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Abstract

Maintaining a semantic map of a complex and dynamic envi-
ronment, where the uncertainty originates in both noisy per-
ception and unexpected changes, is a challenging problem. In
particular, we focus on the problem of maintaining a semantic
map of an environment by a mobile agent. In this paper we
address this problem in an hierarchical fashion. Firstly, we
employ a probabilistic logic model representing the seman-
tic map, as well as the associated uncertainty. Secondly, we
model the interaction of the robot with the environment with
a set of information-reward POMDP models, one for each
partition of the environment (e.g., a room). The partition is
performed in order to address the scalability limitations of
POMDP models over very large state spaces. We then use
probabilistic inference to determine which POMDP and pol-
icy to execute next. Experimental results show the efficiency
of this architecture in real domestic service robotic scenarios.

Introduction
In this paper we present an efficient way to accurately repre-
sent cognitive knowledge about the environment through the
use of a semantic map (Pangercic et al. 2012). One challenge
in the use of semantic maps is to keep an updated informa-
tion about the environment, as well as, to have a reduced
uncertainty about the world state. Moreover, it can also use
that information to influence its behavior in order to carry
out some tasks.

To address this problem, we propose an hierarchical ap-
proach composed of two layers: a (1) execution layer based
on sequential decision making under uncertainty models,
and a (2) coordination and knowledge representation layer
based on probabilistic logic.

At the execution layer, we split the world into regions,
dubbed partition, and the problem of decision making into
multiple subproblems. Each subproblem is responsible for
a partial representation of the global world and to make
decisions within the scope of that partition. The decision
maker mechanism used to make decisions in each partition
is an information-reward POMDP (Spaan, Veiga, and Lima
2015), as it provides a principled framework to model deci-
sion making under uncertainty and to probabilistically rep-
resent the uncertainties in the system.
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At the coordination and knowledge representation layer,
we employ a probabilistic logic approach (De Raedt and
Kimmig 2015), that keeps an updated belief about the global
world state, and uses that information to coordinate the ex-
ecution layer. Through a probabilistic inference process, the
knowledge representation engine is also able to fully gen-
erate each POMDP model of the decision maker, given the
world model that it receives as input. For simplicity, we will
refer to this layer as the knowledge layer throughout the pa-
per.

Inspired by the RoboCup@Home competition scenar-
ios (van der Zant and Wisspeintner 2007), we evaluated
an instantiation of this architecture in a domestic scenario.
Here, a robot learns a semantic map without prior knowl-
edge and keeps this information updated, even under human-
made changes in the environment. We show that we are able
to keep a low uncertain information over time, that the sys-
tem is able to recover from changes in the environment and
is robust to false observations.

We start by reviewing the probabilistic programming and
decision-making with POMDPs frameworks, then give a
general overview of the proposed architecture and more de-
tails of its execution. Finally we present the experimental
setup and results and draw final conclusion.

Related Work
Semantic mapping was developed as a mean to provide an
abstraction of spatial information in robotics and incorpo-
rate common-sense knowledge (Kostavelis and Gasteratos
2015). Hierarchical representations are a common approach
to establish spatial relations. For instance, objects have prop-
erties that distinguish them and can be located at some
places. This way, semantic information from sensors was
used for navigation tasks (Galindo et al. 2005) or layered
representations of knowledge that consider the uncertainty
on the dynamics of the system and build probabilistic con-
ceptual maps (Pronobis et al. 2010; Pronobis and Jensfelt
2012). Closer to our work, probabilistic conceptual maps
and probabilistic planning have been also combined in ob-
ject search tasks (Hanheide et al. 2011) that actively rea-
sons about the current environmental information to achieve
goals. Probabilistic logic and decision-making were com-
bined to decouple the global information update and the
local decision-making processes (Veiga et al. 2016), with
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application to single regions. In this paper the agent takes
into account the current quality of information, and the cur-
rent system objective, to decide which region of the envi-
ronment to explore and to plan actions locally without any
simplification in the decision-making process, making the
decision-making process more scalable. Robot task planning
benefits from semantic information, providing the robot with
abilities to perform its tasks more efficiently (Galindo et al.
2008). In this work we are able to tackle planning towards a
physical goal, as well as planning for information gathering
as a mean to improve the current semantic map information.

Background
Probabilistic Logic Programming
The introduction of probabilities in logic programming al-
lows to encode the inherent uncertainty present in real-life
situations. Probabilistic logic programs are logic programs
in which some of the facts are annotated with probabilities,
supporting probabilistic inference and learning. We focus
on the probabilistic logic programming language ProbLog,
which is a probabilistic extension of Prolog.

A ProbLog program has a set of ground probabilistic facts
and a logic program, that is, a set of rules and non probabilis-
tic facts (De Raedt, Kimmig, and Toivonen 2007). The last
one is the same as in logic programming. A ground proba-
bilistic fact is a fact f with no variables and probability p
and can be written as p::f. It is also possible to write an
intentional probabilistic fact, which compactly specifies an
entire set of ground probabilistic facts. ProbLog also allows
the use of annotated disjunctions (Dries et al. 2015), like
the sentence 0.15::bird(V); 0.09::mammal(V);
0.5::fish(V) :- vertebrate(V), with the struc-
ture p1 :: h1 ; ... ; pn :: hn : − body.

A ProbLog program specifies a probability distribution
over states. Given a set of features of interest, we may define
state variables and construct a probabilistic logic program
with probabilistic facts for each state variable. With this,
and given evidence from the environment, we may compute
a probability for all possible values of state variables and,
thus, build a belief for the whole system.

Partially Observable Markov Decision Processes
(POMDPs) A POMDP can be described as a tuple
〈S,A, O, T,Ω, R, h, γ〉 (Kaelbling, Littman, and Cassandra
1998). At any time step the environment is in a state s ∈ S,
the agent takes an action a ∈ A and receives a reward
R(s, a) from the environment as a result of this action,
while the environment switches to a new state s′ according
to a known stochastic transition model T : p(s′|s, a).
After transitioning to a new state, the agent perceives an
observation o ∈ O, that may be conditional on its action,
which provides information about the state s′ through
a known stochastic observation model Ω : p(o|s′, a).
The agent’s task is defined by the reward it receives at
each timestep t and its goal is to maximize its expected
long-reward E[

∑∞
t=0 γ

tR(st, at)], where γ is a discount
rate, 0 ≤ γ < 1.

Given the transition and observation models a POMDP
can be transformed to a belief-state MDP in which the agent

summarizes all information about its past using a belief vec-
tor b(s).The initial state of the system is drawn from the ini-
tial belief b0. Every time the agent takes an action a and
observes o, b is updated by Bayes’ rule:

boa(s′) =
p(o|s′, a)

p(o|a, b)
∑
s∈S

p(s′|s, a)b(s), (1)

where p(o|a, b) is a normalizing constant.
The agent behavior is given by the policy, that maps be-

liefs to actions. The value of a policy π is defined by a value
function V :

V ∗(b) = max
a∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
o∈O

p(o|b, a)V ∗(boa)
]
,

(2)
with boa given by (1). The optimal policy that maximizes the
value function is denoted as π∗. The POMDP value function
has been proven to be piecewise linear and convex (PWLC),
which is used by most algorithms to efficiently represent it.

Factored models are used and exploited in POMDP repre-
sentation and solving. By factorizing the state, observation
and/or actions spaces we may represent these spaces as a
cross-product of variables.

POMDPs for Active Perception In the classical POMDP
definition rewards are defined over states and actions. How-
ever, when transforming it in a belief-MDP the current re-
ward is given by the expected immediate reward for the cur-
rent belief:

r(b, a) =
∑
s∈S

b(s)R(s, a) (3)

From the perspective of active perception, as the belief is
a probability distribution over the state space, it is natural
to define the quality of information based on it. We could
use the belief to define a measurement of the expected in-
formation gain when executing an action. However, with re-
ward models directly defined over beliefs the value function
is no longer PWLC. Some extensions to the classic POMDP
formulation allow to formulate POMDP models for infor-
mation gain and keeping PWLC value function, such as
POMDP-IR (Spaan, Veiga, and Lima 2015) and ρPOMDP
(Araya et al. 2010).

We use the POMDP-IR formulation, which extends the
original action space with information rewarding actions.
These actions do not influence the physical state of the en-
vironment and are run in parallel with the original domain
actions, but appropriately reward the system to reach low-
uncertain levels of belief for features of interest in the envi-
ronment.

Architecture Description
The proposed approach includes a coordination and knowl-
edge representation layer, that infers its knowledge from ob-
servations perceived by the agent’s sensors, and an execu-
tion layer, that models the interaction between the agent and
the environment given the current knowledge in the knowl-
edge representation layer. To overcome scalability issues the
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world is divided into partitions and a set of POMDP models
are derived, one for each partition. Overall, both layers com-
plement each other and provide a more efficient and scalable
framework for object search in an environment.

The world model must be compatible between both layers
to ensure that they can effectively communicate and get in-
formation from the environment. A consequence is that the
POMDP generation is made through the upper layer taking
into account the global world model. Also, at execution time,
the knowledge engine must correctly select which partition
of the environment to explore and, therefore which POMDP
to select. This means that there are two levels of decision:
a macro level in which the knowledge engine selects one
POMDP (this is equivalent to decide which partition of the
environment to explore) and a micro level in which each
POMDP drives the agent through the environment.

In the following of this section we will describe in de-
tail each one of these layers and how they tackle these chal-
lenges.

Coordination and Knowledge Representation
Layer
The knowledge layer generates a knowledge base from an
initial world model that consists of a list of instances, their
properties and relations between them. Instances are any
kind of physical entity existing in the environment, which
can have relations between them. For instance, in a domestic
semantic mapping context this can be considered as a list of
objects, furniture and rooms with their characteristics, such
as position, volume, size and others.

This is then used by a reasoning engine, based in the
ProbLog language, to create a set of rules and probabilis-
tic facts that will later be used to perform inference with the
observations perceived from the environment and to gener-
ate models for the decision maker.

The knowledge layer considers that, at each time, a state
S can be defined as the joint discrete probability distribution
of a set X = {X1, X2, . . . , XKT

} of independent discrete
random variables. Each state S in the state space S can be
defined as:

S = X1 ×X2 × · · · ×Xi · · · ×XKT
(4)

Each state variable Xi can take any value in its domain Di.
Then, the size of the state space |S| is equal to the combina-
tions of the domain Di of each state variable Xi,

|S| =
KT∏
i=1

Di. (5)

Execution Layer
The execution layer implementation is based on the POMDP
framework and provides the system with intelligent deci-
sions to efficiently construct a semantic map. On the other
hand, the state knowledge representation of POMDPs is ex-
panded by the knowledge layer.

Each POMDP n of the execution layer has a set of states
Sn. Each state Sn in Sn is defined as the joint discrete prob-
ability distribution of a set Xn of independent discrete ran-
dom variables. It is important to notice that,

|Xn| ≤ |X | (6)

and that each variable Xn
i ∈ Xn has a match with the

variable Xi ∈ X , because they are representing the same
feature in the world model. However, they are not the same
because they have different domains. The domain of Xn

i
is Dn

i and it is adapted to the partition of the respective
POMDP. It should be noted that there is an important char-
acteristic of the relation betweenXi andXn

i domains, given
by Equation (7), because the partition in each POMDP is
restricted with respect to the global world.

|Dn
i | ≤ |Di|, (7)

Conditions presented in Equations (6) and (7) are the rea-
son for the dimension of Sn to be smaller than S.

To construct the domain of the variablesDn
i in a POMDP,

domain values that are not available on that specific sub-
world must be represented because those values are still
valid in the global world representation. For that reason, all
those values can be aggregated in a single value, here des-
ignated as none. It represents those values, but does not dis-
criminate each one individually, minimizing the number of
POMDP states, as desired. Every time the knowledge layer
calculates the belief bn of each POMDP n it generates the
new probability distribution for each state variable Xn

i of
POMDP n. For that purpose, a function fn,i for each state
variable Xn

i of each POMDP is considered, that associates
each element of the domain Di to a single element of the
domain Dn

i ,
fn,i : Di → Dn

i . (8)

If Di = Dn
i , fn,i is an endofunction, however, the most

common case is to have Dn
i ⊆ Di ∪ {none} where none

represents the set of elements Di \Dn
i and then

P (Xn
i = xni ) =


∑

xi∈Di\Dn
i

P (Xi = xi) , if xni = none

P (Xi = xni ) , otherwise
(9)

Execution Flow
In this section we outline key features of the proposed ap-
proach, in particular automatic generation of POMDP mod-
els, POMDP selection and update of the global belief in the
coordination layer.

At execution time, the knowledge layer keeps a global
probabilistic representation of the world state, initialized as
a uniform distribution, and decides which partition of the
environment to explore by selecting a POMDP to which the
control of the agent is assigned. This POMDP executes until
some stopping criteria is met and returns the received obser-
vations to the knowledge layer, that updates the global belief
and again selects the next partition to explore. A schematic
of the execution flow is outlined in Figure 2.

POMDP generation
At initialization, the system receives a world model from
the system designer that is read by the knowledge layer and
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Figure 1: Proposed architecture. S is the global state space, Si, i = 1, . . . , N and bi, i = 1, . . . , N are, respectively, the state
spaces and beliefs for each partition of the environment.

Figure 2: Execution flow of our approach. Execution layer
interacts with the environment while the Coordination and
Knowledge Representation Layer keeps a higher level of ab-
stract information.

fed into a POMDP generator, which automatically builds the
POMDP models for each partition. Finally, optimal policies
for those POMDPs are computed by POMDP solving algo-
rithms.

The partition criterion is defined a priori. Each tuple
〈Sn,An, On, Tn,Ωn, Rn〉, that defines the POMDP n, is
completely defined by the knowledge layer. This partition
into smaller POMDP models reduces the computational
complexity of computing policies. The dimension of Sn for
each POMDP is smaller than S, that considers all the possi-
ble world states.

POMDP selection
A macro decision is made every time the robot finishes

exploring a region of the environment. The knowledge layer
must decide which region to explore next, taking into ac-

Algorithm 1 POMDP selection algorithm
Input: V1, . . . , VN , bt

if objective is carry task then
n∗ = argmaxn Vn(bnt )

else if objective is information gain then
n∗ = argminn Vn(bnt )

end if
return n∗

count the global belief b. For that, it receives as inputs the
value functions of each POMDP model (V1, . . . , VN ) and the
current belief (bt) and compares how beneficial it is to follow
the POMDP of each region. Because all POMDPs are gen-
erated through the same engine in the knowledge layer we
ensure that the structure of the model is the same across dif-
ferent POMDPs we the performance of optimal policies for
different partitions are comparable, according to some met-
ric defined according to the system’s main goal. In this paper
we focus on two main goals: i) actively learn or update infor-
mation on a semantic map; ii) carry out a particular physical
task; the selection scheme is resumed in Algorithm 1.

The first is an instance of an active perception scenario,
meaning that the agent should prefer to explore regions with
less certain information. Because we use the POMDP-IR
framework, that rewards the model positively to achieve low
uncertainty beliefs, the value function is an indirect measure
of the quality of information in the belief. Also, the POMDP
policy maximizes the value function in the long run and,
due to the convexity property of the value function, it drives
the belief to regions on the extremes of the belief simplex.
Therefore, choosing the POMDP with the lowest value for
the current belief means that the potential information gain
will be higher. An alternative to this could be to choose the
POMDP of the room with highest belief entropy, but then
we would not take into account the dynamics of the model
to gather information, which is indirectly represented in the
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value function.
If the goal is to perform a physical defined task, such as

carrying an object from one point to the other, than the best
option is to select the POMDP with the highest value func-
tion for the current belief, similarly to auctioned POMDPs
(Capitán et al. 2013).

Global belief update
While exploring the environment the global belief is updated
in the knowledge layer with observations communicated by
the execution layer. The belief is first smoothed through an
exponential decay and then updated through an inference
process that uses the received observations as evidence to
the probabilistic logic program. The probability distribution
of each variable Xi is smoothed as in Equation (10), where
Pprevious(Xi = x) is the value of the probability distribu-
tion of Xi at the previous time step, Puniform(Xi = x) is
the probability value for a uniform distribution and λ is the
decay rate.

P (Xi = xi) = Puniform (Xi = xi) +

+
[
Pprevious (Xi = xi)− Puniform (Xi = xi)

]
e−λt

(10)

Then, the observation o is used in an inference process to
complete the global belief update. The global belief b and
the belief of partition n, bn, are defined as the joint probabil-
ity distribution of the set of state space variables X and Xn.
Given the independence between state variables in Xn and
in X , updating the belief b with the new belief bn is equiv-
alent to update the probability distribution of each variable
Xi, given the probability distribution of the respective Xn

i ,
and then calculate the joint probability distribution of the
variables updated in the set X . The probability distribution
of the state variables Xi remains the same when there is no
correspondent Xn

i in the set Xn and the remain variables
Xi are updated individually, taking into account the proba-
bility distribution that comes up from the belief of POMDP
n. This probability represents the posterior of the variable
Xn
i given the current belief an observation o. Considering

P (xi) = bt−1(xi) as the prior probability distribution of
Xi, the posterior probability P (xi|bt−1, o) = bt(xi) can be
derived to the Equation (11), where fi,n is the function that
associates each element in Di to an element in Dn

i , for the
POMDP n, t and t− 1 are, respectively, the current and pre-
vious time step.

P (xi|bt−1, o) =
P (xi)P

(
xni |bnt−1, o

)∑
xi∈Di

P (xni |xi)P (xi)

,with xni = fi,n (xi)

(11)

Considering that P (xni |xi) is given by Equation (12),

P (xni |xi) =

{
1 , if xni = fi,n (xi)

0 , otherwise
(12)

then, Equation (11) can also be written as in (13).

P (xi|bt−1, o) =


P
(
xni |bnt−1, o

)
, if xi ∈ Di ∩Dn

i

P (xi)P
(
xni |bnt−1, o

)∑
xi∈Di\Dn

i

P (xi)
, otherwise

(13)
where P

(
xni |bnt−1, o

)
= bnt (xni ) is the current belief of

POMDP n. This ensures that the belief of the value none in
each partition belief updates proportionally the values on the
global belief that were aggregated in there.

Experimental Setup
For experiments we considered a robot in a domestic envi-
ronment, where it must locate some objects and, possibly,
perform some tasks with them. A map of the environment is
presented in Figure 3

Figure 3: Map of the domestic environment used in our ex-
perimental results.

Model
The world model consists of an apartment scenario with all
its rooms, furniture, objects and their respective character-
istics and relations. Each POMDP model of the execution
layer is defined as follows.

States and transitions The model includes one state vari-
able for the position of the robot and one state variable for
the position of each object that can be located in the room.
Objects can be located in any of k waypoints through which
the robot navigates. For the purpose of our task we consider
a simple deterministic state transition model both for robot
movement and object location, although POMDPs general-
ize for more complex dynamics. In practice, this means that
we consider that the robot’s navigation is always successful
and that objects remain static in their initial position during
each run. Those are realistic assumptions given that, in one
hand, nowadays there are reliable and accurate navigation
algorithms that work well in our kind of environments and
can be separated from the decision-making task. In the other
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hand, in these environments it is not expected that objects
are relocated too often while the robot performs a search task
and, even if it happens, it will be detected in the following
searching episode. Moreover, the knowledge layer already
includes a decay in the belief update.

Observations There is an observation variable for each
object of interest (1 ≤ i ≤ m). Every time a perception
action is triggered each of the observation variables takes a
value yes or no, indicating whether that object was detected
by the onboard camera or not. Depending on the distance
between placements we assign a probability of observing an
object in a location different from the actual one that decays
with the distance to the current location. Furthermore, vol-
ume of objects are also considered and larger objects have
higher probability of being correctly observed.

Actions Following the POMDP-IR framework used, there
are two kind of actions: domain Ad and information-
rewarding AIRi

actions. Domain actions are those which
physically interact with the environment. In our model it
includes moving actions, that guide the robot through the
different locations of interest in the environment, a percep-
tion action that uses the camera to detect objects in the ac-
tual location, and an additional doNothing action that indi-
cates the end of a searching episode. The set of information-
rewarding actions include one for each object of interest.
This extra actions indicate whether an object is believed to
be in some location in the actual room, not found in this
room, or null if there is not enough information.

Rewards The set of rewards used follow the set of ac-
tions previously mentioned. Therefore, the model includes a
cost for moving actions, based on the distance between way-
points, and a cost for perception actions. There is neither a
cost nor reward for doNothing action, to motivate the end of
an episode every time the agent achieved a low-uncertainty
information. For information-gaining actions we include re-
wards that are positive if the belief for a particular state vari-
able is above a threshold of β = 0.9. This will guide the
system to increase the available information about object lo-
cations.

Results
In our set of experiments we use the Hellinger distance be-
tween the current belief of the system and a perfect belief,
that is, the belief which would be 1 for the true state of the
environment and 0 otherwise, as a metric for the quality of
the information. For two discrete probability distributions
U = (u1, ..., un) and V = (v1, ..., vn), the Hellinger dis-
tance is defined as

H (U, V ) =
1√
2

√√√√ n∑
i=1

(
√
ui −

√
vi)

2
, (14)

A possible alternative would be to measure the entropy of
the current belief but, in that case, we would be measuring
only how much informative is the belief, without consider-
ing how close it would be to the true state of the environ-
ment. Instead, we can do that with the Hellinger distance.

Semantic mapping 1

In the first set of experiments, we tested the framework in
a domestic semantic mapping scenario in which the system
wants to learn the position of a set of objects in the envi-
ronment and, subsequently, keep track of their location. The
model considers a set of possible locations for the objects
based on the furniture existing at the house and received ini-
tially through the world model. These locations are detailed
in Table 1.

Kitchen Living Room Dining Room Bedroom

kitchen table
coffee table

dining table
bed

kitchen cabinet
sideboard

nigh stand
bookshelf

Table 1: Placements in the semantic map experiments.

Static objects First, we test with objects that remain static
throughout the run. The initial distribution of each object
state variable is uniform, therefore the initial Hellinger dis-
tance is 0.8 for all objects. Figures 4a and 4b show, respec-
tively, the evolution of the Hellinger distance for the belief
of each object and the value function for each partition of
the map at each decision step.

The agent moves between the living room, bedroom and
kitchen, while it never visits the dining room. Based on the
information it has from the rest of the placements, the agent
is able to infer whether objects are in the dining room be-
cause there is just one placement there. That is why the value
of the policy for the dining room is never the lowest of all
rooms. On the other hand, if the agent decided to explore the
dining room, the belief of mug gray would increase while
the belief of the remain objects would decrease due to be-
lief decay, leading the global belief farther from a perfect
belief and, therefore the whole system with more uncertain
information.

Dynamic objects We repeated the same initial configura-
tion but now changing objects’ location along the run. The
true localization of objects are presented in Table 2.

Figures 4c and 4d present the Hellinger distance between
the current and perfect beliefs and the value function at de-
cision steps.The robot visits the living room more often be-
cause it is the room with more placements and the belief de-
cays overtime. Again, the Hellinger distance decreases over
time as the robot explores the environment. Note that ini-
tially the information about the mug gray does not decrease
at the same pace as the other objects, due to the fact that it is
located in the dining room. The belief decay leads the belief
of well localized objects to spread before each decision step
of the coordination layer and the system always decides to
explore other rooms with more placements and, therefore,
more potential to gather information.

In general, after every modification in objects location
there is a peak in the Hellinger distance, meaning that the be-

1Additional video experiments may be found at https://youtu.
be/eLUWA QkVuo.
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(a) Static objects: Hellinger distance.

0 20 40 60 80 100 120 140 160 180

Step

15

20

25

30

35

V
a

lu
e

 f
u

n
c
ti
o

n

Bedroom Kitchen Living Room Dining Room

(b) Static objects: value function at decision steps.
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(c) Dynamic objects: Hellinger distance.
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(d) Dynamic objects: value function at decision steps.
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(e) Incorrect observations robustness: mean Hellinger dis-
tance over 200 steps. E is error rate in predicted in observation
model.
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(f) Incorrect observations robustness: Hellinger distance over
200 steps. E is error rate in predicted in observation model.
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(g) Carrying out a task: Hellinger distance.
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(h) Carrying out a task: Hellinger distance.

Figure 4: 4a,4b,4c,4d Mug gray: dining table, Coca cola: kitchen table, Pringles: coffee table, 4e Mug gray: bed, Coca cola:
coffee table, Pringles: kitchen cabinet, 4f Mug gray: night stand, Coca cola: bookshelf, Pringles: sideboard, 4g Coca cola:
sideboard, Pringles: dining table., 4h Coca cola: kitchen table, Pringles: coffee table.

779



steps object location

0-75
mug gray dining table
cocacola kitchen table
pringles coffee table

76-120
mug gray night stand
cocacola kitchen table
pringles coffee table

121-175
mug gray night stand
cocacola kitchen table
pringles bookshelf

176-260
mug gray kitchen cabinet
cocacola kitchen table
pringles kitchen table

Table 2: Human changes in the location of objects during the
Dynamic objects experiment.

lief is inaccurate, but recovered after some steps. A final note
for the behavior in the last steps of the experiment, when all
objects are located in the same room. Due to this fact the
system receives newer observations of the objects before the
decay spreads the belief too much and, therefore, beliefs are
more accurate in this case.

Incorrect observations robustness Finally, we tested the
robustness against incorrect observations. Despite the ex-
pected error rate in the observation model, conditions may
change overtime and in the long run different error rates
arise. Therefore, we executed tests for two different config-
urations of objects location with false positive and negative
rates different from the ones predicted in the model. Fig-
ures 4e and 4f show the mean Hellinger distance for a run of
200 steps. With actual error rates up to 2 times higher than
the predicted in the observation model the system is still able
to maintain a mean Hellinger distance over the episode sim-
ilar to the original one. This shows that even with real con-
ditions different from the ones predicted in the model the
system is still able to perform well and maintain a good in-
formation about the environment state.

Carrying out a task
As mentioned this approach is also useful in situations where
the goal of the agent is to carry out a specific task. In this
case the agent will do information gathering only if that is
useful for task performance. We tested this behavior in a sce-
nario in which the robot is instructed to move the cocacola
close to the pringles, without a priori knowledge of the local-
ization of both objects. Two different initial configurations
of the location of objects were considered, with the place-
ments in Table 3.

Kitchen Living Room Dining Room Bedroom
kitchen table coffee table

dining table
kitchen cabinet sideboard

Table 3: Placements in the carrying out a task experiments.

Here, the partition to explore is select from the POMDP
with the highest value function for the current belief. In Fig-

ure 4g the robot finds the cocacola in the first room that it
visits, grasps it and keeps it in the gripper until it finds the
pringles that are in the dining room. After grasping the co-
cacola it first visits the kitchen because there are two place-
ments and, therefore, the probability of finding objects there
is higher, which implies that the expected rewards are also
higher. In Figure 4h, the robot first finds the pringles and,
as soon as it finds the cocacola, goes back to the placement
where the pringles were found in order to reach the goal.

Discussion
In general, the agent has an active behavior that keeps the
level of uncertainty reduced. When there is any change in
the true state of the environment, our approach is able to
minimize the uncertainty about the world state in a short
amount of time and in different conditions: moving the ob-
ject to a placement inside the same room or to a different
room, moving one or multiple objects simultaneously, etc.
Our approach deals well with incorrect observations, even
when error rates are as high as twice the expected by the
model.

We observed behaviors such as deciding to explore more
often rooms with more placements because there is a higher
chance of finding them there. The dining room only has one
placement and the system can infer the probability of the
object being there without actually visiting it.

Conclusions
In this work we present an integrated and efficient approach
to represent cognitive knowledge about uncertain environ-
ments. By exploiting the advantages of probabilistic pro-
gramming and decision-theoretic planning an hierarchical
architecture is able to mitigate the disadvantages of both.
With this architecture POMDP models are automatically
generated for the semantic mapping application using the
world model as an input to infer the states, observation, tran-
sition and rewards function of each POMDP, thus avoiding
the explicit declaration of the model.

We show the approach performance in an application to a
semantic map scenario, in which the system is able to main-
tain a probabilistic representation of the location of objects,
even after human changes in the environment and, if needed,
use that information to carry out a task. The presented archi-
tecture is also robust to incorrect observations.

In future work, we would like to extend this work to mul-
tiple robots exploring multiple rooms, where cooperation
must be taken into account. Also, learning the model, in par-
ticular the transition, observation and reward functions di-
rectly from the environment through inverse reinforcement
learning processes can lead to better representation of the
environment model.
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