Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

POMDP-Based Candy Server:
Lessons Learned from a Seven Day Demo

Marcus Hoerger,* Joshua Song," Hanna Kurniawati,’ Alberto Elfes?
*fSchool of Information Technology & Electrical Engineering, University of Queensland, Australia
fResearch School of Computer Science, Australian National University
§Robotics and Autonomous Systems Group, Data61, CSIRO
{m.hoerger, j.song @uqg.edu.au} @ug.edu.au,
hanna.kurniawati @anu.edu.au, Alberto.Elfes@data61.csiro.au

Abstract

An autonomous robot must decide a good strategy to achieve
its long term goal, despite various types of uncertainty. The
Partially Observable Markov Decision Processes (POMDPs)
is a principled framework to address such a decision making
problem. Despite the computational intractability of solving
POMDPs, the past decade has seen substantial advancement
in POMDP solvers. This paper presents our experience in en-
abling on-line POMDP solving to become the sole motion
planner for a robot manipulation demo at IEEE SIMPAR and
ICRA 2018. The demo scenario is a candy-serving robot: A
6-DOFs robot arm must pick-up a cup placed on a table by
a user, use the cup to scoop candies from a box, and put the
cup of candies back on the table. The average perception er-
ror is ~3cm (= the radius of the cup), affecting the posi-
tion of the cup and the surface level of the candies. This pa-
per presents a strategy to alleviate the curse of history issue
plaguing this scenario, the perception system and its integra-
tion with the planner, and lessons learned in enabling an on-
line POMDP solver to become the sole motion planner of this
entire task. The POMDP-based system were tested through a
7 days live demo at the two conferences. In this demo, 150
runs were attempted and 98% of them were successful. We
also conducted further experiments to test the capability of
our POMDP-based system when the environment is relatively
cluttered by obstacles and when the user moves the cup while
the robot tries to pick it up. In both cases, our POMDP-based
system reaches a success rate of 90% and above.

Introduction

Decision making in the presence of uncertainty is a crit-
ical component in robot autonomy. The Partially Observ-
able Markov Decision Processes (POMDPs) is a princi-
pled framework for solving such decision making prob-
lems. Although computing the exact POMDP solution is in-
tractable(Papadimitriou and Tsitsiklis 1987) in general, the
past decade has seen approximate POMDP solvers starting
to become practical for various robotics problems.

As part of the Kinova MOVO Beta program at the
IEEE SIMPAR and ICRA 2018, we apply a general on-line

*CSIRO and UQ International Scholarship

f Australian Postgraduate Award
Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

698

POMDP solver as the sole motion planner of a 6-DOFs ma-
nipulator performing a task that requires a relatively large
number of steps to accomplish: The robot must move to
pick-up a cup placed on a table, scoop candies using the
cup, and put the cup back on the table (Figure 1(a) illustrates
the task). In this scenario, the robot must trigger when scan-
ning of the environment is required and cope with ~3cm
perception errors (due to minimal effort in camera calibra-
tion), user’s behaviour of moving the cup when the robot is
trying to pick it up, and changes to the surface of the candies
after each scoop.

We divide the above task into four motion planning prob-
lems: Picking up the cup, Approaching the candy box,
Scooping, and Placing the cup back on the table. Each prob-
lem was modeled as a POMDP and solved using an on-line
solver. We found that with almost naive modelling, existing
solvers are capable in handling the size of the state and ob-
servation spaces posed by each problem.

However, for the picking problem, a major difficulty
comes from the curse of history. Due to the various “playful”
user’s behaviour, a planner needs to perform a large number
of lookahead steps to compute a robust strategy. The prob-
lem is the size of possible future scenarios that a POMDP
solver must take into account is exponential in the number
of lookahead steps being considered. As a result, even re-
cent sampling-based on-line solvers(Kurniawati and Yadav
2013),(Silver and Veness 2010),(Somani et al. 2013),(Sun-
berg and Kochenderfer 2018) have a time complexity that
grows exponentially with the number of lookahead steps
needed to generate a good solution. Methods have been pro-
posed to alleviate the curse of history issue(He, Brunskill,
and Roy 2010),(Kurniawati et al. 2011). However generally,
on-line POMDP solvers perform well for lookahead step
of up to 10-15 steps (within reasonable computational re-
sources), which is often insufficient for the above problem.

Moreover, the curse of history is amplified by the large
action space imposed by a 6-DOFs manipulator. Methods
have been proposed to alleviate this issue(Seiler, Kurniawati,
and Singh 2015),(Sunberg and Kochenderfer 2018). How-
ever, existing solvers can only perform well for problems
with 3—4 continuous action spaces(Seiler, Kurniawati, and
Singh 2015), while a method that can perform well for prob-
lems with 100,000 discrete actions was only recently pro-
posed(Wang, Kurniawati, and Kroese 2018). To alleviate

this issue, we resort to use a small discrete number of fixed
increments and decrements of the joint angles as the action
space. This strategy helps to keep the size of the action space
manageable, but at the cost of an increased planning horizon.

In this paper, we propose to alleviate the curse of history
issue by using macro-actions, represented as finite state ma-
chines. We also present the POMDP models for each of the
four problems mentioned above and how they are combined
together, so as to allow a smooth transition between prob-
lems. Furthermore, we present the perception system and
how it is integrated with the POMDP-based planner, and
some implementation tips and tricks to ensure smooth op-
eration of the POMDP planner on a physical 6-DOFs ma-
nipulator.

The above robotics scenario and system was demon-
strated as part of a robotics demo that ran for a total of seven
days. During this time, 150 runs were attempted, and our so-
lution reached 98% success rate. After the demo, we slightly
improved the system and conducted more systematic exper-
iments, in particular in scenarios where a user displaces the
cup that the robot tries to pick-up and in cluttered environ-
ments. Experiments in such scenarios indicate that our solu-
tion reaches no less than 90% success rate.

The System

The manipulator we use is a Kinova 6-DOFs Jaco arm with
KG3 gripper, attached to a Kinova MOVO mobile manip-
ulator. In this work, we use only one of the arms of the
MOVO and viewed the MOVO as a static base for the Jaco
arm. The sensor used is the one attached to the MOVO, i.e.,
Kinect v2 mounted on the MOVOQO’s head and encoders at the
joints of the Jaco arm. By default, MOVO comes with a non-
calibrated Kinect v2 sensor. We perform internal calibration
of the sensor, but not the external calibration. We found that
the error due to no external calibration causes model and
perception error that can easily be handled by our solver.

MOVO runs the Robot Operating System (ROS) and
comes with two Next Unit of Computing (NUC) comput-
ers. Each NUC is an Intel Core i7-5557U @3.1GHz machine
with 16 GB RAM. One of these computers is used for sen-
sor processing, while the other is used to process control
input and sensor scheduling. We use off-board computing
for the planner. The off-board computing is an Intel Xeon
E5-1620@3.6GHz with 16 GB RAM. This use of off-board
computing is due to different ROS versions used by the
solver and the interfaces to the robot.

Problem Scenario and Formulation

We consider a manipulation task in which the above Jaco
arm interacts with its environment while being subject to
significant uncertainties in motion, sensing and its under-
standing of the environment. Specifically, the manipulator
must grasp and pick-up a cup (with known geometry) that is
placed at an arbitrary position on a table in front of the robot,
use the cup to scoop candies from a box of candies, and then
place the cup containing candies back on the table. The lo-
cation of the table, the location of the cup on the table, and
the location of the box of candies are initially unknown. The

699

average perception error in the object localization is 3cm.
Furthermore, the cup location can change at run-time, e.g.
a user might pick-up the cup and place it at a different lo-
cation on the table while the robot is moving to pick it up,
whereas the surface of the candies in the box changes after
every scoop.

We divide the above task into 4 motion planning prob-
lems, i.e.:

Picking: Moving the manipulator from its initial configura-
tion to pick-up a cup from a table, despite not knowing
the exact initial position of the table and the cup, possible
changes of the cup’s position during run-time, and per-
ception errors.

Pre-Scoop: Moving the cup to a pose above the candy box
that is beneficial for scooping

Scooping: Scooping candies from a box using the cup, de-
spite not knowing the exact surface of the candies and per-
ception errors

Placement: Placing the cup back to the table, while ensur-
ing that no candies fall out of the cup.

To enable robust operation despite the various types of un-
certainties, we formulate each problem as a Partially Ob-
servable Markov Decision Process (POMDP). The different
POMDP problems are designed to have overlapping state
variables, so that the end of one problem automatically tran-
sition into the beginning of the next problem with ease.

POMDP Background

Formally, a POMDP is a tuple (S, A, O, T, Z, R, by,). The
notations S, A and O are the state, action, and observation
spaces of the robot. At each time-step, a POMDP agent is
in a state s € S, executes an action a € A, perceives an
observation o € O, and moves to the next state s € S.
Which next state it ends up depends on the transition
function T'(s,a,s’), which is a conditional probability
function P(s|s, a) representing uncertainty in the effect of
actions, while the observation o perceived depends on the
observation function Z, which is a conditional probability
function P(ols, a) representing uncertainty on sensing. The
notation R is a state-action dependent reward function,
from which the objective function is derived. The notations
by is the initial belief, while v € (0,1) is the discount
factor to ensure that an infinite horizon POMDP problem
remains a well-defined optimization problem. The solution
to a POMDP problem is an optimal policy (denoted as 7*),
which is a mapping 7 : B — A from beliefs (B denotes the
set of all beliefs, which is called the belief space) to actions
that maximizes the expected total reward, i.e. V*(b) =

maxqe 4 [R(b,a) +~ Joco Z(b,a,0)V*(1(b, a, 0))do],
where R(b,a) = [_gR(s,a)b(s)ds and Z(b,a,o0)
Joes Z(s',a,0) [, s T(s,a,5")dsds’. The function T
computes the updated belief after the robot executes a from
b and perceives o.

POMDP Formulation of the Picking Problem

In this problem, the state space is a joint product be-
tween the robot’s and the cup configurations. Specif-

ically, the state space is defined as S (C]
GripperStates x GraspStates x ®y,;, where O
(—3.14rad, 3.14rad)® are the joints angles of the arm,
GripperStates {gripperOpen, gripperClosed} in-
dicate whether the gripper is open or closed, and
GraspStates = {grasp,noGrasp} indicates whether the
robot has successfully grasped the cup or not. A successful
grasp means that the gripper grasps the cup from the side, so
as to help accomplish the scooping problem. This condition
can be checked easily because the geometry of the cup to be
picked is known a priori. The last component, ®,,; C R°
is the set of all poses of the cup in the workspace of the
robot. The orientation of the cup is represented as Euler an-
gles, for compactness. Note that in this problem, we do not
worry about gimbal lock issues because, the cup does not
move until it is in contact with the robot and once in contact,
rather than simulating the cup’s motion, we derive the pose
of the cup based on the robot’s configuration when contact
happens.

In this problem we do consider obstacles. However, to
keep the size of the state space manageable, we do not in-
clude the obstacles as part of the POMDP state space. Un-
certainties in the estimate of the poses and shapes of the ob-
stacles are dealt with conservatively, by constructing bound-
ing boxes around the obstacles, and enlarging them by the
average localization error.

To keep the action space small, the set of primitive actions
consists of the set of fixed angle increments/decrements
for each joint (denoted as Ay C RS), plus scan,
openGripper and closeGripper actions, resulting in
a discrete action space of size 2" 4 3, where n is the robot’s
DOFs. The scan action takes ~1.5s, while all other prim-
itive actions take ~0.7s to be executed. In subsection Alle-
viating the Curse of History, we discuss how this set of
primitive actions is augmented with macro-actions, so as to
reduce the effective planning horizon, thereby alleviating the
curse of history issue.

The joint angles of the robot evolve linearly according to

0 =0+ap+ep (D

where 6,6’ € O are the current and next joint angles,
ap € Ap is a vector of joint angle increments/decrements
and ey ~ N(0,3) is an additive control error drawn from
a multivariate Gaussian distribution. The parameters are set
through experiments with the physical system. Note that this
component of the transition function is used throughout the
subsequent POMDP problems described in the next subsec-
tions.

The actions openGripper and closeGripper are
assumed to be perfect. To determine if the closeGripper
action results in a successful grasp, we use a simple thresh-
old based-method: Executing the closeGripper action
corresponds to moving the finger-joint encoders from an
opening angle of 0.0rad to a closing angle of 1.0rad. If the
resulting closing angles are less than 0.95rad, we assume
that the gripper was not fully closed, i.e. a grasp is estab-
lished. Otherwise we assume that a grasp was unsuccessful.

The observation space is a joint product of four compo-
nents. The first component is an estimate of the pose of the

X

700

cup, which is computed by our perception system (discussed
in section Perception) and perceived only when the scan
action is performed. This component is continuous but, for
the purpose of solving, we uniformly discretize the space,
in the sense that two observations will be considered the
same if their L2 distance is less than a pre-defined thresh-
old. The second component comes from the joint-encoders,
which measure the joint-angles of the arm. Similar to ob-
servation w.r.t. the cup’s pose, we uniformly discretize ob-
servation regarding the joint-angles of the robot. The third
component is a gripper-encoder that indicates whether the
gripper is open or closed, and the last component is a grasp
detector which observes whether the robot grasps the object
or not.

For the observation function, we assume that the gripper-
encoder sensor provides perfect information. For the grasp-
ing sensor we assume to get a correct reading 90% of the
time. For the joint-angle sensor we assume that the encoder
readings are disturbed by a small additive error drawn from
a uniform distribution with support [—0.05rad, 0.05rad]. To
accommodate for possible errors in the observations of the
object pose, we assume that these pose estimates are drawn
from a uniform distribution around the actual pose of the ob-
ject. Note that the robot only receives an observation on the
object pose when a scan action is performed.

The POMDP agent receives a reward of 1,750 for a suc-
cessful grasp and a reward of 1,000 for successfully bringing
the the cup to the goal region, which is located slightly above
the table. We set a penalty of -250 for every self-collision
or collision with the environment, i.e., the table, the cup,
and obstacles. Collision with the cup happens whenever the
robot touches the cup with any part other than the inside
parts of its gripper. Each motion also incurs a small penalty
of -3, to encourage the robot to accomplish the task sooner
than later. Furthermore, a penalty of -100 is given to failed
grasps, to ensure that the cup is firmly grasped, so that the
subsequent problem (i.e., scooping) can be accomplished.
To reflect the cost of scanning, the robot receives a penalty
of -50 when it executes the scan action.

In addition to the above rewards, in this particular prob-
lem, we added the following three reward components to
act as a heuristic to help guiding the search. In case the
gripper is closed and a grasp has not been established, the
robot receives a penalty of -700 if it does not execute the
openGripper action. This forces the robot to immedi-
ately re-open the gripper after an unsuccessful grasp attempt.
On the other hand, in case a grasp has been established, the
robot receives a penalty of -250 if the gripper is opened. Ad-
ditionally, the robot receives a penalty of -200 for states in
which the object is “behind” the gripper.

Note that while our POMDP planner is insensitive to the
exact values of the reward function, it is important to find
a reasonable relation between the different reward compo-
nents (e.g. large rewards for successful grasps and rela-
tively small penalties for unsuccessful grasps) as this rela-
tion eventually determines the behaviour of the robot. This
can require some hand-tuning. Automatically finding good
reward functions for a particular task is an active field of
research(Arora and Doshi 2018).

POMDP Formulation of the Pre-Scoop Problem

Here, the state, primitive action, and observation spaces, as
well as the transition and observation functions are the same
as for the picking problem. Since the curse of history of this
problem is not as severe as the picking problem, the action
space of this problems consists of only the primitive actions.
During the initial scan, the robot obtains an estimate of the
location of the box that contains the candy, as well as an
estimate of the height of the candy surface. Based on the
estimated location of the box, we construct a small goal-area
above the box that must be reached by the robot, such that
the cup is inside the goal-area and it faces the candy surface.

Furthermore, the reward function for this problem is sim-
pler than the one used for the picking problem: The robot
receives a penalty of -250 when it collides with itself or the
environment, and a small penalty -3 for every step it takes.
Additionally, the robot receives a large penalty of -250 when
the openGripper action is executed, as this would result
in loosing the grasp. If the robot successfully moves the cup
to the goal-area such that the cup faces the candy surface, it
receives a reward of 1,000.

POMDP Formulation of the Scooping Problem

In this problem, the robot has to move the cup beneath
the candy surface, scoop the candy, and leave the candy
box without spillage. The state space consists of the same
state variables as the previous two problems, plus two ad-
ditional variables. The first variable represents the height of
the candy surface, so as to account for uncertainty in the
candy surface estimate. In the initial belief, this variable is
distributed according to a uniform distribution [—3cm, 3cm]
around the (point) estimate of the height of the candy surface
provided by the perception system. Estimating the height of
the candy surface is performed once, prior to execution. The
second variable, enteredCandyBox, is a boolean that in-
dicates whether the robot has moved the cup beneath the
candy surface. The action and observation spaces, as well as
the transition and observation functions are the same as the
pre-scoop problem.

To achieve scooping we separate the reward function
into two parts: The part where the cup hasn’t entered the
candy box yet and the part where the cup is beneath the
candy surface. For the first part, the robot receives a re-
ward of 1,000 if the cup enters the candy box such that
the opening of the cup faces the candy surface. For the sec-
ond part, the robot receives a reward of 1,000 once the
cup emerges in a near upright orientation. Additionally we
penalize backward-motions by —50 as this would prevent
the robot from filling the cup with candy. With this sim-
ple reward function, the robot is encouraged to perform a
scooping-like motion. The robot receives another reward of
1,000 once it reaches a goal area located above the candy
box and holds the cup at a near upright orientation. To avoid
spillage, the robot receives a penalty of —500 if the orienta-
tion of the cup is more than a pre-defined threshold from an
upright orientation.

701

POMDP Formulation of the Placement Problem

In this problem, we use the same state, action and obser-
vation spaces and the same transition and observation func-
tions as in the pre-scoop problem. In terms of the reward
function, similar to the scooping problem, we need to make
sure that the cup faces upwards to avoid spillage. Hence the
robot receives the same penalty of —500 if the orientation
of the cup about the X and Y axis exceeds 10 degrees. This
strategy proves effective (see Section Results). Then, once
the robot has reached a state such that the cup is inside the
goal area above the table, it receives a reward of 1000 for the
openGripper action. At the same time, after performing
the openGripper action, the robot enters a terminal state
which concludes the task.

Planning

To solve the aforementioned POMDP problems, we use the
Adaptive Belief Tree (ABT) (Kurniawati and Yadav 2013),
a state-of-the-art general on-line solver that allows policy
adaptation when the POMDP model changes. Similar to
many on-line POMDP solvers (Silver and Veness 2010)(So-
mani et al. 2013), ABT approximates the optimal policy by
constructing and maintaining a belief-tree, where nodes rep-
resent beliefs and edges represent action-observation pairs.
The nodes of a belief tree is a sampled representation of the
subset of the belief space that is reachable from the initial
belief by. Two nodes representing beliefs b and o’ are con-
nected via an edge (a,0) € A x Oif b = 7(b,a, o).

To construct the belief-tree, ABT samples episodes which
are sequences of (s, a, 0, r)-quadruples of state s € S, ac-
tion a € A, observation o € O and immediate reward r =
R(s,a). This is done by sampling a state so from the current
belief by, selecting an action ay based on the Upper Con-
fidence Bounds1 (UCB1) (Auer, Cesa-Bianchi, and Fischer
2002), and using a generative model to sample the next state
s1 € S from the transition function T'(sg, ag, S), an obser-
vation oy € O from the observation function Z(s1,a,O)
(we slightly abuse the notation to use the same notation for
both the space and the random variable on sampling from
the space), and an immediate reward 7. The next state s is
then associated to the belief b; whose parent is by via edge
(ao, 00). This process iteratively repeats from s; until ei-
ther a terminal state is reached or a state associated with
a belief node with untried action. If the first terminating
condition happens, the solver backpropagates the sampled

reward-trajectory to update the estimates of Q)(b, a) for each

belief associated to a state in the episode, where @(b, a) is
the value of executing a from b and continuing optimally af-
terwards. Otherwise, the solver will first estimate the value
of the last belief node by simulating a rollout strategy from
the last node and then continue backpropagating the sampled
reward-trajectory as described above. Furthermore, to help
update the policy fast whenever the model changes, ABT
maintains a record of the sampled episode and its associated
belief tree path. Details on ABT is available in (Kurniawati
and Yadav 2013).

The following describes some implementation tips in en-
abling ABT to generate a good strategy to solve the manip-

ulation problems set in this work.

Alleviating the Curse of History

The curse of history issue in this work is particularly se-
vere in the picking problem. In this problem, the robot
must cope with possible changes of the cup’s position dur-
ing run-time, which means it has to consider multiple addi-
tional sensing actions to re-localize the cup. However, such
a re-localization becomes relevant only when the lookahead
step performed reaches beliefs with substantial probability
mass of being in states where the gripper is close enough
to the cup, that attempting to grasp the cup is not futile,
which in general, requires sufficiently long lookahead steps
from when a scanning action should take place. To allevi-
ate this curse of history issue, we propose macro actions,
represented as finite state machines, that augment the action
space of the POMDP problem. In particular, we propose two
macro actions (the finite state machines representations are
illustrated in Figure 1):

1. The scan-and-approach macro action, which con-
sists of two sub-actions: A scan action to localize the
cup, and an approach action, which is a sequence of
primitive actions that attempt to bring the gripper close to
the estimated location of the cup.

For the scan action the robot queries the perception
system to receive an estimated object pose, whereas the
approach action utilizes a deterministic motion plan-
ner.

2. The grasp-and-rescan macro action. This macro
action is designed to hedge failed grasps. A failed grasp
could occur due to two reasons: There is too much uncer-
tainty with respect to the object pose, or the object pose
has changed during run-time.In both cases the robot must
re-localize the object before attempting another grasp.
Hence, if a grasping attempt during execution of the
grasp—and-rescan fails, the robot immediately per-
forms another scan action. However, if grasping attempt
is successful, the robot continues with the next action.

In both macro actions, during a scan action, if the cup is oc-
cluded by the arm, such that the robot does not “see” the ob-
ject, the robot performs a ret ract action, utilizing a deter-
ministic motion planner to compute a sequence of primitive-
actions that brings the arm to a configuration where the ob-
ject is more likely to be occlusion-free. The transition func-
tion for the macro actions are derived from the transition
functions of the primitive actions. Note that we designed the
retract action such that it is performed repeatedly until
the scan action results in a non-empty observation with re-
spect to the pose of the cup. This is because we assume that
the cup is within the viewing area of the robot, but might
have been temporarily removed from the table.

To speed up planning, our solver does not run the deter-
ministic planner when approach or retract action are
selected at planning time. Rather, it computes a sampled set
of various different joint angle values (C ©) and correspond-
ing gripper pose, off-line. During on-line planning, it sam-
ples a joint angle value associated with a gripper pose near-
est to the desired gripper pose, and assumes that this sam-

702

pled joint angle is the result of executing the approach
or retract action. During execution, a deterministic mo-
tion planner is used to find a sequence of primitive actions
to move the robot towards the assumed resulting joint an-
gles. This strategy performs well because we only require
the approach or retract action brings the gripper rea-
sonably close to the object pose estimate.

Rollout Strategy

ABT and most on-line solvers today use a rollout strategy as
a heuristic to estimate the value of Q(b, a), when the node b
is first expanded via action a € A. In practice, this heuristic
is critical for the performance of ABT, particularly when the
belief tree is still shallow. A good heuristic helps ABT to
focus on the most promising parts of the tree and therefore
converge to a good policy faster.

A commonly used rollout strategy is a greedy approach,
i.e., at each rollout step, the planner selects actions with the
highest immediate reward. However, two issues arise with
this strategy. First, it is too myopic for our problem. Sec-
ond, it requires simulations to be run at each rollout step,
which can be quite expensive. Therefore, we propose to use
a heuristic that does not require repeated simulation runs to
estimate the aforementioned ()-value. Suppose we need to
estimate (b, a) for the first time. We first sample a next
state s’ € S according to T'(s, a, s"). Let 6 € © be the joint-

angle component of s’. The heuristic estimate @(b, a) is:

~

Q(b, a) = Rmaw * ea:p(—/\ * dpos(gv h(e))) (2)

where R, is the maximum possible immediate reward, A
is a scaling factor, h is a function that maps the joint an-
gles 6 to a gripper pose in the robot’s workspace and d,,s
is the Euclidean distance function. The notation g € R? is
a goal position that is different for each of the four POMDP
problems. For the picking problem g refers to the position
of the cup in the robot’s workspace, whereas for the remain-
ing problems g refers to the position of the goal areas. With
this heuristic, we favor expanding nodes where the gripper
is closer to the goal position of the respective problem, and
therefore help the solver to quickly focus on parts of the be-
lief tree where the gripper moves towards the goal.

Reducing Delay between Steps

Now, the naive implementation of ABT, or any other on-line
POMDP solver, follows a strictly sequential order of exe-
cution, i.e., policy computation — policy execution — belief
update. Such an implementation is likely to result in signifi-
cant delays during execution, as the robot would have to wait
for the solver to update the belief and compute a policy for
the new belief. To substantially reduce such delays, we par-
allelize these tasks where possible by running two processes
at the same time.

The first process is the belief-update process. Recall that
in ABT, beliefs are represented by sets of particles that are
updated using a particle filter. In our implementation we use
the Sequential-Importance-Resampling (SIR) particle filter
(Arulampalam et al. 2002). SIR particle filtering consists of

approach

CloseToCup,

none

Oohj D -~

Oobj # D Oobj =D _;

closeGripper

Ograsp = true_ . -0,

~ . Ograsp = false

scan

0w 0.

none -

none Oob # B~ .

Ss 00 =D

(a) Problem scenario

(b) scan-and-approach

(c) grasp—and-rescan

Figure 1: (a) Problem scenario. (b) and (c) Finite state machines of the macro-actions. Ovals are machine-states, labeled solid
arrows are actions, dashed arrows are observations, and double circles are exit states. 0,,; are observations with respect to the
pose of the cup, whereas 04,45, are observation from the grasping sensor.

two steps. First, drawing samples from a proposal distribu-
tion, which in our case, s}, ~ T'(sy, ag, S) where s, are par-
ticles that are sampled from the current belief and a;, € A is
the action currently performed. Second, updating the impor-
tance weights of the samples s}, up to a normalization con-
stant based on the observation o, € O perceived, which in
our case, wj, = wiZ(s), ax, or). Generating samples from
the proposal distribution is often quite expensive. However,
we can start drawing these samples once the robot starts ex-
ecuting ay. Then, once the robot receives an observation, all
that remains for the belief update is to update the importance
weights which can be done fast.

The second process is the policy-update process. Suppose
the current belief maintained by the solver is b and a;, € A
is the action that the solver has estimated to be the best to
perform from d. In our implementation, once the robot starts
executing ag, our implementation of ABT will start planning
for the next step. The planning time is set to be 0.7s (the
smallest execution time for a primitive action) or until the
current action finishes execution, whichever is higher. Dur-
ing planning, ABT will sample additional episodes, starting
from states sampled from b and performing action ay, as its
first action, thereby improving the policy within the entire
descendent of b via ay, in the belief tree. This strategy in-
creases the chances that after the robot has executed a; and
the belief is updated based on the observation perceived, a
good policy for the next belief is readily available.

Of course, there are cases where even with this strat-
egy, the robot perceives observations that were not explored
in the belief tree. In such cases, we restart planning from
scratch. However, we found that the above parallel imple-
mentation of ABT is sufficient to reduce the delay between
perceiving an observation and executing the subsequent ac-
tion to be under 0.1 sec in all our experiments.

Perception

MOVO is equipped with a Kinect v2 sensor mounted on a
pan and tilt actuator. This mechanism is only used to scan
the entire scene (i.e., the table and candy box) at the begin-
ning of the execution. The action scan uses a pre-defined
position and orientation of the sensor, set to ensure that each

703

scan action covers the entire workspace of the particular
POMDP problem. The Kinect sensor provides both RGB
and depth images.

Localizing the Objects

We use both the RGB image and point cloud obtained from
the depth image to detect and localize the table where the
cup and obstacles are located, the cup and obstacles them-
selves, the candy box location, and the height of the remain-
ing candy in the candy box.

The localization pipeline for the table, cup, and obstacles
is illustrated in Figure 2. To detect the cup, we first trained
a CNN, for which we used the SSDLite-MobileNetV2 (San-
dler et al. 2018) architecture, via Tensorflow (Abadi et al.
2016). The CNN was pre-trained on the COCO (Lin et al.

Point cloud
Kinect Sensor |——<——
RGB image
A A
CNN Table segmentation
Pixel 5 Non-table f
y bounding box : v Points
Pixel to world ¢ :) .
coordinates Clustering
Position
estimate Clusters
} ' }
Point cloud based | . o
pose estimation 4—/ Bounding box fitting
Cup pose Obstacles !
Table
A 4
POMDP D —

Figure 2: A flowchart of the perception pipeline.

2014) dataset and then fine-tuned for 200k iterations on 200
photos of the cup. However, this CNN only provides a rough
estimate of the cup’s position. To get a better estimate, we

first crop the Kinect point could around the CNN pose esti-
mate, which results in a much smaller point cloud. We then
convert the cup’s CAD model to an object point cloud, ran-
domly sample object poses close to the CNN estimate and
transform the object point cloud to each sample. The final
pose estimate is the the sample whose transformed object
point cloud is closest (in therms of the sum of pairwise dis-
tances) to the cropped Kinect point cloud. To detect obsta-
cles on the table, we remove points corresponding to large
planes (i.e. the table) and use a clustering algorithm on the
remaining points. We then fit 3D bounding boxes around
each cluster to estimate the poses and dimensions of the ob-
stacles. For the localization of the candy box, we use a fidu-
cial marker and information about the size of the box.

In an initial experiment we found that the average error
with respect to the pose of the cup is approximately 3cm.
Furthermore, the pose estimate can be increasingly inaccu-
rate if the cup is too close to the Kinect sensor. Even factors
such as sunlight, varying sensor temperature, sharp object
curvature, and highly reflective surfaces decrease the quality
of the pose estimate. In principle we could reduce the error
by performing external calibration of the sensor. However,
since this is often a tedious process, we instead chose to the
let POMDP solver handle these errors.

Results

To evaluate our system, we implement our models and
strategies using the OPPT framework (Hoerger, Kurniawati,
and Elfes 2018) and ran three sets of experiments on the Ki-
nova MOVO mobile manipulator platform, equipped with a
6-DOF arm and gripper. The first set evaluates the effective-
ness of our system in picking up the cup when the position
of the cup is changed during run-time. The second set eval-
uates our approach in increasingly cluttered environments.
In the last set of experiments we evaluate our system for the
entire scenario in a live demo setting.

At the start of each run, the user places the cup at an ar-
bitrary position on the table that is unknown to the robot
a-priori. For the first two sets of experiments, a run is con-
sidered successful if the robot picks-up the cup and unsuc-
cessful if the robot pushes the cup off the table or pushes
the cup to a position where it lies outside the observation
range. Runs in which one or more pick-up attempts fail, but
the robot is able to recover and eventually pick-up the cup
are considered successful. For the third set of experiments,
a run is considered successful if the robot is able to pick-up
the cup, scoop candies from the candy box and deliver the
cup back to the table without spillage or collisions with the
environment.

Changing Cup Positions

In this set of experiments, we actively change the position
of the cup during run-time by placing it at random positions
on the table. For this we divided the experiments into 20
runs with 0, 2, 4 and 6 cup position changes. The occurrence
of these cup position changes are random as well. Figure 3
shows snapshots of a typical run where we change the cup
location twice during runtime.

704

Table 1 summarizes the results. In general, the robot
showed robust behaviour in picking-up the cup. It success-
fully handled multiple initially unknown changes in the cup
position, occlusions of the cup caused by the arm and im-
perfect information regarding the environment. Out of the
20 runs, only 2 were unsuccessful. In one of the failure
cases, querying the perception system using the scan ac-
tion resulted in a wildly incorrect cup pose estimation. Sub-
sequently the robot attempted to pick-up the cup at a very
different location. In doing so it pushed the cup off the table.
In the second unsuccessful run, the cup slipped, toppled, and
rolled off the table during a pick-up attempt.

] Num cup position changes \ % of successful runs \

0 cup position changes 100
2 cup position changes 95
4 cup position changes 100
6 cup position changes 90

Table 1: Percentage of successful runs for scenarios with 0,
2,4, and 6 cup position changes. For each scenario the robot
performed 20 execution runs

To obtain a better understanding about the utility of the
macro-actions for robustly picking up the cup, we ran an
additional experiment without macro-actions.

We tested our system using 5 execution runs where for
each run, we changed the position of the cup once during
run-time. In none of the runs the robot was able to pick-
up the cup. Due to due to the limited lookahead, the robot
couldn’t ”see” the benefit of performing the scan action
to re-localize the cup after an unsuccessful pick-up attempt,
hence the scan action was never used. This indicates the
importance of reducing the effective planning-horizon in this
problem.

Cluttered Environments

Similar to the previous set of experiments, the task is to pick-
up the cup, but now the robot additionally must avoid colli-
sions with obstacles. This makes the problem significantly
harder, since the robot has to plan how to negotiate the ob-
stacles without compromising a successful grasp. For this
experiment we do not manually change the cup position. We
tested our system using two scenarios, a scenario with one
obstacle and a scenario with three obstacles. Figure 4 shows
the scenarios used for this set of experiments.

We tested the system in both scenarios using 20 execu-
tion runs. For the scenario with one obstacle, 19 out of 20
execution runs (i.e. 95%) were successful, i.e. the robot was
able to pick-up the cup while simultaneously avoiding col-
lisions with the environment. For the scenario with 3 obsta-
cles, the robot managed to pick-up the cup in 19 out of 20
execution runs as well (95%). During the two failure cases
the robot collided with the white carton (see Figure 4) caus-
ing it to tip over. This was caused by using a conservative
approach in handling the uncertainties with respect to the
obstacle poses and dimensions. The high success rate indi-
cates that the robot exhibited robust behaviour in scenarios
with increasingly cluttered environments.

Figure 3: Snapshots of a successful run with two obstacle position changes. The robot attempts to pick-up the cup (first picture)
but the cup position is changed to the left corner of the table (second picture). It performs a scan action, and attempts to pick
up the cup again. But, the cup is again moved to a location close to the robot (third picture). A scan action is performed again.
In the last picture the robot successfully picks-up the cup at its the new location.

(b) Three obstacles

(a) One obstacle

Figure 4: The problem scenario used for the set of experi-
ments with one (a) and three (b) obstacles. The task for the
robot is pick-up the cylindrical cup while avoiding collisions
with the two boxes and the black cup.

Live Demo

To test the entire planning process, from picking up an
empty cup until delivering a cup of candy back to the ta-
ble, we ran the entire system for 7 consecutive days in a
live-demo setting. For this we let bystanders place the cup
at random positions on the table ahead of every execution
run. In approximately 150 runs we achieved a success rate
of over 98%, i.e. the robot was able to pick up the cup, scoop
candy and deliver the filled cup back to the table, showing
the effectiveness of our approach in solving the entire plan-
ning problem in a non-sterile setting.

Comparison with Deterministic Motion Planner

For comparison, we apply a commonly used motion planner
for high DOFs, RRTConnect(Jr. and Lavalle 2000), on the
picking problem in an environment without obstacles where
the cup’s pose is stationary. Given the initial state of the
robot, RRTConnect computes a trajectory in the robot’s state
space that moves the gripper towards the most-likely esti-
mate (from the perception system) of the cup’s pose, before
attempting to pick-up the cup. Note that for this experiment,
we are only interested in how effective RRTConnect is in
achieving a successful grasp. Therefore we do not optimize
or smoothen the computed trajectories. The RRTConnect-
based picking is executed 20x. Among them, only 7 runs
resulted in a successful pick-up (compared to a 100% suc-
cess rate of our POMDP-based planner, see Table 4). While

705

RRTConnect is reasonably effective in moving the gripper
towards the estimated cup-pose, due to the perception er-
rors, the resulting gripper pose where a grasp is attempted is
often unsuitable to pick up the cup. In contrast, the policies
computed by our POMDP-solver result in the robot to care-
fully approach the cup as to reduce uncertainty with respect
to the pose of the cup, e.g. by slightly pushing the cup before
attempting to pick it up.

Furthermore, a POMDP-based planner is able to au-
tomatically identify actions that can reduce uncertainty
while accomplishing its goals. Such motion does not al-
ways have to be explicit scanning, especially when scan-
ning is expensive (as in our problem). For instance,
the accompanying video (http://rdl.cecs.anu.edu.au/videos/
icaps19_candyScooper.mp4) at 00:13 and 00:43 shows that
instead of moving straight to the most-likely location of the
cup and attempt to grasp it, the robot carefully approaches
the cup, “pushing” it slightly a few times before pick-up,
hereby reducing uncertainty on the relative position of the
cup w.r.t. the hand and enabling more robust grasps com-
pared to RRTConnect-based approaches.

Summary

POMDP solving has advanced tremendously over the past
decade. However, its application as the sole motion planner
of a high DOFs manipulator is rare. This paper presents our
experience in applying an on-line POMDP solver as the sole
motion planner of a relatively long manipulation task. A 6-
DOFs Jaco arm must pick-up a cup from a table, use the cup
to scoop candies from the candy box, and place the cup back
on the table, without spilling the candies, in the presence of
perception errors affecting the localization of the cup, ob-
stacles and the surface of the candy and “playful” users that
keep moving the cup while the robot tries to pick it up. Our
POMDP-based system was tested in a 7 days live demo and
achieved a 98% success rate. Further experiments to test ro-
bustness demonstrate promising results too. We hope this
work can be used as a guide for applying this robust method
of decision making under uncertainty to physical robots.

References

Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.

2016. Tensorflow: A system for large-scale machine learn-
ing. In OSDI, volume 16, 265-283.

Arora, S., and Doshi, P. 2018. A survey of inverse reinforce-
ment learning: Challenges, methods and progress. arXiv
preprint arXiv:1806.06877.

Arulampalam, M. S.; Maskell, S.; Gordon, N.; and Clapp, T.
2002. A tutorial on particle filters for online nonlinear/non-
gaussian bayesian tracking. IEEE Transactions on signal
processing 50(2):174-188.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235-256.

He, R.; Brunskill, E.; and Roy, N. 2010. Puma: Planning
under uncertainty with macro-actions. In AAAL

Hoerger, M.; Kurniawati, H.; and Elfes, A. 2018. A software
framework for planning under partial observability. In Proc.
IEEE/RSJ Int. Conference on Intelligent Robots (IROS).

Jr., J. J. K., and Lavalle, S. M. 2000. Rrt-connect: An effi-
cient approach to single-query path planning. In Proc. IEEE
Int’l Conf. on Robotics and Automation, 995-1001.

Kurniawati, H., and Yadav, V. 2013. An Online POMDP
Solver for Uncertainty Planning in Dynamic Environment.
In Proc. Int. Symposium on Robotics Research (ISRR).

Kurniawati, H.; Du, Y.; Hsu, D.; and Lee, W. S. 2011. Mo-
tion planning under uncertainty for robotic tasks with long
time horizons. The International Journal of Robotics Re-
search 30(3):308-323.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollar, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In European conference
on computer vision, 740-755. Springer.

Papadimitriou, C., and Tsitsiklis, J. 1987. The complexity of
Markov Decision Processes. Math. of Operation Research
12(3):441-450.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 4510-4520.

Seiler, K.; Kurniawati, H.; and Singh, S. 2015. An Online
and Approximate Solver for POMDPs with Continuous Ac-
tion Space. In Proc. IEEE Int. Conference on Robotics and
Automation (ICRA).

Silver, D., and Veness, J. 2010. Monte-carlo planning in

large pomdps. In Advances in neural information processing
systems, 2164-2172.

Somani, A.; Ye, N.; Hsu, D.; and Lee, W. 2013. DESPOT:
Online POMDP Planning with Regularization. In Advances
in neural information processing systems (NIPS).

Sunberg, Z. N., and Kochenderfer, M. J. 2018. Online algo-
rithms for pomdps with continuous state, action, and obser-
vation spaces. In ICAPS, 259-263.

Wang, E.; Kurniawati, H.; and Kroese, D. 2018. An on-
line planner for pomdps with large discrete action space: A

quantile-based approach. In Proc. Int. Conference on Auto-
mated Planning and Scheduling (ICAPS).

706

