
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Strengthening Potential Heuristics with Mutexes and Disambiguations

Daniel Fišer, Rostislav Horčı́k, Antonı́n Komenda
Czech Technical University in Prague,

Faculty of Electrical Engineering,
Prague, Czech Republic

danfis@danfis.cz, {xhorcik,antonin.komenda}@fel.cvut.cz

Abstract

Potential heuristics assign a numerical value (potential) to
each fact and compute the heuristic value for a given state
as the sum of these potentials. A mutex is an invariant stat-
ing that a certain combination of facts cannot be part of any
reachable state. In this paper, we use mutexes to improve po-
tential heuristics in two ways. First, we show that the mutex-
based disambiguations of the goal and preconditions of op-
erators leads to a less constrained linear program yielding
stronger heuristics. Second, we utilize mutexes in a construc-
tion of new optimization functions based on counting of the
number of states containing certain sets of facts. The experi-
mental evaluation shows a significant increase in the number
of solved tasks.

1 Introduction

The most common approach to solving classical planning
problems is a heuristic search. In this paper, we focus on
the family of admissible heuristics called potential heuris-
tics (Pommerening et al. 2015a) that assign a numeric poten-
tial to each fact and the resulting heuristic value for a given
state is computed as a sum of the potentials of the facts in
the state. Pommerening et al. (2015a) showed that potential
heuristics produce the same heuristic value for a given state
as the state equation heuristic (van den Briel et al. 2007;
Bonet 2013) if they are optimized for each state individu-
ally, but, in practice, the potentials for all facts are found
only once before the search starts and then re-used during
the search in a very fast evaluation of states.

Since their introduction, potential heuristics are contin-
uously studied. Seipp, Pommerening, and Helmert (2015)
introduced several new optimization functions that provide
ways to select different sets of potentials in order to increase
the heuristic values. Seipp et al. (2016) introduced a new
complexity measure for classical planning tasks, called the
correlation complexity, based on a study of a dimensionality
of features of potential heuristics, i.e., extending potentials
from single facts to sets of facts. Pommerening, Helmert,
and Bonet (2017) provided a detailed description of how to
construct potential heuristics for high-dimensional features.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We study possible impacts of inferred state invariants on
the quality of potential heuristics. In particular, we con-
sider state invariants, called mutexes, stating that a certain
set of facts cannot be part of any reachable state (Bonet
and Geffner 2001). Mutexes were studied in the context of
regression planning (Alcázar et al. 2013), pruning of the
unreachable or dead-end operators (Alcázar and Torralba
2015; Fišer and Komenda 2018; Fišer, Torralba, and Shleyf-
man 2019), SAT-based planning (Rintanen, Heljanko, and
Niemelä 2006; Chen, Xing, and Zhang 2007; Huang, Chen,
and Zhang 2012), or translation of STRIPS representation
into FDR (Helmert 2009; Fišer and Komenda 2018).

We utilize mutexes in potential heuristics in two ways.
First, we relax the constraints describing potential heuristics
by using mutexes and so-called disambiguation (Alcázar et
al. 2013) to infer which facts cannot be part of the goal states
or states where operators are applied. This leads to higher
(or at worst the same) heuristic values for all optimization
functions, because the optimizer becomes less restricted in
the search for the best potentials. Second, we use mutexes in
new optimization functions aiming at more accurate estima-
tions of the number of reachable states and thus improving
average heuristic values over all reachable states.

2 Background

We consider the finite domain representation (FDR) of plan-
ning tasks (Bäckström and Nebel 1995). An FDR planning
task Π is specified by a tuple Π = 〈V ,O, I, G〉. V is a finite
set of variables, each variable V ∈ V has a finite domain
dom(V). A fact 〈V, v〉 is a pair of a variable V ∈ V and one
of its values v ∈ dom(V). The set of all facts is denoted by
F = {〈V, v〉 | V ∈ V , v ∈ dom(V)}, and the set of facts
of variable V is denoted by FV = {〈V, v〉 | v ∈ dom(V)}.
A partial state p is a variable assignment over some vari-
ables vars(p) ⊆ V . We write p[V] for the value assigned
to the variable V ∈ vars(p) in the partial state p. We
also identify p with the set of facts contained in p, i.e.,
p = {〈V, p[V]〉 | V ∈ vars(p)}. A partial state s is a state if
vars(s) = V . I is an initial state. G is a partial state called
goal, and a state s is a goal state iff G ⊆ s. Let p, t be partial
states. We say that t extends p if p ⊆ t.
O is a finite set of operators, each operator o ∈ O

124

has a precondition pre(o) and effect eff(o), which are par-
tial states over V , and a cost c(o) ∈ R

+
0 . An operator

o is applicable in a state s iff pre(o) ⊆ s. The result-
ing state of applying an applicable operator o in a state
s is another state o�s� such that o�s�[V] = eff(o)[V] for
every V ∈ vars(eff(o)), and o�s�[V] = s[V] for every
V ∈ V \ vars(eff(o)).

A sequence of operators π = 〈o1, . . . , on〉 is applicable
in a state s0 if there are states s1, . . . , sn such that oi is
applicable in si−1 and si = oi�si−1� for i ∈ {1, . . . , n}.
The resulting state of this application is π�s0� = sn and
c(π) =

∑n
i=1 c(oi) denotes the cost of this sequence of op-

erators. A sequence of operators π is called an s-plan iff π
is applicable in a state s and π�s� is a goal state. An s-plan
π is called optimal if its cost is minimal among all s-plans.

A state s is reachable if there exists an operator sequence
π applicable in I such that π�I� = s. Otherwise, we say that
s is unreachable. The set of all reachable states is denoted
by R. An operator o is reachable iff it is applicable in some
reachable state. A state s is a dead-end state iff G �⊆ s and
there is no s-plan.

A heuristic h : R �→ R∪ {∞} estimates the cost of opti-
mal s-plans. The optimal heuristic h�(s) maps each reach-
able state s to the cost of the optimal s-plan or to ∞ if s is
a dead-end state. A heuristic h is called (a) admissible iff
h(s) ≤ h�(s) for every reachable state s ∈ R; (b) goal-
aware iff h(s) ≤ 0 for every reachable goal state s; and (c)
consistent iff h(s) ≤ h(o�s�) + c(o) for all reachable states
s ∈ R and operators o ∈ O applicable in s.

It is well-known that goal-aware and consistent heuristics
are also admissible. Note that we define heuristics over the
reachable states (instead of all states) because we intend to
use heuristics in the (forward) heuristic search and because
we want to use state invariants describing the reachable state
space for an improvement of the heuristic values.

3 Mutexes and Disambiguation

Before we turn to the potential heuristic, we first introduce
the notion of state invariants describing a mutual exclusion
between facts and the notion of disambiguation of variables,
which we later use for a generalization and improvement of
potential heuristics.

Definition 1. Let Π denote a planning task with facts F . A
set of facts M ⊆ F is a mutex if M �⊆ s for every reachable
state s ∈ R.

A mutex is a set of facts that never appear together in
any reachable state. The most commonly used method for
inference of mutexes is the hm heuristic (Bonet and Geffner
2001; Alcázar and Torralba 2015) usually only for m = 2.

It is easy to see that every superset of a mutex is also a mu-
tex and that every pair of facts from each variable form a mu-
tex, because exactly one fact from each variable is present in
every state. In this paper, we work with sets of mutexes. To
simplify the notation we introduce the following notion of a
mutex-set.

Definition 2. Let Π denote a planning task with variables
V and facts F . A set of sets of facts M ⊆ 2F is called

a mutex-set if the following hold: (a) every M ∈ M is a
mutex; and (b) for every M ∈ M and every f ∈ F it holds
that M ∪ {f} ∈ M; and (c) for every variable V ∈ V
and every pair of facts f, f ′ ∈ FV , f �= f ′, it holds that
{f, f ′} ∈ M.

In other words, a mutex-set is an upper set of a set of mu-
texes and it always contains all mutexes that can be inferred
directly from the variables of the FDR representation. This
allows us to write, for example, s ∈ M for a state s and a
mutex-set M when we want to say that s contains a subset
of facts that is a mutex. But, of course, in practice we keep
the inferred mutexes as a set without explicitly constructing
all supersets.

When dealing with backward search (also known as re-
gression), Alcázar et al. (2013) noted that mutexes can be
used for extending partial states p with a value of some vari-
able V not defined in p (V �∈ vars(p)), if all but one value
is a mutex with p. Alcázar and Torralba (2015) re-used this
idea for the pruning technique based on a fixpoint computa-
tion of h2 heuristic in both forward and backward direction.
They found out that this process is actually essential for the
backward h2 heuristic to be able to infer any useful informa-
tion. We borrow and extend this notion, called disambigua-
tion, in the following way.

Definition 3. Let Π denote a planning task with facts F and
variables V , let V ∈ V denote a variable, and let p denote a
partial state. A set of facts F ⊆ FV is called a disambigua-
tion of V for p if for every reachable state s ∈ R such that
p ⊆ s it holds that F ∩ s �= ∅ (i.e., 〈V, s[V]〉 ∈ F).

Clearly, every FV is a disambiguation of V for all pos-
sible partial states. Moreover, it follows directly from the
definition that if some F ⊆ FV is a disambiguation of V
for some partial state p then every f ∈ FV \ F must be a
mutex with p, i.e., every state s such that {f} ∪ p ⊆ s is
unreachable. Therefore, if F is the empty set, then any state
s such that p ⊆ s is unreachable. So, as previously noted by
Alcázar et al. (2013), we can use empty disambiguations to
prune unreachable operators (if a precondition of an opera-
tor extends p), or to prove unsolvability of the planning task
(if G extends p). Moreover, if the disambiguation of V con-
sists of exactly one fact, then the partial state p can be safely
extended with that fact, because it is the only value that can
be assigned to the variable V in any reachable state s ⊇ p.

Given a partial state p and a mutex-set M, we define a
set Mp = {f | f ∈ F , p ∪ {f} ∈ M} as the set of facts
which M entails to be mutex with p. Note that FV \Mp is
a disambiguation of V for p.

Algorithm 1 encapsulates a use of disambiguation in a
simple fixpoint algorithm. On line 4, the domain of each
variable is reduced by removing facts that are mutex with
the partial state p. On line 5, p is extended if there is only
one possible fact that can appear in a reachable state con-
taining p. On line 6, the algorithm reports p as a mutex if all
facts from the variable’s domain are mutex with p.

We extend the notion of disambiguation described by
Alcázar et al. (2013) and Alcázar and Torralba (2015) in
that we keep also the sets containing more than one fact and
we show in the next section how these sets can be used for

125

Algorithm 1: Single-fact fixpoint disambiguation.
Input: A planning task Π with variables V and facts F , a

partial state p, and a mutex-setM.
Output: A partial state p extended with disambiguations of

size one.
1 do

2 p′ ← p;
3 for each V ∈ V do
4 DV ← FV \Mp;
5 if |DV | = 1 then p← p ∪DV ;
6 if |DV | = 0 then return “p is a mutex” ;
7 while p′ �= p;

strengthening potential heuristics.
Algorithm 2 shows an improved algorithm that computes

disambiguations of all variables for a given partial state p.
The algorithm keeps track of facts that cannot be part of a
reachable state extending p (the set A). On line 7 the dis-
ambiguations are restricted by removing these facts, and on
line 8 the set A is expanded by those facts that cannot be part
of any reachable state extending any of p∪{f} for f ∈ DV .

Theorem 4. Algorithm 2 always produces a set of disam-
biguations of all variables for the given partial state p.

Proof. The algorithm always terminates, because the sets
DV , for every V ∈ V , can only decrease in size in each
cycle (line 7), therefore there is a fixpoint.

Now we show that in every step, every DV is a disam-
biguation of V for p. DV is initialized with FV (line 1)
which is a disambiguation of V for p by definition. Then
DV is changed only on line 7 by removing the set A. So it
suffices to show that at every point, A contains only the facts
that cannot occur in any reachable state s extending p, i.e.,
A∩s = ∅. This is true for the initialization of A (line 2). A is
updated on line 8 by adding the set X =

⋂
f∈DV

Mp∪{f}.
Let f ′ ∈ X . By definition of X the fact f ′ cannot occur in
any reachable state extending any of partial states p ∪ {f}
for f ∈ DV . Since DV is a disambiguation of V for p, ev-
ery reachable state s extending p extends p ∪ {f} for some
f ∈ DV . Therefore s ∩X = ∅.

Note that the mutex-set M contains all mutex pairs from
all variables so for every variable V ∈ vars(p) defined in the
partial state p, DV is set to {〈V, p[V]〉} in the first cycle DV

is changed on line 7. Also note that if one disambiguation is
found out to be empty, and therefore p is proved to be mutex,
then all disambiguations are gradually also set to empty sets.

4 Potential Heuristics

Potential heuristics, introduced by Pommerening et al.
(2015a), assign a numerical value to each fact, and the
heuristic value for a state s is then simply a sum of the po-
tentials of all facts in s.

Definition 5. Let Π denote a planning task with facts F . A
potential function is a function P : F �→ R. A potential
heuristic for P maps each state s ∈ R to the sum of poten-
tials of facts in s, i.e., hP(s) =

∑
f∈s P(f).

Algorithm 2: Multi-fact fixpoint disambiguation.
Input: A planning task Π with variables V and facts F , a

partial state p, and a mutex-setM.
Output: A set of disambiguations D of all variables V for p.

1 DV ← FV for every V ∈ V;
2 A←Mp ; // A set of facts that are mutex

with p
3 do
4 change← False;
5 for each V ∈ V do
6 if DV \A �= DV then
7 DV ← DV \A;
8 A← A ∪⋂

f∈DV
Mp∪{f};

9 change← True;
10 while change;
11 D← {DV | V ∈ V};

Pommerening et al. (2015a) described a set of inequali-
ties that are sufficient conditions for the potential heuristic
to be admissible, which can be formulated as the following
theorem.1

Theorem 6. Let Π = 〈V,O, I, G〉 denote a planning task,
P a potential function, and for every operator o ∈ O,
let pre�(o) = {〈V, pre(o)[V]〉 | V ∈ vars(pre(o)) ∩
vars(eff(o))} and vars�(o) = vars(eff(o)) \ vars(pre(o)).
If

∑

f∈G

P(f) +
∑

V ∈V\vars(G)

max
f∈FV

P(f) ≤ 0 (1)

and for every operator o ∈ O it holds that
∑

f∈pre�(o)

P(f) +
∑

V ∈vars�(o)

max
f∈FV

P(f)−
∑

f∈eff(o)

P(f) ≤ c(o), (2)

then the potential heuristic for P is admissible.
Eq. (1) makes sure that the sum of potentials is goal-

aware, and Eq. (2) ensures consistency of the potential
heuristic. The theorem, however, does not tell us how to
actually choose the potential function. Pommerening et al.
(2015a) proposed to formulate the inequalities as constraints
of a linear program (LP) and then a solution for any opti-
mization function results in an admissible potential heuris-
tic. The selection of optimization functions is discussed in
the next section.

For now, move your attention to the maxima over all facts
of the undefined variables in Eq. (1) and (2). For the goal
equation Eq. (1), we do not know how the reachable goal
states actually look like, so we prepare for the worst case
by using the maximum potential over all facts of each un-
defined variable. Similarly for the operator equation Eq. (2),
we do not fully know the reachable states where the operator
is applicable. However, we have demonstrated in the previ-
ous section that mutexes can be used for narrowing down the
unknown parts. So, we can use disambiguations to general-
ize Theorem 6 by the following theorem.

1The original formulation uses planning tasks in the so-called
Transition Normal Form, but the general case is described in the
technical report (Pommerening et al. 2015b).

126

Theorem 7. Let Π = 〈V,O, I, G〉 denote a planning task
with facts F , and let P denote a potential function, and

(i) for every variable V ∈ V , let GV ⊆ FV denote a disam-
biguation of V for G s.t. |GV | ≥ 1, and

(ii) for every operator o ∈ O and every variable V ∈
vars(eff(o)), let Eo

V ⊆ FV denote a disambiguation of
V for pre(o) s.t. |Eo

V | ≥ 1.
If

∑

V ∈V
max
f∈GV

P(f) ≤ 0 (3)

and for every operator o ∈ O it holds that
∑

V ∈vars(eff(o))

max
f∈Eo

V

P(f)−
∑

f∈eff(o)

P(f) ≤ c(o), (4)

then the potential heuristic for P is admissible.

Proof. To show that the potential heuristic is goal-aware, we
need to prove that for every reachable goal state sG it holds
that

∑
f∈sG

P(f) ≤ 0. Let f = 〈V, v〉 ∈ sG. From (i),
we have f ∈ GV . Since for every GV and every f ∈ GV

it holds that P(f) ≤ maxf ′∈GV
P(f ′), then from Eq. (3) it

follows that
∑

f∈sG
P(f) ≤ ∑

V ∈V maxf∈GV
P(f) ≤ 0.

To show consistency, we need to prove that for ev-
ery operator o ∈ O and every reachable state s ∈
R such that pre(o) ⊆ s it holds that

∑
f∈s P(f) −∑

f∈o�s� P(f) ≤ c(o). Let t = (s ∩ o�s�) \ eff(o) be
the part of s that is not affected by the operator o. Then
clearly,

∑
f∈s P(f) − ∑

f∈o�s� P(f) =
∑

f∈s\t P(f) −∑
f∈o�s�\t P(f) =

∑
f∈s\t P(f)−

∑
f∈eff(o) P(f), because

o�s� \ t = eff(o). Furthermore, since vars(s \ t) =
vars(eff(o)), it follows that every f = 〈V, v〉 ∈ s \ t be-
longs to Eo

V and consequently P(f) ≤ maxf ′∈Eo
V
P(f ′).

Therefore (by Eq. (4))
∑

f∈s\t P(f) −
∑

f∈eff(o) P(f) ≤∑
V ∈vars(eff(o)) maxf∈Eo

V
P(f) − ∑

f∈eff(o) P(f) ≤ c(o).
So hP is goal-aware and consistent and therefore admissible.

Note that the requirement on the non-empty disambigua-
tions in (i) and (ii) is just to simplify the theorem, because for
every empty disambiguation we could either remove the cor-
responding operator (if Eo

V is empty), or report the planning
task unsolvable (if GV is empty), as we already explained.

Clearly, Eq. (3) generalizes Eq. (1) because for every
V ∈ vars(G) the singleton {〈V,G[V]〉} is a disambigua-
tion of V for G, and for every V ∈ V \ vars(G) the set FV

is a disambiguation of V for G. Thus Theorem 7 allows to
use proper subsets of FV for the variables undefined in G.
Similarly, Eq. (4) generalizes Eq. (2) because we can use the
same reasoning for the preconditions of operators.

4.1 Transition Normal Form

Originally, potential heuristics were formulated for planning
tasks in the so-called Transition Normal Form (TNF) (Pom-
merening and Helmert 2015). A planning task is in TNF if
the goal is fully defined (vars(G) = V) and vars(pre(o)) =
vars(eff(o)) for every operator o. Any planning task Π =
〈V,O, I, G〉 can be compiled into TNF as follows:

• Add a fresh value U to the domain of every variable.
• For every variable V ∈ V and every fact f ∈ FV , f �=

〈V,U〉, add a new forgetting operator of with pre(of) =
{f} and eff(of) = {〈V,U〉} and the cost c(of) = 0.

• For every operator o ∈ O and every variable V ∈ V:
– If V ∈ vars(pre(o)) and V �∈ vars(eff(o)), then add
〈V, pre(o)[V]〉 to eff(o).

– If V ∈ vars(eff(o)) and V �∈ vars(pre(o)), then add
〈V,U〉 to pre(o).

• For every V ∈ V \ vars(G) add 〈V,U〉 to G.
There is a clear correspondence between the compilation

into TNF and the LP formulation of Eq. (1) and (2) from
Theorem 6 (Pommerening and Helmert 2015). When trans-
lating inequalities Eq. (1) and (2) to the LP constraints, we
(a) create the LP variable Xf for every fact f ∈ F (hold-
ing the potential P(f)), and (b) to deal with the maxima, we
create another auxiliary LP variable MV for every variable
V ∈ V and add the constraint Xf ≤ MV for every f ∈ FV .
Then we can rewrite Eq. (1) to the constraint

∑

f∈G

Xf +
∑

V ∈V\vars(G)

MV ≤ 0, (5)

and similarly Eq. (2) to constraints
∑

f∈pre�(o)

Xf +
∑

V ∈vars�(o)

MV −
∑

f∈eff(o)

Xf ≤ c(o), (6)

for every operator o ∈ O, and look for the maximiza-
tion over some optimization function. Compare Eq. (5) and
Eq. (6) to the constraints resulting from the planning task
compiled into TNF and you will find that we get exactly the
same constraints where LP variables MV correspond to the
special value U added to every variable in TNF.

The generalization of Theorem 6 via disambiguations
transposes also to the TNF. Instead of creating a single fresh
value U for every variable, we create fresh values UGV

and
UEo

V
for every disambiguation GV and Eo

V , respectively.
Then we use these values in the same way U values are used
in the original TNF formulation. There will be forgetting
operators for every UGV

and UEo
V

that go over the facts in
their respective disambiguations rather than over all values
from the corresponding domain. Instead of adding 〈V, U〉
into operators’ preconditions, we add 〈V,UEo

V
〉. And instead

of adding 〈V,U〉 into the goal, we add 〈V,UGV
〉.

Pommerening and Helmert (2015) showed that the com-
pilation to TNF can produce a planning task twice the size
of the original one, in the worst case. With disambigua-
tions, the compilation to TNF can grow even more, but it
is still polynomially bounded. Although we choose disam-
biguations from the powerset 2F , the actual number of dis-
ambiguations is limited by the number of operators and the
size of their preconditions. So, the number of UGV

values
can be at most |V|, and the number of UEo

V
cannot be more

than |O| · |V|. The maximum number of forgetting operators
then corresponds to these limits.

However, the resulting representation can also be smaller
than the original TNF, because the disambiguations of size

127

one can get rid of U values completely, and the disam-
biguations that are proper subsets of the corresponding FV

produce fewer forgetting operators. In fact, the experimen-
tal evaluation on the domains from International Planning
Competitions (IPCs) shows that the representation with dis-
ambiguations is never bigger than without disambiguations.

4.2 Extension to Dead-End States

As we already mentioned, Alcázar and Torralba (2015) pro-
posed an algorithm for pruning of planning tasks by comput-
ing the h2 heuristic in both forward and backward direction.
This algorithm finds so called dead pairs (Eriksson, Röger,
and Helmert 2018), i.e., pairs of facts that are either mutexes
(as per Definition 1) or backward mutexes found in the back-
ward direction. Dead pairs correspond to both unreachable
and dead-end states, i.e., given a dead pair p, every state s
such that p ⊆ s is either unreachable or it is a dead-end
state.

It is possible to use dead pairs instead of mutexes in the
computations of disambiguations. A disambiguation for p
computed with dead pairs contains facts that appear in reach-
able states extending p that are not dead-end states, i.e., this
type of disambiguation differs from Definition 3, because it
excludes reachable states that are dead-end states. However,
this type of disambiguation can be used as GV and Eo

V in
Theorem 7 and the potential heuristic remains admissible.
This follows from the fact that the optimal heuristic value
for dead-end states is ∞. Hence any heuristic value is ad-
missible for them. In this paper, we investigate only disam-
biguations found with mutexes, but the extension with dead
pairs should be straightforward.

5 Optimization Functions

When Pommerening et al. (2015a) introduced potential
heuristics, they used the optimization function for the initial
state

optI =
∑

f∈I

P(f). (7)

Maximization of optI subject to the constraints from The-
orem 7 (or Theorem 6) yields the highest possible heuristic
value (h-value) for the initial state. However, maximization
of optI does not provide an incentive for optimizing poten-
tials of the facts that do not appear in the initial state (at least
not directly). Of course, one could recompute potentials for
each state reached during the search. That would always pro-
vide the best possible h-value but it would also be too costly
from the computational point of view.

Seipp, Pommerening, and Helmert (2015) studied differ-
ent optimization functions. One of their main contributions
is the “automatic diversification” algorithm for finding an
ensemble of potential heuristics constructed from a set of
states sampled by random walks. We will experimentally
evaluate the effect of disambiguations on this variant, but,
for space reasons, we refer readers interested in the detailed
description of automatic diversification to the original pa-
per. Another contribution was the introduction of a family of
optimization functions aiming at maximizing the average h-

value over all reachable states. And this is the obvious place
where mutexes can be utilized.

5.1 All States Potentials

The perfect optimization function of which maximization
yields the maximum average h-value over all reachable
states is the weighted sum of the potentials over all reach-
able states:

optR =
1

|R|
∑

s∈R

∑

f∈s

P(f). (8)

By reordering summands in Eq. (8), optR can be written
as

∑
f∈F αfP(f) where the coefficient αf is just the prob-

ability that a randomly chosen reachable state contains f .
Consequently, by maximizing optR we look for potentials
such that the corresponding potential heuristic maximizes
its expected value.

Listing all reachable states is, obviously, infeasible, and so
is uniform sampling of reachable states. So, as an approxi-
mation, Seipp, Pommerening, and Helmert (2015) proposed
to adopt the approach of Haslum et al. (2007) and sample
the states S ⊆ R by random walks starting from the ini-
tial state with a binomially distributed length of the walks
centered around the double of the maximum h-value for the
initial state, leading to the following optimization function:

optŜ =
1

|S|
∑

s∈S

∑

f∈s

P(f). (9)

Another proposed option was to count all syntactic states
(i.e., all possible assignments to variables):

optS =
∑

〈V,v〉∈F

1

|dom(V)|P(〈V, v〉). (10)

This approach assumes the uniform distribution of the val-
ues within their respective domains over all reachable states
which is 1/ |dom(V)| for every fact 〈V, v〉.

We extend the idea of using all syntactic states by tak-
ing mutexes into account. Suppose we want to estimate the
number of states containing a fact f = 〈V, v〉 ∈ F . The sim-
plest estimate of the number of these (syntactic) states is to
compute a product of sizes of all variables’ domains except
V , because the variable V is assumed to be already set to v:∏

V ′∈V\{V } |dom(V ′)|. This estimate is actually an upper
bound on the true number of reachable states containing f .

However, if we take mutexes into account, we could re-
move the facts that are mutex with f from all domains and
compute the product of sizes of these reduced domains. The
resulting estimate would necessarily be lower than (or equal
to) the previous one. It would be an upper bound too, be-
cause we are removing only the facts that are certainly not
part of the reachable states containing f . Therefore, we cer-
tainly get a better estimate. Moreover, we can extend this
idea to partial states, i.e., instead of asking how many reach-
able states contain a single fact f , we can ask how many
reachable states extend a partial state p.

For a given number 1 ≤ k ≤ |V| and a partial state t we
define a set Pt

k as the set of all partial states of size k extend-
ing t. Further recall that for a mutex-set M and a partial state
p we defined the set Mp = {f | f ∈ F , p ∪ {f} ∈ M}.

128

Now we can estimate the number of reachable states ex-
tending a partial state p using a given mutex-set M by
the product

∏
V ∈V |FV \Mp|. Note that if p is a mutex

(p ∈ M), then Mp contains all facts and the product is zero.
Also, since M always contains mutex pairs from all vari-
ables, then |FV \Mp| = 1 for all V ∈ vars(p) if p �∈ M.

With all building blocks in place, we can define

Ck
f (M) =

∑

p∈P{f}
k

∏

V ∈V
|FV \Mp| (11)

as an estimation of the number of reachable states contain-
ing the fact f while considering mutex-set M and all partial
states of size k. The corresponding optimization function is:

optkM =
∑

f=〈V,v〉∈F

Ck
f (M)

∑
f ′∈FV

Ck
f ′(M)

P(f). (12)

That is, we choose a number k ≥ 1 and for every fact f
and every partial state p of size k containing f , we compute
the estimation of the number of reachable states extending
p (the inner product in Eq. (11)). To get the estimate for a
single fact f , we sum over the estimates for partial states p
containing f (this is the number Ck

f (M)). Finally, for every
variable V ∈ V we normalize the collection of Ck

f (M) for
f ∈ FV so that it forms a probability distribution estimating
the actual probability that a fact f ∈ FV appears in a ran-
domly chosen reachable state. In other words, instead of us-
ing the uniform distribution as in Eq. (10), i.e., 1/ |dom(V)|,
we use mutexes and estimate the number of states step-by-
step for all partial states of size k and then sum these counts
to the final estimation.

5.2 Conditioned Ensemble of All States Potentials

Averaging sampled states S ⊆ R, as in optŜ , is not the only
way S can be used for a construction of a potential heuristic.
Seipp, Pommerening, and Helmert (2015) proposed to use
an ensemble of potential heuristics, for example one poten-
tial heuristic per state from S, and then use the maximum h-
value from all potential heuristic as the h-value for the given
state.

The optimization for all reachable states optR tackles the
problem of finding the best potentials by maximizing the ex-
pected value of the sum of potentials for a randomly chosen
reachable state. However, if we somehow divide the whole
reachable state space into sets of states S1 ∪ . . . ∪ Sn = R,
then averaging over Si with optŜi

would give us better h-
values (at average) for each set Si. Then we could use the
ensemble of potential heuristics optimized for optŜi

for all
i = {1, . . . , n} and the maximum of h-values for a given
state over all these heuristics should give us a better result-
ing h-value. Intuitively, we can see this approach as being
halfway between optR, and computing potentials for each
individual state. Unfortunately, we do not know how to se-
lect the sets Si or how to sample them efficiently. We can,
however, re-use the approach to optkM in constructing a sim-
ilar ensemble.

Taking the idea of using mutexes one step further, we can
optimize for the maximum average potentials over the states

extending a partial state t. In other words, we can fix the
partial state t as a sort of selector for states and then use the
same idea as for optkM except that we count only the states
extending t. We start with a slight modification of Eq. (11)
by restricting the count to a given partial state t:

Kk
f (M, t) =

∑

p∈Pt∪{f}
|t|+k

∏

V ∈V
|FV \Mp| . (13)

In words, Kk
f differs from Ck

f in that Kk
f takes the partial

states p of size |t|+k extending t∪{f} instead of the partial
states of size k containing f . We also tacitly assume that
t ∪ {f} is a partial state, i.e., either f ∈ t or the variable V
corresponding to the fact f does not belong to vars(t). For
the cases where V ∈ vars(t), we define Kk

f (M, t) = 0.
The optimization function for a fixed partial state t is a

small modification of Eq. (12) where we replace Ck
f with

Kk
f :

optt,kM =
∑

f=〈V,v〉∈F

Kk
f (M, t)

∑
f ′∈FV

Kk
f ′(M, t)

P(f). (14)

The remaining question is how to select the partial states
t on which to condition potential heuristics in the ensemble.
In this paper, we evaluate only uniformly randomly sampled
partial states of size 1 and 2. However, the question left for
future research is whether we can use some sort of structural
information, such as causal graphs or some kind of a relation
between mutexes, for the selection of the best possible sets.

5.3 Adding Constraint on Initial State

As already mentioned, the disadvantage of optimizing for
the initial state (optI) is that the optimization function does
not provide an incentive to optimize the potentials that are
not part of the initial state. But it should provide good heuris-
tic values in the vicinity of the initial state, assuming the op-
erators change only few facts at the time. Conversely, the
optimization for all states, in all variants, including optR,
does not target any particular state and the resulting h-values
highly depend on what the reachable state space actually
looks like. For example, a huge number of goal states can un-
intentionally decrease the average h-values even though the
goal-awareness of potential heuristics is explicitly enforced
by a constraint and we actually want to push the h-values
higher for all states but the goal states.

We can, however, overcome this behaviour at least par-
tially by combining the optimization for the initial state and
for all states. Let hPI denote the potential heuristic optimized
for the initial state. Then using an optimization for all states
(any discussed variant) and imposing the additional con-
straint ∑

f∈I

P(f) = hPI(I) (15)

will force the optimizer to find potentials that will produce
a high h-value for the initial state while maximizing average
h-values for states containing facts that are not part of the
initial state. So, during the search, we should get more ac-
curate h-values from the beginning of the search and as we

129

get farther from the initial state and closer to the goal, the
potentials optimized for the average case should take over.

This, of course, requires to compute the potentials twice.
The first time for the h-value hPI(I). And the second time for
the all states potentials using Eq. (15).

6 Experimental Evaluation

The evaluated methods were all implemented2 in C and
experimentally evaluated with the Fast Downward planner
(Helmert 2006) on a cluster of computing nodes with In-
tel Xeon Scalable Gold 6146 processors and CPLEX solver
v12.9. The time and memory limits were set to 30 min-
utes and 8 GB, respectively. Operators and facts are pruned
with the h2 heuristic in forward and backward direction
(Alcázar and Torralba 2015), and the translation from PDDL
to FDR uses the inference of mutex groups proposed by
Fišer (2020). However, for the methods that require mutexes,
we computed them again with the h2 heuristic because we
can use only the forward direction for mutexes as per Def-
inition 1 and we wanted to account for the increased com-
putational demand for these methods. We used all planning
domains from International Planning Competitions (IPCs)
from 1998 to 2018 excluding the ones containing condi-
tional effects after translation (leaving 65 domains).

We refer to the compared variants of potential heuristics
as follows:
• N: the variant without disambiguation,
• D: the multi-fact disambiguation (Algorithm 2),
• D1: the single-fact disambiguation (Algorithm 1),
• Init: the optimization for the initial state (optI),
• All: the optimization for all syntactic states (optS),
• MaxIA: the maximization over Init and All,
• Divn: the diversification algorithm with n samples,
• Ŝn: the optimization for n randomly sampled states

(optŜ),
• Sn: the maximization over n potential heuristics each op-

timized for a randomly sampled state,
• Mk: the optimization for all states considering inferred mu-

texes (optkM),

• Kkn: the maximization over n potential heuristics each op-
timized for all states considering mutexes and conditioned
on a randomly sampled fact f (opt{f},kM).

• Lkn: the same as Kkn except partial states {f1, f2} of size
two are sampled (opt{f1,f2},kM).

If the additional constraint on the initial state was used (Sec-
tion 5.3, Eq. (15)), we append +I. We fixed seeds for random
number generators in order to get comparable results for the
variants that use sampling. Divn and Ŝn are evaluated for
n = 1000 to compare them to the results of Seipp, Pom-
merening, and Helmert (2015).

In Fig. 1, we show scatter plots of the heuristic values for
the initial state when optimized for the initial state with and

2https://gitlab.com/danfis/cpddl, branch icaps20-potentials

1 10 102 103

N-Init

1

10

102

103

D
-I
n
i
t

1 10 102 103

D1-Init

Figure 1: Heuristic values for the initial state with the zero h-
values filtered out and the h-values in the parcprinter domain
scaled by 10-4 to keep the plots compact.

without disambiguation. The plots clearly show the advan-
tage of utilizing multi-fact disambiguation in comparison to
both single-fact disambiguation (right) and no disambigua-
tion (left).

We tried to fit as many results comparing the use of dis-
ambiguations as possible into Table 1 to show the positive
effect of disambiguations on the number of solved tasks.
(We added the row with the sum without the freecell domain
because this domain contains considerably more planning
tasks than other domains which may skew the overall re-
sults.) Disambiguations decrease the coverage only in a few
domains, but never overall. The most significant decrease
can be found in the blocks domain for Init and freecell00
for All, but otherwise the decrease is just one or two fewer
problem solved. Overall, the increase in coverage due to the
(multi-fact) disambiguation ranges from 1.6% for M2 to 3.8%
for All+I and it is two or more percent for all methods pro-
posed by Seipp, Pommerening, and Helmert (2015) (similar
results are obtained also if freecell00 is not counted).

The only difference between M1 and M2 is in the par-
cprinter domains (in favor of M1) which suggests that in-
creasing k increases the computational intensity but does
not provide much more accurate estimates of the number of
reachable states. Overall, both M1 and M2 have higher cov-
erage than All (with or without disambiguations), but most
of the difference is due to the freecell domain. If the freecell
domain is filtered out, All solves more tasks. The average
from a sample of 1000 states (Ŝ1k) also seems to provide
better results (both overall and in per-domain comparison).

However, constructing ensembles of 100 or 50 potential
heuristics with K1100 and K150 results in a higher coverage than
All, M1, M2, and Ŝ1k, which all optimize for the average state.
The coverage is also higher than Div1k and S100 that maxi-
mize over an ensemble of potential heuristics as Kkn does. We
should note here that Kkn conceptually sits between optimiza-
tion for the average state and maximization over a sample of
states, because Kkn tries to do a little bit of both.

Table 2 compares the sampling based methods (with dis-
ambiguations) for different numbers of samples. The more
samples are used in the ensemble the longer it takes to eval-
uate a state during the search and therefore the advantage
of using potential heuristics diminishes. The sweet spot for

130

domain Init All M1 M2 Div1k Ŝ1k S100 K1100 K150 MaxIA All+I Ŝ1k+I M1+I
N D1 D N D1 D N D N D N D N D D D D N D N D N D D

agricola18 (20) 1 1 3 1 1 3 1 1 1 1 1 3 1 3 3 3 3 1 3 1 3 1 3 ◦3
airport04 (50) 29 32 32 30 31 31 30 31 30 31 30 31 30 28 30 29 30 30 33 +30 ⊕36 +30 ⊕33 ◦32
blocks00 (35) 28 21 21 28 21 28 28 28 28 28 28 28 28 28 21 28 28 28 28 28 +28 28 +28 +28
depot02 (22) 7 9 8 11 11 11 11 11 11 11 10 11 11 11 10 12 12 11 11 +11 +11 +11 +11 +11
freecell00 (80) 67 71 71 41 36 36 58 58 58 58 73 73 73 72 71 64 65 67 71 ⊕72 ⊕72 +73 ⊕73 ◦69
ged14 (20) 15 15 15 15 15 15 15 15 15 15 17 19 19 19 19 19 19 15 15 15 15 +19 +19 15
hiking14 (20) 13 13 13 14 14 14 14 14 14 14 11 11 14 14 14 13 13 14 14 +14 +14 +14 +14 +14
logistics00 (28) 11 11 11 19 19 19 19 19 19 19 19 19 19 19 16 19 19 19 19 +19 +19 +19 +19 +19
logistics98 (35) 2 2 2 5 5 5 5 5 5 5 5 5 5 5 3 5 5 5 5 +5 +5 +5 +5 +5
mystery98 (30) 17 17 18 17 17 18 17 18 17 18 17 18 17 18 18 18 18 17 18 17 18 17 18 18
nomystery11 (20) 10 10 10 14 14 14 14 14 14 14 14 14 14 14 10 14 14 14 14 +14 +14 +14 +14 +14
openstacks06 (30) 7 14 13 7 14 14 7 7 7 7 7 7 7 7 7 10 10 7 14 7 −13 7 ◦13 ◦13
openstacks08 (30) 23 23 23 23 23 23 23 23 23 23 23 23 21 23 23 23 23 23 23 23 23 −21 23 23
openstacks11 (20) 18 18 18 18 18 18 18 18 18 18 18 18 16 18 18 18 18 18 18 18 18 −16 18 18
openstacks14 (20) 3 3 3 3 3 3 3 3 3 3 3 3 0 3 3 2 2 3 3 3 3 −0 3 3
parcprinter08 (30) 27 27 27 21 20 20 24 25 23 23 17 17 17 16 16 28 28 28 27 ◦25 ⊕28 ◦22 ◦22 −25
parcprinter11 (20) 20 20 20 16 15 15 17 18 17 17 13 13 13 12 12 20 20 20 20 ◦20 ◦20 ◦17 ◦17 −17
parking11 (20) 7 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 +8 +8 +8 +8 +8
parking14 (20) 7 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 +8 +8 +8 +8 +8
pegsol08 (30) 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 29 29 29 29 29 29 29
pegsol11 (20) 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 19 19 19 19 19 19 19
petr-net-align18 (20) 13 13 13 7 9 9 7 7 7 7 11 11 11 11 9 7 11 13 13 ◦12 ◦13 −11 −11 ◦13
pipesworld-notank04 (50) 26 26 25 21 25 25 20 24 20 24 25 26 27 30 27 24 25 26 28 ◦26 ⊕30 +27 +29 ⊕29
pipesworld-tank04 (50) 18 17 17 16 17 16 17 17 17 17 14 18 19 19 21 20 20 18 17 ⊕19 ⊕19 ⊕20 ⊕20 ⊕19
rovers06 (40) 6 6 6 7 8 8 7 8 7 8 7 8 7 8 6 8 8 7 8 +7 +8 +7 +8 +8
scanalyzer08 (30) 13 13 13 13 13 13 13 13 13 13 13 13 13 13 12 13 13 13 13 13 13 13 13 13
scanalyzer11 (20) 10 10 10 10 10 10 10 10 10 10 10 9 10 10 9 10 10 10 10 10 10 10 10 10
snake18 (20) 13 15 15 14 14 14 12 12 12 12 10 10 13 17 15 11 12 14 15 ⊕15 ◦15 13 −15 ◦15
sokoban08 (30) 30 30 30 30 30 30 30 30 30 30 29 30 30 30 30 30 30 30 30 30 30 30 30 30
spider18 (20) 14 13 15 12 14 14 13 13 13 13 12 14 15 16 14 13 13 15 15 ⊕16 ◦15 +15 −15 ◦15
storage06 (30) 16 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 +16 16 +16 +16
termes18 (20) 12 12 12 13 13 13 13 13 13 13 12 12 12 12 12 13 13 13 13 −12 −12 12 12 −12
tetris14 (17) 15 16 15 14 14 15 16 16 16 16 17 17 17 17 17 17 17 17 17 ⊕17 ⊕17 +17 +17 ⊕17
tidybot11 (20) 14 16 18 14 17 18 14 18 14 18 14 18 14 18 18 18 18 14 18 14 18 14 18 18
tidybot14 (20) 10 12 14 10 13 14 10 14 10 14 10 14 10 14 14 14 14 10 14 10 14 10 14 14
tpp06 (30) 6 6 6 6 6 6 6 6 6 6 8 8 7 7 6 6 6 7 7 ⊕8 ⊕8 ⊕8 ⊕8 ⊕8
trucks06 (30) 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 +14 14 +14 14 14
visitall11 (20) 16 16 16 17 17 17 17 17 17 17 16 16 14 14 11 17 17 17 17 +17 +17 −14 −14 +17
visitall14 (20) 12 12 12 13 13 13 13 13 13 13 11 11 9 9 5 14 14 13 13 +13 +13 −9 −9 +13
woodworking08 (30) 12 12 12 14 14 15 12 12 12 12 16 17 15 16 15 12 12 14 15 +14 ⊕17 +15 ⊕17 ⊕17
woodworking11 (20) 7 7 7 9 9 10 7 7 7 7 11 12 10 11 10 7 7 9 10 +9 ⊕12 +10 ⊕12 ⊕12
zenotravel02 (20) 10 10 10 11 11 11 11 11 11 11 11 11 10 10 11 11 11 11 11 +11 +11 ⊕11 ⊕11 +11
Σ (1697) 921 933 938 903 913 927 921 938 920 935 932 957 937 961 925 961 969 960 989 964 1 001 949 985 987
Σ w/o freecell00 (1617) 854 862 867 862 877 891 863 880 862 877 859 884 864 889 854 897 904 893 918 892 929 876 912 918

Table 1: Number of solved tasks for different heuristics. Only the domains with a difference in coverage are listed.

n 5 10 50 100 250 500 750 1 000 2 000
D-Sn 896 910 923 925 897 863 828 791 741
D-K1n 951 957 969 961 947 935 925 925 899
D-K2n 953 960 967 956 944 925 917 919 912
D-L1n 934 951 965 963 932 877 850 824 765
D-L2n 937 951 962 957 928 874 844 810 744

Table 2: Number of solved tasks for a different number of
samples n.

Sn seems to be at 100 samples and it is at 50 samples for
the methods using mutexes. It also seems that increasing k
(D-K1n vs. D-K2n, and D-L1n vs. D-L2n) does not provide better h-
values, and the same holds for increasing the size of sampled
partial states (D-K1n vs. D-L1n and D-L2n).

The best results were achieved with adding the con-
straint on the heuristic value of the initial state (Section 5.3,
Eq. (15)) in combination with disambiguations. In Table 1,
for the “+I” columns, we added (a) “◦” to indicate that the
coverage in the respective domain is higher than for the cor-
responding variant without the constraint (without +I); (b)
“+” to indicate a higher coverage than the Init variant; (c)
“⊕” if both of the previous cases hold at the same time; and

(d) “−” to indicate that the coverage is smaller than either
of the variants. There are very few domains in which the
coverage is smaller than for the variant without the added
constraint or for Init (the cases with “−”): only 2 out of
65 for D-All+I, 4 for D-Ŝ1k+I, and only 3 for D-M1+I. So,
it indeed seems that the combination of the optimization for
all states and for the initial state at the same time brings the
best from both.

A similar approach to All+I is to compute two poten-
tial functions, for all states and for the initial state, sepa-
rately and take the maximum as a heuristic value (denoted by
MaxIA). The comparison between All+I and MaxIA shows
that incorporating the initial state as a constraint (All+I)
provides better results overall, but in some domains MaxIA
solves more tasks than All+I. In parcprinter08, petri-net-
alignment18, and termes18, N-MaxIA solves more tasks than
N-All+I, and in openstacks06 D-MaxIA solves more tasks
than D-All+I. In all other domains, All+I is at least as good
as MaxIA.

To compare the results to other state-of-the-art heuris-
tics, we also evaluated the LM-Cut (lmc) heuristic (Helmert
and Domshlak 2009), the merge-and-shrink (ms) heuristic
with SCC-DFP merge strategy and non-greedy bisimulation
shrink strategy (Helmert et al. 2014; Sievers, Wehrle, and

131

lmc ms flw comp1 comp2 ppdbs scrp

overall 911 895 816 1 046 1 091 1 090 1 112
w/o freecell00 896 874 762 1 019 1 059 1 056 1 040

Table 3: Number of solved tasks for a different heuristic
search planners.

Helmert 2016), the flow (flw) heuristic (Bonet and van den
Briel 2014; Bonet 2013), and the four best-performing
non-portfolio planners from IPC 2018: Complementary1
(comp1) (Franco et al. 2018), and Complementary2 (comp2)
(Franco et al. 2017; Franco, Lelis, and Barley 2018) plan-
ners, the Planning-PDBs planner (ppdbs) (Moraru et al.
2018; Franco et al. 2017), and the Scorpion planner (scrp)
(Seipp 2018; Seipp and Helmert 2018). The overall coverage
is shown in Table 3.

Our best variant of the potential heuristic (D-All+I)
solved 90 (33 without the freecell domain) more tasks than
lmc, 106 (55) more than ms, and 185 (167) more than flw.
And the best performing variant that uses mutexes for esti-
mating the number of reachable states, D-K150, solved 58 (8),
74 (30), and 153 (142) more tasks than lmc, ms, and flw,
respectively. However, all variants of the potential heuris-
tic were surpassed by all four evaluated planners from IPC
2018. D-All+I solved 45 (90), 90 (130), 89 (127), and 111
(111) fewer planning tasks than comp1, comp2, ppdbs, and
scrp, respectively.

7 Conclusion

We showed that utilizing mutexes can significantly improve
potential heuristics. Disambiguations in the goal and oper-
ator preconditions increase the overall coverage whenever
they are used and they decrease the coverage only in a very
small number of domains. It is also clear that the multi-
fact disambiguation dominates the single-fact disambigua-
tion for virtually no cost at all.

A more accurate estimation of the number of reachable
states using mutexes results in a higher overall coverage than
the optimization for all syntactic states, but mainly due to
two domains only. However, a similar technique used for an
ensemble of potential heuristics, each conditioned on a par-
tial state, increases the number of solved tasks even if the
partial states are sampled randomly. A better structural anal-
ysis, for example with causal graphs, could probably lead to
even better selection of the partial states, but we leave it for
future research.

The additional constraint on the heuristic value for the
initial state improves the overall coverage whenever used.
Its use is orthogonal to the disambiguation technique and it
turned out that such constraint in combination with disam-
biguations and the optimization for all syntactic states re-
sults in the best performing variant of the potential heuris-
tic. This variant outperforms the LM-Cut, merge-and-shrink,
and flow heuristics solving 90, 106, and 185 more prob-
lems, respectively, on the standard benchmark set. However,
it is still surpassed by all four best-performing non-portfolio
planners from the last IPC 2018.

Acknowledgements

The work of Antonı́n Komenda and Rostislav Horčı́k was
supported by the Czech Science Foundation (grant no. 18-
24965Y). The work of Daniel Fišer was supported by the
Czech Science Foundation (grant no. 19-22555Y). The ex-
perimental evaluation was supported by the OP VVV funded
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Cen-
ter for Informatics”.

References

Alcázar, V., and Torralba, Á. 2015. A reminder about the impor-
tance of computing and exploiting invariants in planning. In Proc.
ICAPS’15, 2–6.
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R. 2013.
Revisiting regression in planning. In Proc. IJCAI’13, 2254–2260.
Bäckström, C., and Nebel, B. 1995. Complexity results for SAS+

planning. Computational Intelligence 11(4):625–655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1–2):5–33.
Bonet, B., and van den Briel, M. 2014. Flow-based heuristics for
optimal planning: Landmarks and merges. In Proc. ICAPS’14, 47–
55.
Bonet, B. 2013. An admissible heuristic for SAS+ planning ob-
tained from the state equation. In Proc. IJCAI’13, 2268–2274.
Chen, Y.; Xing, Z.; and Zhang, W. 2007. Long-distance mutual
exclusion for propositional planning. In Proc. IJCAI’07, 1840–
1845.
Eriksson, S.; Röger, G.; and Helmert, M. 2018. A proof system for
unsolvable planning tasks. In Proc. ICAPS’18, 65–73.
Fišer, D., and Komenda, A. 2018. Fact-alternating mutex groups
for classical planning. Journal of Artificial Intelligence Research
61:475–521.
Fišer, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator mutexes
and symmetries for simplifying planning tasks. In Proc. AAAI’19,
7586–7593.
Fišer, D. 2020. Lifted fact-alternating mutex groups and pruned
grounding of classical planning problems. In Proc. AAAI’20, to
appear.

Franco, S.; Torralba, Á.; Lelis, L. H.; and Barley, M. 2017. On
creating complementary pattern databases. In Proc. IJCAI’17.
Franco, S.; Lelis, L. H. S.; Barley, M.; Edelkamp, S.; Martinez, M.;
and Moraru, I. 2018. The Complementary1 planner in IPC 2018.
In IPC 2018 planner abstracts, 28–31.
Franco, S.; Lelis, L. H. S.; and Barley, M. 2018. The Complemen-
tary2 planner in IPC 2018. In IPC 2018 planner abstracts, 32–36.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern database
heuristics for cost-optimal planning. In Proc. AAAI’07, 1007–
1012.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In Proc.
ICAPS’09, 162–169.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge & shrink abstraction: A method for generating lower bounds
in factored state spaces. Journal of the Association for Computing
Machinery 61(3):16.1–16.63.
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.

132

Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173:503–535.
Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ planning as
satisfiability. Journal of Artificial Intelligence Research 43:293–
328.
Moraru, I.; Edelkamp, S.; Martinez, M.; and Franco, S. 2018.
Planning-pdbs planner. In IPC 2018 planner abstracts, 69–73.
Pommerening, F., and Helmert, M. 2015. A normal form for clas-
sical planning tasks. In Proc. ICAPS’15, 188–192.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015a.
From non-negative to general operator cost partitioning. In Proc.
AAAI’15, 3335–3341.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015b.
From non-negative to general operator cost partitioning: Proof de-
tails. Technical Report CS-2014-005, University of Basel, Depart-
ment of Mathematics and Computer Science.
Pommerening, F.; Helmert, M.; and Bonet, B. 2017. Higher-
dimensional potential heuristics for optimal classical planning. In
Proc. AAAI’17, 3636–3643.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Planning as sat-
isfiability: parallel plans and algorithms for plan search. Artificial
Intelligence 170(12-13):1031–1080.
Seipp, J., and Helmert, M. 2018. Counterexample-guided Carte-
sian abstraction refinement for classical planning. Journal of Arti-
ficial Intelligence Research 62:535–577.
Seipp, J.; Pommerening, F.; Röger, G.; and Helmert, M. 2016.
Correlation complexity of classical planning domains. In Proc.
IJCAI’16, 3242–3250.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New optimiza-
tion functions for potential heuristics. In Proc. ICAPS’15, 193–
201.
Seipp, J. 2018. Fast downward scorpion. In IPC 2018 planner
abstracts, 77–79.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analy-
sis of merge strategies for merge-and-shrink heuristics. In Proc.
ICAPS’16, 294–298.
van den Briel, M.; Benton, J.; Kambhampati, S.; and Vossen, T.
2007. An LP-based heuristic for optimal planning. In Proc. CP’07,
651–665.

133

