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Abstract

Many interesting search problems can be formulated as bi-
objective search problems, that is, search problems where
two kinds of costs have to be minimized, for example, travel
distance and time for transportation problems. Bi-objective
search algorithms have to maintain the set of undominated
paths from the start state to each state to compute the set of
paths from the start state to the goal state that are not domi-
nated by some other path from the start state to the goal state
(called the Pareto-optimal solution set). Each time they find
a new path to a state s, they perform a dominance check to
determine whether this path dominates any of the previously
found paths to s or whether any of the previously found paths
to s dominates this path. Existing algorithms do not perform
these checks efficiently. On the other hand, our Bi-Objective
A* (BOA*) algorithm requires only constant time per check.
In our experimental evaluation, we show that BOA* can run
an order of magnitude (or more) faster than state-of-the-art bi-
objective search algorithms, such as NAMOA*, NAMOA*dr,
Bi-Objective Dijkstra, and Bidirectional Bi-Objective Dijk-
stra.

Introduction

The A* algorithm (Hart, Nilsson, and Raphael 1968) is at
the core of many heuristic search algorithms developed to
solve shortest path problems due to its strong theoretical
properties, especially when used in conjunction with con-
sistent heuristic functions. In such problems, one has to find
a path from a given start state to a given goal state that mini-
mizes the path cost. However, there are often multiple kinds
of path costs in real life. For example, government agencies
that transport hazardous material need to find routes that do
not only minimize the travel distance but also the risk of ex-
posure for residents (Bronfman et al. 2015). Motivated by
such applications, researchers have extended A* to solve
multi-objective shortest path problems where one wants to
find the set of Pareto-optimal paths from the start state to
the goal state, that is, the optimal paths on the Pareto fron-
tier. Two such state-of-the-art A* extensions are the Multi-
Objective A* (MOA*) (Stewart and White III 1991) and New
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Approach for MOA* (NAMOA*) (Mandow and Pérez-de-la-
Cruz 2010) algorithms.

These best-first multi-objective search algorithms differ
from A* in various ways. The most relevant difference in
the context of this paper is that the concept of optimality
is now related to dominance since the set of Pareto-optimal
paths is the set of paths that are not dominated by any path,
where path p dominates path p′ iff each kind of path cost
of p is no larger than the corresponding kind of path cost
of p′ and at least one kind of path cost of p is smaller than
the corresponding kind of path cost of p′. Since dominance
checks are repeatedly performed throughout the execution
of these algorithms, the time complexity of the checks plays
a crucial role for their efficiency. For example, upon gener-
ating any node, they need to check if the newly found path
to some state s is dominated by a previously found path to s
and, if so, discard the newly found path. They also need to
check whether a previously found path to s is dominated by
the newly found path to s and, if so, discard the previously
found path.

NAMOA* is inefficient at performing these checks.
Pulido, Mandow, and Pérez-de-la-Cruz (2015) proposed an
improvement, called NAMOA*dr. NAMOA*dr significantly
improves the time complexity of some of the checks to con-
stant time, but the time complexity of other checks remains
linear in the size of the Open list and the number of paths
found to a given state.

In this paper, we address these limitations. Our Bi-
Objective A* (BOA*) algorithm prunes dominated paths
more efficiently by exploiting that there are only two kinds
of path costs and that the heuristic function is consistent. It
performs all dominance checks in constant time, which we
achieve by making some of the eager checks more efficient
and converting the remaining eager check into a number of
lazy checks, each of which can be performed in constant
time. This improvement results in a significant speedup, es-
pecially for large instances.

Our extensive experimental results on road maps show
that BOA* can run an order of magnitude (or more) faster
than NAMOA*, NAMOA*dr, Bi-Objective Dijkstra, and
Bidirectional Bi-Objective Dijkstra, especially for large in-
stances. We conclude the paper by discussing how one might
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be able to improve and extend BOA*, including how to
speed it up, find representative solutions on the Pareto fron-
tier, find bounded-suboptimal solutions, and generalize it to
problems with more than two kinds of path costs.

Notation and Terminology

A bi-objective search graph is a tuple (S,E, c), where S
is the finite set of states, E ⊆ S × S is the finite set of
edges, and c : E → R

≥0 × R
≥0 is a cost function that

associates a pair of non-negative real costs with each edge.
Succ(s) = {t ∈ S | (s, t) ∈ E) denotes the successors of
state s.

A bi-objective search problem instance is a tuple P =
(S,E, c, sstart , sgoal), where (S,E, c) is a search graph,
sstart ∈ S is the start state, and sgoal ∈ S is the goal state.1
A path from s1 to sn is a sequence of states s1, s2, . . . , sn
such that (si, si+1) ∈ E for all i ∈ {1, . . . , n − 1}. Unless
mentioned otherwise, s1 = sstart . A path is a solution for
instance P iff it is a path (from sstart ) to sgoal .

Boldface font indicates pairs. p1 denotes the first compo-
nent of pair p, and p2 denotes its second component; that is,
p = (p1, p2). The addition of two pairs p and q and the mul-
tiplication of a real-valued scalar k and a pair p are defined
in the natural way, namely as p+q = (p1+q1, p2+q2) and
kp = (kp1, kp2), respectively. p ≺ q denotes that (p1 < q1
and p2 ≤ q2) or (p1 = q1 and p2 < q2). In this case, we
say that p dominates q. p ≤ q denotes that p1 ≤ q1 and
p2 ≤ q2. In this case, we say that p weakly dominates q.
P ≺ q (resp. P ≤ q) for a set P of pairs denotes that there
exists a p ∈ P such that p ≺ q (resp. p ≤ q).
c(π) =

∑n−1
i=1 c(si, si+1) is the cost of path π =

s1, . . . , sn. π ≺ π′ (resp. π ≤ π′) for two paths π and π′
denotes that c(π) ≺ c(π′) (resp. c(π) ≤ c(π′)). In this
case, we say that π dominates (resp. weakly dominates) π′.

Given an instance P , a Pareto-optimal solution π for P is
a solution for P such that π′ �≺ π for all solutions π′ for P ,
that is, a Pareto-optimal solution is one that is not dominated
by any solution. The Pareto-optimal solution set is the set of
all Pareto-optimal solutions. We are interested in finding any
maximal subset of the Pareto-optimal solution set such that
any two solutions in the subset do not have the same cost
and refer to this subset as the cost-unique Pareto-optimal
solution set.

A heuristic function h : S → R
≥0 ×R

≥0 is such that the
h-value h(s) estimates the cost of a path from state s to the
goal state. h is admissible iff h(s) ≤ c(π) for all states s and
all paths π from s to the goal state, that is, both components
of h are admissible for the corresponding components of the
cost function. Similarly, h is consistent iff (1) h(sgoal) =
(0, 0) and (2) h(s) ≤ c(s, t) + h(t) for all (s, t) ∈ E. We
assume that the reader is familiar with the properties of A*
when used with a consistent heuristic function, for example,
that the sequence of expanded nodes has monotonically non-
decreasing f -values.

1We use a single goal state for simplicity since any search prob-
lem instance with multiple goal states can be transformed into one
with a single goal state.

Best-First Bi-Objective Search

In this section, we describe how a Pareto-optimal solution
set can be computed using best-first search.

Open List: We can compute the Pareto-optimal solution
set with a modified version of A* that maintains an Open
list, containing the frontier of the search tree (that is, the
generated but not yet expanded nodes), and, optionally, a
Closed list, containing the interior of the search tree (that
is, the expanded nodes). A node is associated with a state,
a g-value, an h-value, and an f -value and corresponds to a
path to the state of a cost that is equal to the g-value. Differ-
ent from A*, the g-, h-, and f -values are tuples rather than
scalars. Also different from A*, the Open list might contain
different nodes with the same state, corresponding to differ-
ent paths to the same state, since we need to compute the
Pareto-optimal solution set rather than a single solution.

Node Selection: The algorithm repeatedly extracts a node
from the Open list. To guarantee optimality, the f -value of
the extracted node must not be dominated by the f-value of
any node in the Open list.

Solution Recording: When the algorithm extracts a node
with the goal state, the path corresponding to the node is a
solution. Different from A*, the algorithm cannot terminate
and return this solution since it has to compute the Pareto-
optimal solution set. Thus, it checks whether this solution is
dominated by a previously found solution. If not, then it adds
this solution to the solution set and removes all solutions
from the solution set that are dominated by this solution. In
both cases, it continues the search.

Node Expansion: When the algorithm extracts a node
with a non-goal state, it expands the extracted node. Let the
extracted node have state s. The algorithm then generates
the child nodes of the extracted node, one for each successor
t of s, by adding them to the Open list. It terminates when
the Open list is empty and returns the solution set.

Efficiency: We can improve the efficiency of the algo-
rithm by performing the dominance checks not once it has
found a solution but earlier. In particular, we do not need
to generate a child node with state t of an extracted node
if the f -value of the child node (which is a lower bound
on the costs of all solutions that complete the path that the
child node corresponds to) is dominated by the f -value (that
is, cost) of a solution in the solution set or by the f -value
of a node with state t that has already been generated (cor-
responding to a path to t that has already been found). In
addition, we can remove all paths to t from the Open list
whose f -values are dominated by the f -value of the newly
found path to t. If t is the goal state, we also have to re-
move all solutions from the solution set whose f -values (that
is, costs) are dominated by the f -value (that is, cost) of the
newly found solution.

The NAMOA* Algorithm

NAMOA* (Mandow and Pérez-de-la-Cruz 2010) is a best-
first multi-objective search algorithm that provides the foun-
dation for most multi-objective search algorithms. Algo-

144



rithm 1 shows its pseudocode for bi-objective search prob-
lems. It takes as input a bi-objective search problem and
a consistent heuristic function and computes the Pareto-
optimal solution set. We describe its key elements in the fol-
lowing.

Variables: Each node in the Open list is a triple of the
form (s,gs, fs) with state s, g-value gs, and f-value fs and
corresponds to a path to s of cost gs. In addition, NAMOA*
maintains parents. Different from A*, a parent is a set of g-
values of some of the predecessors of s (rather than a single
predecessor) and is associated with g-value gs (rather than
state s). Also different from A*, NAMOA* also maintains
two sets of g-values for state s, namely Gcl(s), which con-
tains the g-values of all expanded nodes with state s, and
Gop(s), which contains the g-values of all generated but not
yet expanded nodes with state s.

Node Selection: NAMOA* always extracts a node from
the Open list whose f -value is not dominated by the f-value
of any node in the Open list. Such a node can be identi-
fied efficiently for bi-objective search problems as a node
in the Open list with the lexicographically smallest f -value
(f1, f2) of all nodes in the Open list (Line 8). To see why
this is correct, let (f ′

1, f
′
2) be the f -value of any node in the

Open list. Then, either (1) f1 = f ′
1 and f2 ≤ f ′

2 or (2)
f1 < f ′

1. In both cases, (f ′
1, f

′
2) �≺ (f1, f2); that is, (f1, f2)

is not dominated by the f -value of any node in the Open list.
Consequently, the nodes in the Open list should be ordered
in increasing lexicographic order of their f -values.

Solution Recording: When NAMOA* extracts a node
with the goal state, it has found an undominated solution. In
this case, it adds the g-value of the node to the solution set
and removes all nodes from the Open list whose f -values
are dominated by the f -value of the node (Lines 10-13).

Node Expansion: When NAMOA* extracts a node with
a non-goal state, it expands the extracted node (s,gs, fs) by
calculating its child nodes (t,gt, ft), one for each successor
t of state s. If it has generated a node with state t and g-
value gt before, then it adds gs to the parent set parent(gt)
(Lines 16-18) (which corresponds to recording another path
to t of cost gt and is necessary since NAMOA* computes the
Pareto-optimal solution set rather than a single solution). In
this case, it does not add the child node to the Open list. Nei-
ther does it add the child node to the Open list if gt is dom-
inated by the g-value of a generated node with state t (Lines
19-20) (which corresponds to pruning the newly found path
to t since it is dominated by another path to t that has al-
ready been found). Neither does it add the child node to the
Open list if the f -value ft is dominated by the f -value (that
is, g-value and cost) of a solution in the solution set (Lines
22-23) (which corresponds to pruning the newly found path
to t since it is dominated by a solution that has already been
found). Otherwise, it generates the child node by adding it
to the Open list, adding gt to Gop(t), making gs the only
g-value in the parent set parent(gt) (which corresponds to
recording the first path to t of cost gt), and removing all ref-
erences to paths to t from the Open list, Gop(t), and Gcl(t)

Algorithm 1: NAMOA*
Input : A search problem (S,E, c, sstart , sgoal) and a

consistent heuristic function h
Output: The Pareto-optimal solution set

1 sols← ∅
2 for each s ∈ S do
3 Gop(s)← ∅; Gcl(s)← ∅
4 Gop(s)← {(0, 0)}
5 parent((0, 0))← ∅
6 Initialize Open and add (sstart , (0, 0),h(sstart)) to it
7 while Open �= ∅ do
8 Remove a node (s,gs, fs) from Open with the

lexicographically smallest f -value of all nodes in
Open

9 Remove gs from Gop(s) and add it to Gcl(s)
10 if s = sgoal then
11 Add gs to sols
12 Remove all nodes (u,gu, fu) with fs ≺ fu from

Open
13 continue

14 for each t ∈ Succ(s) do
15 gt ← gs + c(s, t)
16 if gt ∈ Gop(t) ∪Gcl(t) then
17 Add gs to parent(gt)
18 continue

19 if Gop(t) ∪Gcl(t) ≺ gt then
20 continue

21 ft ← gt + h(t)
22 if sols ≺ ft then
23 continue

24 Remove all g-values g′
t from Gop(t) that are

dominated by gt and remove their
corresponding nodes (t,g′

t, f
′
t) from Open

25 Remove all g-values from Gcl(t) that are
dominated by gt

26 parent(gt)← {gs}
27 Add gt to Gop(t)
28 Add (t,gt, ft) to Open

29 return sols

that are dominated by the newly found path to t (Lines 24-
28). It terminates when the Open list is empty and returns
the solution set (Line 29).

The NAMOA*dr Algorithm

Some of the operations of NAMOA* are time-consuming
since they perform dominance checks that involve either the
f -values (Lines 12 and 22) or g-values (Lines 24-25) and
require it to iterate over a number of elements proportional
to |Gop(t)|, |Gcl(t)|, |Open|, or |sols|. Pulido, Mandow,
and Pérez-de-la-Cruz (2015) (in short: PMP) improved
NAMOA* to NAMOA*dr by proving that, if NAMOA*
(A1) uses a consistent heuristic function and (A2) always
extracts a node with the lexicographically smallest f -value
of all nodes in the Open list, then the following theorem
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holds for bi-objective search problems:

Theorem 1 (Pulido, Mandow, and Pérez-de-la-Cruz
2015)Assume that A1 and A2 hold and let (s,g, f) be a
newly extracted node. Then, Gcl(t) ≺ gt (Line 19) and
sols ≺ ft (Line 22) can be decided in constant time for
bi-objective search problems.

More specifically, checking whether Gcl(t) ≺ gt can be
done as follows: Gcl(t) ≺ (g1, g2) iff gmin < g2, where
gmin is the minimum of the g2-values in Gcl(t). Checking
whether sols ≺ ft can be done analogously. NAMOA*dr
uses these insights to implement Lines 19 and 22 in constant
time, except that Line 19 still needs to iterate over a num-
ber of g-values proportional to |Gop(t)| to check whether
Gop(t) ≺ gt.

Our Bi-Objective A* (BOA*) Algorithm

The improvements to NAMOA* proposed by PMP remove
some, but not all, of its most time-consuming operations
since it still iterates over a number of nodes proportional
to |Open| on Line 12, a number of g-values proportional to
|Gop(t)| on Lines 19 and 24, and a number of g-values pro-
portional to |Gcl(t)| on Line 25. In this section, we therefore
describe our Bi-Objective A* (BOA*) algorithm, a best-first
bi-objective search algorithm. Our primary design objective
is to perform all dominance checks in constant time. We
use Theorem 1 and additional insights (1) to avoid having
to maintain the sets Gop(s) and Gcl(s) for all states s and
thus not having to perform any of the eager checks on Lines
24-25 to remove g-values from these sets and (2) to make the
eager check on Line 19 more efficient by maintaining a value
gmin
2 (s) for each state s, which is the smallest g2-value of

any expanded node with state s. The remaining eager checks
on Lines 12 and 24 remove nodes from the Open list. We
convert these checks into a number of lazy checks, each of
which can be performed in constant time, by not removing
these nodes from the Open list (which is time-consuming
but might result in fewer heap percolations) but by perform-
ing the checks when nodes get extracted from the Open list
and then not expanding these nodes. A secondary design ob-
jective is to make the presentation of BOA* similar to that of
modern descriptions of A*, such as those in (Edelkamp and
Schrödl 2011), thereby making it potentially easier to under-
stand and implement. Another secondary design objective is
to compute the cost-unique Pareto-optimal set rather than
the Pareto-optimal set since it is sufficient for our purposes
to compute one representative solution for all cost-identical
and thus equally good solutions.

The Open list of BOA* contains nodes, which are akin to
the labels commonly used in the operations research litera-
ture (Raith and Ehrgott 2009). Each node x has a state s(x),
a g-value g(x), an f -value f(x), and a parent parent(x) and
corresponds to a path to s(x) of cost g(x). The parent is a
single node.

Algorithm 2 shows the pseudocode of BOA*. It takes as
input a bi-objective search problem and a consistent heuris-
tic function and computes the cost-unique Pareto-optimal
solution set. In each iteration, it extracts a node x from the

Algorithm 2: Bi-Objective A* (BOA*)
Input : A search problem (S,E, c, sstart , sgoal) and a

consistent heuristic function h
Output: A cost-unique Pareto-optimal solution set

1 sols← ∅
2 for each s ∈ S do

3 gmin
2 (s)←∞

4 x← new node with s(x) = sstart
5 g(x)← (0, 0)
6 parent(x)← null
7 f(x)← (h1(sstart), h2(sstart))
8 Initialize Open and add x to it
9 while Open �= ∅ do

10 Remove a node x from Open with the
lexicographically smallest f -value of all nodes in
Open

11 if g2(x) ≥ gmin
2 (s(x)) ∨ f2(x) ≥ gmin

2 (sgoal) then
12 continue

13 gmin
2 (s(x))← g2(x)

14 if s(x) = sgoal then
15 Add x to sols
16 continue

17 for each t ∈ Succ(s(x)) do
18 y ← new node with s(y) = t
19 g(y)← g(x) + c(s(x), t)
20 parent(y)← x
21 f(y)← g(y) + h(t)

22 if g2(y) ≥ gmin
2 (t) ∨ f2(y) ≥ gmin

2 (sgoal) then
23 continue

24 Add y to Open

25 return sols

Open list with the lexicographically smallest f -value of all
nodes in the Open list (Line 10). It does not expand the node
if its g2-value is at least gmin

2 (s(x)) or its f2-value is at least
gmin
2 (sgoal) (Lines 11-12). Otherwise, it updates gmin

2 (s(x))
(Line 13) and expands the node. If s(x) is the goal state, then
BOA* has found an undominated solution and adds node x
to the solution set sols (Lines 14-16). Otherwise, it calcu-
lates the child nodes of node x (Lines 18-21). It does not
add a child node y to the Open list if its g2-value is at least
gmin
2 (s(y)) or its f2-value is at least gmin

2 (sgoal) (Lines 22-
23). Otherwise, it generates the child node by adding it to
the Open list (Line 24). It terminates when the Open list is
empty and returns the solution set (Line 25).

Figure 1 shows a small example of the operation of
BOA*. We use the perfect distances as h-values, which can
be computed with Dijkstra’s algorithm. Table 1 shows a
trace of the Open list and changes to gmin

2 in each iteration
of BOA*. In the table and the text below, the triple (s,g, f)
refers to a node with state s, g-value g, and f -value f .

• In Iteration 1, the node (sstart , (0, 0), (3, 6)) is expanded,
and its three child nodes with states s1, s2, and s3 are
added to the Open list.
• In Iteration 2, node (s2, (1, 5), (3, 9)) is expanded, and its
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Figure 1: Example search graph. The pair of numbers inside
each state is its h-value.

child node with state sgoal is added to the Open list.
• In Iteration 3, node (sgoal , (3, 9), (3, 9)) is expanded, and

the first undominated solution is found.
• In Iteration 4, node (s1, (1, 1), (4, 6)) is expanded, and its

two child nodes with states s2 and sgoal are added to the
Open list.

• In Iteration 5, node (s2, (2, 3), (4, 7)) is expanded, and its
child node with state sgoal is added to the Open list.

• In Iteration 6, node (sgoal , (4, 7), (4, 7)) is expanded, and
the second undominated solution is found.
• In Iteration 7, node (s3, (1, 1), (5, 6)) is expanded, and its

child node with state s2 is added to the Open list. Its child
node (sgoal , (6, 8), (6, 8)) is not added to the Open list
because f2(sgoal) = 8 ≥ 7 = gmin

2 (sgoal).
• In Iteration 8, node (s2, (3, 2), (5, 6)) is expanded, and its

child node with state sgoal is added to the Open list.
• In Iteration 9, node (sgoal , (5, 6), (5, 6)) is expanded, and

the third undominated solution is found.
• In Iteration 10, node (sgoal , (8, 6), (8, 6)) is extracted but

not expanded because f2(sgoal) = 6 ≥ 6 = gmin
2 (sgoal).

• Finally, in Iteration 11, the Open list is empty, and BOA*
returns the three undominated solutions found.

Theoretical Results for BOA*

We assume that heuristic function h is consistent. We say
that a node x1 dominates (resp. weakly dominates) a node
x2 iff the g-value of node x1 dominates (resp. weakly dom-
inates) the g-value of node x2.

Lemma 1 Each generated (or about to be generated but
pruned) node x has f1- and f2-values that are no smaller
than the f1- and f2-values, respectively, of its parent node
p.

Proof Sketch: Since the h-values are consistent,
c1(s(p), s(x)) + h1(s(x)) ≥ h1(s(p)). Therefore, we
get:

f1(x) = g1(x) + h1(s(x))

= g1(p) + c1(s(p), s(x)) + h1(s(x))

≥ g1(p) + h1(s(p))

Iteration Open list Update of
((s(x), g(x), f(x))) gmin

2 (s(x))

1 (sstart , (0, 0), (3, 6))← gmin
2 (sstart) = 0

2
(s1, (1, 1), (4, 6))

gmin
2 (s2) = 5(s2, (1, 5), (3, 9))←

(s3, (1, 1), (5, 6))

3
(s1, (1, 1), (4, 6))

gmin
2 (sgoal) = 9(s3, (1, 1), (5, 6))

(sgoal , (3, 9), (3, 9))←
4 (s1, (1, 1), (4, 6))← gmin

2 (s1) = 1
(s3, (1, 1), (5, 6))

5
(s3(1, 1), (5, 6))

gmin
2 (s2) = 3(sgoal , (8, 6), (8, 6))

(s2, (2, 3), (4, 7))←

6
(s3, (1, 1), (5, 6))

gmin
2 (sgoal) = 7(sgoal , (4, 7), (4, 7))←

(sgoal , (8, 6), (8, 6))

7 (s3, (1, 1), (5, 6))← gmin
2 (s3) = 1

(sgoal , (8, 6), (8, 6))

8 (s2, (3, 2), (5, 6))← gmin
2 (s2) = 2

(sgoal , (8, 6), (8, 6))

9 (sgoal , (5, 6), (5, 6))← gmin
2 (sgoal) = 6

(sgoal , (8, 6), (8, 6))
10 (sgoal , (8, 6), (8, 6))←
11 empty

Table 1: Trace of the Open list and gmin
2 (s(x)) in each iter-

ation of BOA*. ← marks the node that is extracted in that
iteration.

= f1(p)

The same proof strategy yields f2(x) ≥ f2(p). �
Lemma 2 The sequences of extracted nodes and of ex-
panded nodes have monotonically non-decreasing f1-
values.

Proof Sketch: BOA* extracts the node from the Open list
with the lexicographically smallest f -value of all nodes in
the Open list (Line 10). This node has the smallest f1-value
of all nodes in the Open list. Since generated nodes that are
added to the Open list have f1-values that are no smaller
than those of their expanded parent nodes (Lemma 1),
the sequence of extracted nodes has monotonically non-
decreasing f1-values. Since nodes are expanded in the same
order in which they are extracted, the sequence of expanded
nodes also has monotonically non-decreasing f1-values. �
Lemma 3 The sequence of expanded nodes with the same
state has strictly monotonically decreasing f2-values.

Proof Sketch: Assume for a proof by contradiction that
BOA* expands node x1 with state s before node x2 with
state s, that it expands no node with state s after node
x1 and before node x2, and that f2(x1) ≤ f2(x2). Then,
g2(x1) + h2(s) = f2(x1) ≤ f2(x2) = g2(x2) + h2(s).
Thus, g2(x1) ≤ g2(x2). After node x1 is expanded and be-
fore node x2 is expanded, gmin

2 (s) = g2(x1) (Line 13). Com-
bining both (in)equalities yields gmin

2 (s) ≤ g2(x2), which is
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the first pruning condition on Line 11. Therefore, node x2 is
not expanded, which contradicts the assumption. �
Lemma 4 The sequence of expanded nodes with the same
state has strictly monotonically increasing f1-values.

Proof Sketch: Since the sequence of expanded nodes has
monotonically non-decreasing f1-values (Lemma 2), the
sequence of expanded nodes with the same state also
has monotonically non-decreasing f1-values. Assume for a
proof by contradiction that BOA* expands node x1 with
state s before node x2 with state s, that it expands no node
with state s after node x1 and before node x2, and that
f1(x1) = f1(x2). We distinguish two cases:
• Node x2 is in the Open list when BOA* expands node x1:

When BOA* expands node x1, node x1 has the lexico-
graphically smallest f -value of all nodes in the Open list.
Since f1(x1) = f1(x2), it follows that f2(x1) ≤ f2(x2),
which contradicts Lemma 3.
• Node x2 is not in the Open list when BOA* expands

node x1: BOA* thus generates node x2 after it expands
node x1. Thus, there is a node x3 in the Open list
when BOA* expands node x1 that is expanded after node
x1 (or is equal to it) and before node x2 and becomes
an ancestor node of node x2 in the search tree. Since
the sequence of expanded nodes has monotonically non-
decreasing f1-values (Lemma 2) and f1(x1) = f1(x2),
f1(x1) = f1(x3) = f1(x2). When BOA* expands node
x1, node x1 has the lexicographically smallest f -value of
all nodes in the Open list. Since f1(x1) = f1(x3), it fol-
lows that f2(x1) ≤ f2(x3). Since each node has an f2-
value that is no smaller than the f2-values of its ances-
tor nodes (Lemma 1), f2(x3) ≤ f2(x2). Combining both
inequalities yields f2(x1) ≤ f2(x2), which contradicts
Lemma 3. �

Lemma 5 Expanded nodes with the same state do not
weakly dominate each other.

Proof Sketch: Assume that BOA* expands node x1 with
state s before node x2 with state s. Since the sequence of ex-
panded nodes with the same state has strictly monotonically
decreasing f2-values (Lemma 3), f2(x1) > f2(x2). It fol-
lows that g2(x1)+h(s) = f2(x1) > f2(x2) = g2(x2)+h(s)
and thus g2(x1) > g2(x2). Since the sequence has strictly
monotonically increasing f1-values (Lemma 4), the same
reasoning yields g1(x1) < g1(x2). According to the two
inequalities, nodes x1 and x2 do not weakly dominate each
other. �
Lemma 6 If node x1 with state s is weakly dominated by
node x2 with state s, then each node with the goal state in
the subtree of the search tree rooted at node x1 is weakly
dominated by a node with the goal state in the subtree rooted
at node x2.

Proof Sketch: Since node x1 is weakly dominated by node
x2, g1(x2) ≤ g1(x1). Assume that node x3 is a node with
the goal state in the subtree of the search tree rooted at node
x1. Let the sequence of states of the nodes along a branch of
the search tree from the root node to node x1 be s1, . . . , si
(with s1 = sstart and si = s), the sequence of states of the

nodes along a branch of the search tree from the root node
to node x2 be s′1, . . . , s

′
j (with s′1 = sstart and s′j = s),

and the sequence of states of the nodes along a branch of
the search tree from node x1 to node x3 be π = si, . . . , sk
(with sk = sgoal ). Then, there is a node x4 with the goal
state in the subtree rooted at node x2 such that the sequence
of states of the nodes along a branch of the search tree from
the root node to node x4 is s′1, . . . , s

′
j , si+1, . . . , sk. Since

g1(x2) ≤ g1(x1), it follows that g1(x4) = g1(x2)+c1(π) ≤
g1(x1) + c1(π) = g1(x3) and thus g1(x4) ≤ g1(x3). The
same proof strategy yields g2(x4) ≤ g2(x3). Combining
both inequalities yields that node x3 is weakly dominated
by node x4. �
Lemma 7 When BOA* prunes a node x1 with state s (on
Line 11 or 22) and this prevents it in the future from adding
a node x2 (with the goal state) to the solution set (on Line
15), then it can still add in the future a node (with the goal
state) that weakly dominates node x2 (on Line 15).

Proof Sketch: We prove the statement by induction on the
number of pruned nodes so far, including node x1. If the
number of pruned nodes is zero, then the lemma trivially
holds. Now assume that the number of pruned nodes is n+1
and the lemma holds for n ≥ 0. We distinguish three cases:
• BOA* prunes node x1 on Line 11 because of the (first)

pruning condition g2(x1) ≥ gmin
2 (s). Then, BOA* has

expanded a node x4 with state s previously such that
gmin
2 (s) = g2(x4) since otherwise gmin

2 (s) = ∞ and
the pruning condition could not hold. Combining both
(in)equalities yields g2(x1) ≥ g2(x4). Since f1(x1) ≥
f1(x4) (Lemma 2), g1(x1) + h(s) = f1(x1) ≥ f1(x4) =
g1(x4)+h(s) and thus g1(x1) ≥ g1(x4). Combining both
inequalities yields that node x1 is weakly dominated by
node x4 and thus each node with the goal state in the
subtree rooted at node x1, including node x2, is weakly
dominated by a node x5 with the goal state in the subtree
rooted at node x4 (Lemma 6). In case BOA* has pruned
a node that prevents it in the future from adding node x5

to the solution set, then it can still add in the future a node
(with the goal state) that weakly dominates node x5 and
thus also node x2 (induction assumption).

• BOA* prunes node x1 on Line 11 because of the (second)
pruning condition f2(x1) ≥ gmin

2 (sgoal). Then, BOA* has
expanded a node x4 with the goal state previously such
that gmin

2 (sgoal) = g2(x4) since otherwise gmin
2 (sgoal) =

∞ and the pruning condition could not hold. Combining
both (in)equalities yields that f2(x1) ≥ g2(x4). Since
node x1 is an ancestor node of node x2 in the search
tree, f2(x2) ≥ f2(x1) (Lemma 1). Combining both in-
equalities yields g2(x2) = f2(x2) ≥ g2(x4). Since
node x1 is an ancestor node of node x2 in the search
tree, g1(x2) = f1(x2) ≥ f1(x1) (Lemma 1). Since
f1(x1) ≥ f1(x4) (Lemma 2), it follows that g1(x2) ≥
f1(x1) ≥ f1(x4) = g1(x4). Combining g1(x2) ≥ g1(x4)
and g2(x2) ≥ g2(x4) yields that node x2 is weakly domi-
nated by node x4 (with the goal state). In case BOA* has
pruned a node that prevents it in the future from adding
node x4 to the solution set, then it can still add in the fu-
ture a node (with the goal state) that weakly dominates

148



node x4 and thus also node x2 (induction assumption).
• BOA* prunes node x1 on Line 22 because of the prun-

ing condition g2(x1) ≥ gmin
2 (s) or f2(x1) ≥ gmin

2 (sgoal).
The proofs of Case (1) or Case (2), respectively, apply un-
changed except that f1(x1) ≥ f1(x4) now holds for a dif-
ferent reason. Let node x3 be the node that BOA* expands
when it executes Line 22. Combining f1(x1) ≥ f1(x3)
(Lemma 1) and f1(x3) ≥ f1(x4) (Lemma 2) yields
f1(x1) ≥ f1(x4). �

Theorem 1 BOA* computes a cost-unique Pareto-optimal
solution set.

Proof Sketch: Let the path of a node x (and the solution of
a node x with the goal state) be the sequence of states of the
nodes along a branch of the search tree from the root node to
node x. Then, the g-value of node x is the cost of the path (or
the solution). Since the costs are non-negative and expanded
nodes with the same state do not weakly dominate each other
(Lemma 5), the paths of the expanded nodes are cycle-free.
Since there are only a finite number of cycle-free paths, there
are only a finite number of expanded nodes and thus only a
finite number of generated nodes that are put into the Open
list. Since one node is extracted from the Open list during
each iteration, there are only a finite number of iterations
and BOA* terminates. Now consider any non-empty set X
of all nodes whose solutions are Pareto-optimal solutions of
a given but arbitary cost c. When BOA* is prevented in the
future from adding a node x1 ∈ X to the solution set, it
can still add in the future a node x2 (with the goal state)
that weakly dominates node x1 (Lemma 7). Thus, x2 ∈ X ,
which implies that BOA* is never prevented from adding all
nodes in X to the solution set. The computed solution set is
thus a superset of a cost-unique Pareto-optimal solution set
P . Since BOA* can add only expanded nodes to the solution
set and expanded nodes with the goal state do not weakly
dominate each other (Lemma 5), the computed solution set
cannot contain solutions that are not Pareto-optimal or have
the same cost as other solutions in the computed solution set.
Thus, it is exactly the cost-unique Pareto-optimal solution
set P . �

Experimental Results

Setup: We compare Bi-Objective A* (BOA*),
NAMOA*dr (Pulido, Mandow, and Pérez-de-la-Cruz
2015), BOA* with standard linear-time dominance check-
ing (sBOA*), Bi-Objective Dijkstra (BDijkstra), and
Bidirectional Bi-Objective Dijkstra (BBDijkstra) (Sedeño-
Noda and Colebrook 2019). We use the C implementations
provided by the authors for BBDijkstra and BDijkstra
(Sedeño-Noda and Colebrook 2019). We implement BOA*,
sBOA*, and NAMOA*dr from scratch in C using a stan-
dard binary heap for the Open list. We use the BOA*
implementation for the other implementations as well. We
run all experiments on a 2.20GHz Intel(R) Xeon(R) CPU
Linux machine with 128GB of RAM. We use road maps
from the 9th DIMACS Implementation Challenge: Shortest
Path2. The cost components represent travel distances (c1)

2http://users.diag.uniroma1.it/challenge9/download.shtml

New York City (NY)

264,346 states, 730,100 edges, |sols| = 199 on average
Solved Average Max Min

NAMOA* 50/50 157.17 1,936.36 0.02
sBOA* 50/50 9.75 148.65 0.10
NAMOA*dr 50/50 0.65 4.99 0.11
BOA* 50/50 0.32 1.95 0.11
BBDijkstra 50/50 1.94 23.43 0.26
BDijkstra 50/50 2.55 21.16 0.17

San Francisco Bay (BAY)

321,270 states, 794,830 edges, |sols| = 119 on average
Solved Average Max Min

NAMOA* 50/50 58.87 1,474.76 0.02
sBOA* 50/50 3.38 120.57 0.12
NAMOA*dr 50/50 0.38 6.08 0.12
BOA* 50/50 0.29 4.17 0.12
BBDijkstra 50/50 0.87 9.61 0.28
BDijkstra 50/50 1.83 33.39 0.22

Colorado (COL)

435,666 states, 1,042,400 edges, |sols| = 427 on average
Solved Average Max Min

NAMOA* 48/50 476.26 3,551.32 0.08
sBOA* 50/50 38.88 1,141.78 0.17
NAMOA*dr 50/50 2.16 57.40 0.17
BOA* 50/50 0.79 15.26 0.17
BBDijkstra 50/50 4.79 83.07 0.41
BDijkstra 50/50 7.78 135.24 0.29

Florida (FL)

1,070,376 states, 2,712,798 edges, |sols| = 739 on average
Solved Average Max Min

NAMOA* 43/50 812.48 3,298.90 1.42
sBOA* 46/50 349.64 1,238.25 0.43
NAMOA*dr 50/50 19.66 329.79 0.43
BOA* 50/50 4.59 60.54 0.43
BBDijkstra 50/50 91.36 1,772.48 1.11
BDijkstra 50/50 158.33 2,722.69 0.77

Table 2: Runtime (in seconds) on 50 instances of the speci-
fied road map. When an algorithm times out after 3,600 sec-
onds, we use 3,600 seconds in the calculation of the average.

and times (c2). The h-values are the exact travel distances
and times to the goal state, computed with Dijkstra’s
algorithm. It takes 75 milliseconds to compute the h-values
for the largest road map. The reported runtimes include this
computation. All algorithms obtain the same number of
solutions for all instances used in the experiments, implying
that no two Pareto-optimal solutions have the same cost.

Results: We compare the runtimes of the five algorithms
on 50 instances each of 4 road maps from the USA used by
Machuca and Mandow (2012). Table 2 shows the name of
the road map, the number of states and edges of the map, and
the average number of Pareto-optimal solutions. For each al-
gorithm, it shows the number of instances solved within a
runtime limit of 3,600 seconds as well as the average, max-
imum, and minimum runtimes (in seconds). We include the
results for NAMOA* reported by Machuca and Mandow
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# Start Goal |sols| (1) (2) (3)

1 1941792 785069 27 0.97 1.02 1.0
2 207871 3619 419 0.96 1.24 13.7
3 1137220 991262 1947 0.96 4.11 23.9
4 1836318 1792612 4072 0.96 8.39 43.7

Table 3: Four instances of LKS. (1) Ratio of gener-
ated nodes (NAMOA*dr/BOA*). (2) Ratio of runtimes
(NAMOA*dr/BOA*). (3) Number of op-pruning operations
per generated node for NAMOA*dr.

|sols| = 3,876 on average
Solved Average Max Min

BOA* (f1, f2) 91/100 478.72 2,505 1.30
BOA* (f2, f1) 93/100 383.79 2,059 1.26

Table 4: Runtime (in seconds) on 100 instances of LKS.
When an algorithm times out after 3,600 seconds, we use
3,600 seconds in the calculation of the average.

(2012) as a reference. We observe that sBOA* can be an
order-of-magnitude faster than NAMOA*, and NAMOA*dr
can be an order-of-magnitude faster than sBOA*. BOA* can
be several times faster than NAMOA*dr, especially on in-
stances with large numbers of Pareto-optimal solutions. For
example, BOA* is 4.3 times faster than NAMOA*dr on FL
(with 739 Pareto-optimal solutions on average), while BOA*
is only 1.3 times faster than NAMOA*dr on BAY (with 119
Pareto-optimal solutions on average). BOA* can also be an
order-of-magnitude faster than BBDijkstra and BDijkstra.

We now compare the runtimes of the two fastest algo-
rithms, BOA* and NAMOA*dr, as a function of the dif-
ficulty of the instances on a large road map, namely the
Great Lakes (LKS) map with 2,758,119 states and 6,885,658
edges. We include BDijkstra in the experiment. Figure 2
shows the runtimes (in seconds) of BOA*, NAMOA*dr, and
BDijkstra on the 74 instances from Sedeño-Noda and Cole-
brook (2019) that BDijkstra solves within a runtime limit of
3,600 seconds. The instances are ordered in increasing num-
bers of their Pareto-optimal solutions (|sols|). When |sols|
is small, the runtimes of the algorithms are similar. When
|sols| increases, the runtimes of the algorithms increase.
The runtime of BOA* increases smoothly and becomes or-
ders of magnitude smaller than the ones of NAMOA*dr
and BDijkstra. Figure 3 provides a different view of the
results. It shows the cumulative runtimes (in seconds) of
BOA*, NAMOA*dr, and BDijkstra. The instances are or-
dered in increasing runtime of BOA*. For instances where
BOA* has small cumulative runtimes, the cumulative run-
times of the algorithms are similar. When the cumulative
runtime of BOA* increases, it increases less than the ones
of NAMOA*dr and BDijkstra.

We now compare the number of op-pruning operations3

of BOA* and NAMOA*dr for the dominance checks on
Gop. Table 3 shows the number of Pareto-optimal solutions,

3so named by PMP: the number of nodes checked on Gop when
a node is generated.
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Figure 2: Runtime on 74 LKS instances. The instances on
the x-axis are ordered in increasing numbers of their Pareto-
optimal solutions.

the ratio of generated nodes and the ratio of runtimes of
NAMOA*dr and BOA*, and the number of op-pruning op-
erations per generated node for NAMOA*dr on four LKS
instances. BOA* generates around 1.04 times more nodes
than NAMOA*dr. For Instance 1, NAMOA*dr and BOA*
run about equally fast. However, for the other instances,
BOA* runs faster because NAMOA*dr performs the more
op-pruning operations the larger |sols| is, which demon-
strates the advantage of BOA*, whose dominance checks
run in constant time, over NAMOA*dr, whose dominance
checks on Gop run only in linear time.

We now determine the runtime of BOA* as a function of
the lexicographic ordering used for the Open list, namely
either (f1, f2) or (f2, f1). Table 4 shows the runtime (in
seconds) of BOA* with both the (f1, f2) and (f2, f1) or-
derings of the Open list on 100 LKS instances. BOA* is
faster when its Open list is ordered lexicographically ac-
cording to (f2, f1) instead of (f1, f2). In particular, it solves
2 more instances and has smaller average, maximum, and
minimum runtimes because it generates 10 percent fewer
nodes (and, consequently, also performs fewer heap percola-
tions). We conclude that the ordering of the cost components
has a strongly influence on the runtime of BOA*.

Conclusions and Future Work

We have presented Bi-Objective A* (BOA*), a simple and
fast best-first bi-objective search algorithm. BOA* improves
the efficiency of the dominance checks substantially, which
is key to improving the efficiency of the search. The domi-
nance checks of BOA* require only constant time, while the
ones of existing bi- and multi-objective search algorithms
require linear time. Our experimental evaluation shows
that BOA* can run an one order of magnitude (or more)
faster than state-of-the-art algorithms such as NAMOA*,
NAMOA*dr, Bi-Objective Dijkstra, and Bidirectional Bi-
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Objective Dijkstra. We intend to improve and extend BOA*
in future work as follows:

Speeding up BOA*: The cost of a solution is a pair
(c1, c2). The c1-values of solutions found by BOA* are
strictly monotonically increasing in time, and the c2-values
are strictly monotonically decreasing in time. Thus, the first
solution found by BOA* has the smallest c1-value, and the
last solution has the smallest c2-value. If BOA* orders the
Open list lexicographically according to (f2, f1) instead of
(f1, f2), the opposite happens. Thus, BOA* might run faster
if it runs two BOA* instantiations in parallel, one for each
ordering, and terminates when both instantiations find a so-
lution of the same cost.

Selecting Solutions with BOA*: Several of our instances
have thousands of Pareto-optimal solutions. For example,
one of the LKS instances has 17,606 solutions. Many of the
Pareto-optimal solutions are very similar in that they con-
tain almost the same edges. We plan to extend BOA* so that
it finds a subset of the cost-unique optimal solutions on the
Pareto frontier that contains solutions that are sufficiently
different from each other and thus good representatives of
the Pareto frontier. Such an approach is especially benefi-
cial when solutions need to be presented to human users for
evaluation or selection.

Finding Bounded-Suboptimal Solutions: BOA* might
be able to use weights, like Weighted A* (Pohl 1970), to
obtain the Pareto frontier of all bounded-suboptimal solu-
tions rather than the one of all optimal solutions. Our pre-
liminary experiments show an impressive speed-up when
weight w = 1.2 is used in the calculation of f1. For ex-
ample, BOA* found 3,686 optimal solutions in 175 seconds
for the LKS instance with start state 2,258,596 and goal state
2,042,316, and Weighted BOA* found 4,023 solutions in 2.3
seconds. Our main challenge is to prove that the solutions set

found by Weighted BOA* contains exactly all cost-unique
w-suboptimal solutions on the Pareto frontier.

Using More Than Two Objective Functions: BOA*
might be able to find all cost-unique Pareto-optimal solu-
tions for cost functions with more than two components if it
runs several times for different permutations of the compo-
nents. For example, BOA* might find a subset of the Pareto-
optimal solutions if it orders the Open list lexicographically
according to some ordering of the components. Other order-
ings might result in different subsets. Our main challenge is
to prove that the union of all such subsets contains exactly
all cost-unique optimal solutions on the Pareto frontier.
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