; et al. 2003. Point-based
value iteration: An anytime algorithm for pomdps. In IJCAI.
Poupart, P., and Boutilier, C. 2003. Value-directed compres-
sion of pomdps. In NeurIPS.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-Draa, B. 2008.
Online planning algorithms for pomdps. JAIR.
Roy, N.; Gordon, G.; and Thrun, S. 2005. Finding approxi-
mate pomdp solutions through belief compression. JAIR.
Shani, G.; Poupart, P.; Brafman, R. I.; and Shimony, S. E.
2008. Efficient add operations for point-based algorithms.
In ICAPS.
Shani, G.; Pineau, J.; and Kaplow, R. 2013. A survey of
point-based pomdp solvers. AAMAS.
Shani, G. 2013. Task-based decomposition of factored
pomdps. IEEE transactions on cybernetics.
Smith, T.; Thompson, D. R.; and Wettergreen, D. 2007.
Generating exponentially smaller pomdp models using con-
ditionally irrelevant variable abstraction. In ICAPS.
Theocharous, G., and Kaelbling, L. P. 2004. Approximate
planning in pomdps with macro-actions. In NeurIPS.

Weber, R. R., and Weiss, G. 1990. On an index policy for
restless bandits. Journal of Applied Probability (JAP).
Whittle, P. 1988. Restless bandits: Activity allocation in a
changing world. JAP.
Wray, K. H., and Zilberstein, S. 2017. Approximating reach-
able belief points in pomdps. In IROS.

211

