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Abstract
Resorting to certain heuristic functions to guide the search,
the computational efficiency of prevailing path planning al-
gorithms, such as A*, D*, and their variants, is solely deter-
mined by how well the heuristic function approximates the
true path cost. In this study, we propose a novel approach
to learning heuristic functions using a deep neural network
(DNN) to improve the computational efficiency. Even though
DNNs have been widely used for object segmentation, natural
language processing, and perception, their role in helping to
solve path planning problems has not been well investigated.
This work shows how DNNs can be applied to path plan-
ning and what kind of loss functions are suitable for learning
such a heuristic. Our preliminary results show that an appro-
priately designed and trained DNN can learn a heuristic that
effectively guides prevailing path planning algorithms.

Introduction
Efficient path planning is required for many applications,
for example, self-driving cars and home service robots.
A variety of path planning algorithms has been proposed,
yet heuristic learning using deep neural networks (DNNs)
have not been studied well. Deep learning has been suc-
cessful in a variety of applications, such as object recogni-
tion (Krizhevsky, Sutskever, and Hinton 2012), video games
(Mnih et al. 2015), and image generation (Goodfellow et al.
2014). Inspired by the object segmentation and the image
generation algorithms, such as U-Net (Ronneberger, Fischer,
and Brox 2015) and generative adversarial network (GAN)
(Goodfellow et al. 2014), we investigate how to apply these
techniques to path planning. We focus on learning a heuristic
function instead of taking end-to-end approaches that map
sensory inputs to actions directly so that we can still use
the current well-developed search-based path planning algo-
rithms. This paper shows a potential direction of heuristic
learning for path planning. Our contributions are as follows:
• We applied a neural network architecture commonly used

in semantic segmentation in order to learn heuristic func-
tions for path planning.

• We investigated loss functions that are suitable for learn-
ing heuristic functions.
∗Work done at Mitsubishi Electric Research Laboratories
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• We showed that the learned heuristic functions can reduce
the search cost in many scenarios in two domains: 2D grid
world and continuous domain.

The overall framework is outlined in Figure 1 and is ex-
plained in the “Proposed methods” section.

Figure 1: Learning heuristic functions for path planning.

Related Work
Path Planners
A variety of search algorithms have been proposed ,such as
A* (Hart, Nilsson, and Raphael 1968), Anytime Repairing
A* (ARA*) (Likhachev, Gordon, and Thrun 2004), Rapidly-
exploring Random Tree (RRT) (LaValle 1998), Hybrid-A*
(Dolgov et al. 2008), harmonic function path planning (Con-
nolly and Grupen 1993), and two-stage RRT (Wang, Jha,
and Akemi 2017). Heuristic-based methods often use ad-
missible handcrafted heuristic functions, such as Manhat-
tan distance, Euclidean distance, and length of Reeds-Shepp
paths. Cost functions of the states also can be created from
the topology of the state (Mahadevan and Maggioni 2007;
Connolly and Grupen 1993) and can be learned from demon-
stration (Ratliff, Bagnell, and Zinkevich 2006). Although
optimality can be achieved with admissible heuristics, the
complexity can be beyond control with complex environ-
ments. ARA* uses a scaling factor to reduce the complexity
by adjusting the upper bound of the cost of a path. Hybrid
A* uses the maximum of two different admissible heuristics
to guide grid cell expansion, although it does not preserve

764



Figure 2: Network architecture used in our experiments (continuous domain).

completeness and optimality. Two-stage RRT (Wang, Jha,
and Akemi 2017) uses two RRTs. An upper RRT ignores
robot kinematics and produces waypoints, where guide the
other lower RRT addressing the robot kinematics.

Navigation with Neural Networks
The recent advancement of DNNs enables learning naviga-
tion directly from high-dimensional sensory inputs. Simul-
taneous Localization and Mapping (SLAM) using neural
networks can learn grid-like representations that appear in
animal brains (Banino et al. 2018). Imitation learning with
DNNs can be used for a real autonomous car to drive off-
road at a high speed using raw RGB images with wheel
speeds. Model Predictive Control (MPC) were used to pro-
vide training data (Pan et al. 2018). Deep reinforcement
learning has been used to learn a function that maps raw
sensory inputs (images) to actions. However, state-of-the-
art algorithms have only been tested in simple domains
with little variation of the environment (Tamar et al. 2016;
Khan et al. 2017; Panov, Yakovlev, and Suvorov 2018),
which is mainly due to the necessity of very long training
times. Tamer et al. propose Value Iteration Networks (VIN)
for value iteration where the learned control dynamics are
represented by convolution kernels. VINs produces a bet-
ter policy than the reactive one learned by standard convo-
lutional neural networks (Tamar et al. 2016). Khan et al.
combine VINs with differential neural computing to learn
navigation (Khan et al. 2017). Panov et al. apply Deep Q-
Network (DQN) to solve 2D grid navigation using a reward
that is a function of optimal paths (Panov, Yakovlev, and Su-
vorov 2018). Zhang et al. use neural networks with exter-
nal memory for SLAM (Zhang et al. 2017) to help a rein-
forcement learning algorithm to solve navigation tasks. Im-
itation learning with neural networks is used to reduce the

search cost (Bhardwaj, Choudhury, and Scherer 2017). In
their study, a heuristic policy was learned for each domain
separately. The algorithm was tested on simple domains but
relatively high dimensional states with the fixed start and
goal. Once start positions, goal positions, and environments
are randomized, local features may not be able to guide the
planner to a goal efficiently, as discussed in (Dhiman et al.
2018). On the contrary, we learn a heuristic function defined
over the entire environment given the goal configuration and
the map to avoid the misguiding problem. In addition, we
need only one feed-forward computation of a neural net-
work to obtain the heuristic function. In our toy domain, we
learn a heuristic function that can be applied to six different
environments rather than a specific environment. We also
consider environments where a path does not exist to inves-
tigate completeness, whereas the work on navigation with
deep learning cited above often considers only environments
where a path always exists.

Proposed Methods
Task
In the problem for this study, a robot finds a path π : [0, 1] 7→
Cfree from a start configuration π(0) := s0 ∈ Cfree to a
goal configuration π(1) := sgoal ∈ Cfree given a map of
an environment m and a heuristic function h where Cfree

is free space. Our goal is to learn a heuristic function h us-
ing DNNs to reduce the search cost. Our overall approach is
shown in Figure 1. We will first introduce the network archi-
tecture we adopted and then explain the loss functions and
training procedures.

Network Architecture
In this study, we adopted U-Net (Ronneberger, Fischer, and
Brox 2015), which was initially proposed for semantic seg-
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Figure 3: Equation 2 does not satisfy in this example. We have a 1D map that contains five nodes. A robot can move either
left or right. The cost of an action is 2. h1 and h2 represent some learned heuristics. h in each node represents a value of the
heuristic function. Mean squared error (Equation 3) and mean absolute error (Equation 4) between the heuristic and the optimal
heuristic are shown in the table on the right. The search cost is the number of expanded nodes when we apply the A∗ algorithm.
h2 has more errors than h1, but h2 has a lower search cost.

mentation, to generate heuristic values. The architecture has
recently been used as a generator in GAN architecture to
solve image-to-image translation (Isola et al. 2017). U-Net
achieves precise image generation by using the information
from early convolutional layers directly on the latter layers.
However, our approach is not limited to U-Net, and other
image generation networks can be used. Figure 2 shows
the architecture of the network. The input is an occupancy
map and a goal tensor G. A goal tensor consists of two
matrices that represent sgoal = (xgoal, ygoal, θgoal) where
(xgoal, ygoal) is a robot’s goal position and θgoal is its goal
orientation. Let (igoal, jgoal) be a position in the occupancy
map that contains (xgoal, ygoal). We define the goal tensor
G as follows:

G(0, i, j) =

{
cos(θgoal), if i = igoal and j = jgoal
0, otherwise

G(1, i, j) =

{
sin(θgoal), if i = igoal and j = jgoal
0, otherwise

We could also discretize θ, but this increases the input di-
mensions. We used cosine and sine instead of the raw value
in radians to compute the proper distance between two ori-
entations (e.g. the distance between 2π and 0 should be 0
instead of 2π). The output is a discretized heuristic value
that is a tensor of W ×H ×O where W and H is the num-
ber of columns and rows in the occupancy map, respectively,
and O is the number of orientations.

Loss Functions
The objective of the path planning problem is to find the
shortest path with a constraint on search cost. The path cost
can be defined as a function of the path length or the number
of actions. The search cost can be defined as a function of the
number of expanded nodes during the search process. In this
paper, the research question regards whether we can learn a
heuristic function that is better than handcrafted heuristics
regarding the search cost. We will first explain why learn-
ing a heuristic function is not a straightforward supervised
learning problem and then explain why the choice of the loss
function is important.

LetL be the cost of a path generated by a planner and T be
the search cost of the planner given m, s0, sgoal, and h. The

objective function for learning a heuristic function, J(h), is
a reward function of a path cost and/or a search cost. J(h)
satisfies the following condition:

If L1 ≥ L2 and T1 ≥ T2 , then J(h1) ≤ J(h2) (1)

Equation 1 means that h2 has a better reward if both the path
cost and the planning cost are lower than those of h1. This
reward can be computed by solving path planning problems
with a path planner and h. Thus, J is in general not differen-
tiable. To compute J appropriately, we need to solve a path
planning problem using a planner with h. Hence, evaluating
J is computationally expensive. Non-differentiability and
expensive computation make it challenging to learn heuris-
tics in an end-to-end manner.

Let d(·) be a loss function, h1 and h2 be learned heuris-
tics, and h∗ be an optimal heuristic. We can reduce the prob-
lem above to a supervised learning problem whose objective
is to minimize errors between learned heuristics and optimal
heuristics if the following condition is satisfied (Barto and
Dietterich 2004):

If d(h1, h∗) ≤ d(h2, h∗), then J(h1) ≥ J(h2) (2)

However, standard loss functions, such as mean squared er-
ror (MSE) or mean absolute error (MAE), do not satisfy this
condition, although lower loss usually indicates higher J .
Figure 3 shows one simple example in which Equation 2
does not hold. In this example, both a heuristic function h1
and a heuristic function h2 can find an optimal path, but the
search cost is different. Although h1 has better MSE and
MAE, it needs to expand more nodes. Therefore, it is es-
sential to understand which loss functions are suitable so
that learning a heuristic can be treated by solving the super-
vised learning problem (minimizing d(·)) rather than solving
the original computationally expensive optimization prob-
lem (maximizing J(·)). We will first introduce the standard
loss functions and then propose new loss functions for this
heuristic learning problem.

MSE between two tensors h and h∗ is defined as follows

MSE(h, h∗) =
1

N

N−1∑
i=0

(h(i)− h∗(i))2 , (3)

where h is a learned heuristic, h∗ is an optimal heuristic, and
N is the number of elements in the tensor.
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MAE is computed as follows:

MAE(h, h∗) =
1

N

N−1∑
i=0

|h(i)− h∗(i)| (4)

With MAE, we equally punished the errors in all directions.
However, because we want to generate heuristics that are
between known lower bound of the cost and the optimal cost,
we can penalize more if the learned heuristic is out of the
range between these bounds. If the learned heuristic is larger
than the optimal cost, it does not guarantee the optimality
anymore. Hence, we propose the piecewise MAE as

Losspiece(h, h
∗) =

1

N

(
α1

N−1∑
i=0

|h(i)− h∗(i)| [h(i) < hmin(i)]

+

N−1∑
i=0

|h(i)− h∗(i)| [hmin(i) ≤ h(i) ≤ h∗]

+ α2

N−1∑
i=0

|h(i)− h∗(i)| [h∗(i) < h(i)]

)
,

where hmin is a lower bound of the cost, [·] is an indicator
function, and α1 ≥ 1 and α2 ≥ 1 are positive constants. The
lower bound usually can be computed by considering the
environment without obstacles. The first term computes the
sum of the absolute difference between the learned heuris-
tic and the optimal heuristic if the learned heuristic is lower
than the minimum cost at state. Similarly, the second term
computes the sum of the absolute difference if the heuris-
tic is between the minimum cost and the optimal cost. The
third term is computed if the heuristic is more than the opti-
mal cost. If α1 = 1 and α2 = 1, this loss function is reduced
to MAE.

Generally, it is hard to learn the optimal heuristic for every
task; thus, the learned heuristic does not necessarily preserve
gradients of the heuristic with respect to actions, as shown
in Figure 3. We used the following loss function to capture
errors on the gradients:

Lossgrad(h, h
∗) =

∑
a∈A

MAE(Ka ∗ h,Ka ∗ h∗) (5)

In this function, the ∗ operator denotes a discrete convolu-
tion operation. Ka ∗ h approximates the gradient of h with
respect to a ∈ A where A is an action set. This operation
is similar to the Sobel-Feldman operator (Sobel 1968) that
captures gradients of an image. For example ,Ka for “north”
action in a 2D grid world is as follows:

Knorth =

[
0 1 0
0 −1 0
0 0 0

]
We used the weighted sum of these loss functions for our
neural network as

Loss = Loss1 + αLossgrad, (6)

where α is a constant that controls the importance of
Lossgrad. We used MSE, MAE, or Losspiece as Loss1.
Both Loss1 and Lossgrad are differentiable, and we can ap-
ply backpropagation to update the weights of the network.

Instead of using some handcrafted properties like the gra-
dient described above, it may be possible to use another
DNN to learn properties associated with optimal heuristics
automatically. Thus, we investigated the use of GAN for
this purpose. We introduced another DNN to discriminate
the learned heuristic with the optimal heuristic. We trained
a generator network (U-Net) that generates heuristic val-
ues which minimize Loss and fools a discriminator network
fD. We used a loss from a discriminator of a Wasserstein
GAN (WGAN) (Arjovsky, Chintala, and Bottou 2017). In
our case, we use the goal pose tensor and a heuristic func-
tion as an input to the discriminator. Then, a loss function for
the discriminator tensor Lossdes is computed as follows:

Lossdes = fD(h,G)− fD(h∗, G), (7)

where h is the learned heuristic (output of the generator net-
work), and G is a goal tensor. The learned heuristics are the
fake examples, and the optimal heuristics are the real ex-
amples. We trained the discriminator network using lossdes,
and we trained the generator network (U-Net) using the loss
function of WGAN LossWGAN , Loss1, and Lossgrad:

LossWGAN = −fD(h,G) (8)

The loss function from WGAN computes the loss regarding
the properties of the optimal heuristic. We used a weighted
sum of loss functions to train the generator network as

Loss = Loss1 + αLossgrad + βLossWGAN , (9)

where β is a constant. The discriminator network architec-
ture we used in our experiments is as follows: Input - Con-
volution - Convolution - Average Pooling - Dropout - Dense
- ReLU - Dense - ReLU - Dense - ReLU - Dense - Output.
One of the major drawbacks of WGAN is that it needs twice
as much time and memory as other methods in the training
stage.

Training
For training purposes, we make environments with random-
ized start and goal poses. We then created the optimal heuris-
tic h∗ using the Dijkstra algorithm starting from sgoal and
assuming that each action has an inverse action. We trained
the network with h∗ using the Adam optimization (Kingma
and Ba 2014). To evaluate the network, we generated h using
the network, and passed it to a path planner (eitherA∗ or Hy-
bridA∗), and measured the search cost. As we explained ear-
lier, the lower loss does not necessarily imply better perfor-
mance, and we used path planners with the learned heuristic
to evaluate the network.

Experiments
We considered two simulated domains: the toy 2D domain
and the continuous 2D domain.
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Figure 4: Examples of environments used in the toy domain.

Toy domain
The toy domain is a simple 2D grid world in which a robot
can move either north, west, east, or south. The robot vol-
ume is equivalent to one cell. There is no orientation. Thus,
we used a one-hot matrix to represent the goal position in-
stead of using the goal tensor explained earlier for the input.
We generated 180,000 training examples from six different
environments (Figure 4). We used different rules to create
such environments with random parameters. We also gener-
ated 10,000 test examples. We used Manhattan distance and
scaled Manhattan distance (inflation factor is 1.5) as base-
lines. We introduced difficulty of a task to evaluate perfor-
mance in the toy domains as

difficulty =
hOpt(s0)

hBase(s0)
, (10)

where hBase is a commonly used simple heuristic function
that is admissible and consistent, such as Manhattan distance
or Euclidean distance in our task. We use this criterion for
a fair comparison against baselines because baselines work
well in simple environments. In this equation, difficulty mea-
sures how the optimal cost at s0 deviates from the estimated
cost (heuristic). If this value is large, the estimated cost is
much smaller than the optimal cost. Hence, a simple heuris-
tic may not be able to guide the planner appropriately. We
used MAE, MSE, Lossgrad, Losspiece, and LossWGAN for
loss functions. There will be a number of combinations of
these, and we investigated some of the combinations. We
use α1 = 1.0, α2 = 2.0, α = 1.0 (when we use Lossgrad),
and β = 1.0 (when we use LossWGAN ). We selected these
hyper parameters after trying several values.

Continuous domain
We considered a four-wheeled robot that measured 0.25m×
0.20m. The environment is a 2.318m×2.318m parking lot.
We randomized occupied parking spaces and added small
obstacles randomly. We used a bicycle model (Rajamani
2011) to describe the robot’s kinematics. The robot uses
five steering angles for both forward and backward direction
with the fixed speed. There are ten actions in total. Collision

checks are performed in continuous space. To plan a path,
we used a Hybrid A∗. This planner does not hold optimality
anymore, but it can still produce suboptimal drivable paths.
We discretized states (x, y, θ) into 32×32×32 states for the
Hybrid A∗. We generated 3, 040 training samples and 130
test samples. We also randomized s0 and sgoal in continuous
space. The robot reaches sgoal when it reaches a voxel con-
taining sgoal. Hence, the robot’s orientation must be close
to the goal orientation. We use α1 = 1.0 and α2 = 2.0 for
Losspiece, and we use α = 0.01 for Lossgrad. The difficulty
measure was not used because Hybrid A∗ is not guaranteed
to produce an optimal solution or to find a path even if a path
exists. We did not investigate WGAN loss in this domain be-
cause it does not bring many benefits in the toy domain (we
describe it in the next section) despite the fact that it takes a
very long time to train.

Results and Discussion

Toy domain

Figure 5 shows successful cases, and Table 1 summarizes
the results. As shown in Figure 5, a planner with the learned
heuristic function does not need to expand many nodes
(green stars) if the solution exists. If there is no path, the
learned heuristic produces high values for unreachable states
from the goal. Note that we used a single learned net-
work to generate heuristic values in all testing environments.
Hence, the results also show the generalizability of our pro-
posed algorithm. In Table 1, the bold numbers show that the
learned heuristic function outperforms baselines regarding
the search cost. The gradient loss helps MSE and MAE re-
duce the search cost. Use of GAN also contributes to reduc-
ing the search cost of MSE and MAE. Piecewise loss works
better, especially when tasks are difficult. Although WGAN
improves the performance a little, it needs twice as much
training time and memory as other methods. We do not pro-
vide the statistical testing because the number of testing ex-
amples is too large for the meaningful statistical testing for
our experiments, and a small difference can easily lead to the
statistical significance (Lin, Lucas Jr, and Shmueli 2013).
Such statistical significance does not indicate meaningful re-
sults. Thus, we show the mean of the ratio of the number
of expanded nodes only. When the tasks are easy (difficulty
= [1.0, 1.2]), the scaled Manhattan distance is better than
the learned heuristics.

Contrary to computer vision tasks, such as object seg-
mentation and object recognition, a change of one cell can
change the optimal heuristic drastically. Hence, learning
heuristic functions using DNN can have a difficulty that does
not appear in other DNN applications. As the results show,
even when we randomized goal positions, the neural net-
work could still learn a heuristic that is better than the base-
lines. Thus, our results indicate that DNN is capable of deal-
ing with such difficulty. There are some cases in which the
learned heuristic does not produce good results, as shown
in Figure 6. The number of unsuccessful examples can be
reduced by increasing training samples.
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Figure 5: Successful results in toy domains. The top row shows the results of baselines that use the Manhattan distance, and
the bottom row shows the results of the learned heuristic that used our proposed piecewise loss function. The color of each
cell represents the value of the heuristic. Dark blue represents small heuristic. Yellow indicates the highest heuristic, and it
usually represents the obstacles or unreachable region from a goal. Red circles are s0, red crosses are sgoal, and green stars are
expanded nodes in A∗. The rightmost column shows an environment where a path does not exist.

Loss

Complexity Evaluation
Ratio of the number of expanded nodes on different task difficulties

1.0- 1.2- 1.4- 1.6- 1.8- 2.0- 2.2- 2.4- 2.6- ≥ 2.8
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

MSE 0.64 0.57 0.56 0.57 0.56 0.56 0.60 0.64 0.65 0.71
MSE, lossgrad 0.50 0.42 0.41 0.40 0.46 0.46 0.48 0.53 0.53 0.62
MAE 0.57 0.46 0.45 0.42 0.48 0.51 0.58 0.60 0.59 0.62
MAE, lossgrad 0.60 0.45 0.45 0.46 0.47 0.51 0.51 0.60 0.55 0.65
MSE, lossWGAN 0.58 0.53 0.52 0.49 0.47 0.50 0.51 0.53 0.63 0.71
MAE, lossgrad, lossWGAN 0.54 0.45 0.42 0.41 0.43 0.45 0.47 0.53 0.56 0.61
Piecewise 0.57 0.46 0.44 0.42 0.44 0.47 0.46 0.54 0.52 0.58
Piecewise, lossgrad 0.54 0.45 0.45 0.43 0.46 0.51 0.48 0.58 0.51 0.58
Baseline (Manhattan) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Baseline (Scaled Manhattan) 0.41 0.49 0.63 0.69 0.72 0.75 0.78 0.81 0.82 0.84

Table 1: Results of experiments in the toy domain. The number shows the mean of the ratio of the number of expanded nodes
where the ratio = N

Nb
, N is the number of expanded nodes using the learned heuristic, and Nb is the number of expanded nodes

using the Manhattan distance. Task difficulty is computed by Equation 10. If the task difficulty is [1.0, 1.2], this indicates the
task is “easy”. The bold numbers indicate that the leaned heuristic is better than the baselines.
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Figure 6: The first three figures show unsuccessful results in the toy domain, and the rightmost figure shows an unsuccessful
result in the continuous domain. The learned heuristic expanded many unnecessary nodes in the first, second, and fourth figures.
The third figure from the left shows the environment where the path does not exist. In the third figure, the learned heuristic
function generated small heuristic values in many unreachable states from the goal. However, all cells, except several cells
around the goal, should be yellow (high heuristic values) because there are no paths from these cells. Note that the learned
heuristic function generates these images (except for the green star, path, red circle, and red cross). Thus, the free space can be
yellow if the space is unreachable from the goal. You see some expanded nodes in yellow cells in the third figure because of
this.

Figure 7: A successful example in the continuous domain. The left figures show the results of Euclidean distance, and the right
figures show results of piecewise loss. We use 32 orientations in the HybridA∗, and each figure corresponds to each orientation.
The start orientation is about θ = 22.5◦ and the goal orientation is about θ = 0◦. The red circle is the start position (first row,
third column) and the red cross is the goal position (first row, first column). Each figure represents the expanded nodes. Cells
with dark blue are nonexpanded nodes. Cells with other colors represent the expanded nodes. The learned heuristic does not
need to expand many nodes. The figures labeled ”Path” represent a path generated with the heuristics. Red lines indicate, paths
and black lines indicate either contours of a robot or obstacles. Yellow cells indicate obstacles in an occupancy map.
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Loss functions

Complexity Evaluation
Comparison against baselines Ratio of the number of expanded nodes

130 test tasks q th percentile
N : The number of expanded Nodes Ratio = N

NEuclidean

Nb : Baseline, N : Learned
Euclidean Scaled Euclidean 25th Median 75th 90th 95th

Nb < N Nb > N Nb < N Nb > N
MSE 76 44 102 15 0.650 1.939 4.348 8.256 12.380
MSE, lossgrad 60 62 90 32 0.423 1.014 2.397 6.314 9.527
MAE 34 87 69 51 0.145 0.383 1.095 2.351 5.272
MAE, lossgrad 21 99 53 67 0.084 0.179 0.859 1.456 4.292
Piecewise 13 107 36 83 0.035 0.081 0.248 0.770 1.082
Piecewise, lossgrad 16 105 37 83 0.046 0.109 0.307 0.908 1.656
Baseline (Euclidean) NA NA 87 42 1.00 1.00 1.00 1.00 1.00
Baseline (Scaled Euclidean) 42 87 NA NA 0.122 0.265 0.641 0.888 1.500

Table 2: Results of experiments in the continuous domain. The numbers in the comparison against baselines show the number
of tasks that are better than the other method. For example, Nbase < N shows the number of tasks where the baseline has fewer
expanded nodes than that of the learned heuristic. The bold numbers indicate that the leaned heuristic is statistically better than
the baseline (χ2 test, p < 0.05). Outliers dominate the mean and the variance. Instead, we show the q th percentile.

Continuous domain
Figure 7 shows a successful example in the continuous do-
main where the Hybrid A∗ with the learned heuristic does
not need to expand many nodes. With only 130 testing ex-
amples, such as, χ2 test can be applied to produce statisti-
cally meaningful results. Table 2 summarizes the results of
statistical testing. The results are similar to those of the toy
2D domain. MAE is better than MSE. The use of gradient
loss improves the results for MSE and MAE; however, there
is no statistical significance when we compare them against
the scaled Euclidean heuristic. Piecewise loss is statistically
better than the scaled Euclidean. The loss of gradient de-
grades the results of the piecewise loss. We also show the
ratio of the number of expanded nodes in Table 2. If we use
the piecewise loss, the ratio of expanded nodes is less than
0.081 in 50% of tasks, 0.248 in 75% of tasks, and 0.77 in
90% of tasks. These results indicate that it is possible for
DNNs to learn a heuristic function that is better than sim-
ple baselines. It also shows that the proposed piecewise loss
function captures errors that simple loss functions, such as
MSE and MAE cannot. There are several cases where the
learned heuristic function does not work well. One of the
examples is shown in Figure 6. In this case, Hybrid A∗ ex-
pands almost all of the reachable nodes from s0. Coarse dis-
cretization of orientations is one of the issues that a Hybrid
A∗ needs to expand many nodes to find a path. Increasing
the number of orientations can avoid such cases. When we
create h∗ during training, we need to apply many collision
checks which are computationally expensive. However, once
the DNN learns h, we do not need to apply collision checks
to generate h during the testing time.

Conclusion and Future work
In this paper, we applied the neural network architecture to
learn heuristic functions for path planning. Our preliminary
results showed that the learned heuristic function can re-

duce the search cost in both the toy domain and the continu-
ous domain. We also investigated loss functions and showed
that the proposed piecewise loss helps DNNs to learn better
heuristics. The learned DNN does not produce high-quality
heuristics in some cases, but the path planner can still find
a path even with those low-quality heuristics. This is one of
the benefits of combining existing path planning algorithms
with DNNs. Loss of gradient with respect to actions also
helps other loss functions, such as MSE and MAE, to learn
heuristic functions. Use of GAN automatically captures the
properties of optimal heuristics and produces good heuris-
tics, but it requires longer training time compared to other
approaches.

As future work, we want to investigate network architec-
tures, including the representation of the goal tensor, to pro-
duce better heuristic values. We also would like to examine
the scalability of the proposed approach using large maps.
We consider our proposed method as suitable for parking
scenarios because occupancy maps can easily contain both
start and goal poses. Although we worked on the fully ob-
servable environments in this study, the proposed method
can easily create new heuristic values given the new in-
formation because feed-forward computation of the DNN
is fast thanks to high-performance GPUs. Thus, the DNNs
should be able to deal with partially observable environ-
ments by replanning. We can also easily change the inputs
to multiple frames of occupancy maps to deal with dynamic
objects. Therefore, we would like to work on modifying
the proposed approach for partially observable environments
and dynamic environments as future work.
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