
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Size Independent Neural Transfer for RDDL Planning

Sankalp Garg, Aniket Bajpai, Mausam
Indian Institute of Technology, Delhi

New Delhi, India
{sankalp2621998, quantum.computing96}@gmail.com, mausam@cse.iitd.ac.in

Abstract

Neural planners for RDDL MDPs produce deep reactive poli-
cies in an offline fashion. These scale well with large domains,
but are sample inefficient and time-consuming to train from
scratch for each new problem. To mitigate this, recent work
has studied neural transfer learning, so that a generic planner
trained on other problems of the same domain can rapidly
transfer to a new problem. However, this approach only trans-
fers across problems of the same size. We present the first
method for neural transfer of RDDL MDPs that can trans-
fer across problems of different sizes. Our architecture has
two key innovations to achieve size independence: (1) a state
encoder, which outputs a fixed length state embedding by
max pooling over varying number of object embeddings, (2) a
single parameter-tied action decoder that projects object em-
beddings into action probabilities for the final policy. On the
three challenging RDDL domains of SysAdmin, Game Of Life
and Academic Advising, our approach powerfully transfers
across problem sizes and has superior learning curves over
training from scratch.

1 Introduction
Recently, deep reactive policies have been shown to be suc-
cessful for offline probabilistic planning problems repre-
sented in RDDL (Issakkimuthu, Fern, and Tadepalli 2018)
or PPDDL (Toyer et al. 2018). An advantage is that neural
policy networks can represent offline policies for very large
domains while at the same time being competitive with tra-
ditional planners on small domains. However, training these
networks from scratch can be sample-inefficient and time-
consuming.

Since neural planners learn latent representations, they
present an opportunity to transfer their policy learned over
one problem instance to other problem instances. This can
be especially useful in the case of neural policy networks if
the transfer time is much less than the training time. Very
recently, we have proposed TORPIDO – a neural transfer
learning approach (Bajpai, Garg, and Mausam 2018), which
trains a generic policy network from some problems of an
RDDL domain, and transfers it to a new problem of the same
domain. TORPIDO learns a transformation from the state
and action spaces to latent state and action spaces, and then

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learns a neural policy in these latent spaces. At test time,
for a new problem instance, it relearns a mapping from the
latent action space to actual actions, and transfers the other
components of the architecture. While highly effective in
reducing learning times, a significant limitation of TORPIDO
is that it only transfers when all training and testing problems
are of the same size. Thus, it works only when test problem
sizes are known at train time, which limits its applicability.

In response, we present TRAPSNET, the first size-
independent neural transfer algorithm for RDDL MDPs. Fur-
thermore, TRAPSNET also achieves significantly better trans-
fer results, both in terms of reward and time in the same
problem settings as TORPIDO Ȧs a first step towards this
goal, our paper focuses on domains where action templates
and (non-)fluents are parameterized over a single object only,
and there is one binary non-fluent. A majority of domains
from the International Probabilistic Planning Competition
(IPPC) 2014 (Grzes, Hoey, and Sanner 2014) satisfy these
constraints.

TORPIDO can only operate on equi-sized problems, be-
cause its state embeddings have dimensionality proportional
to the number of objects in the problem, and its action decoder
outputs a distribution over all possible actions, whose num-
ber also depends on the problem size. TRAPSNET achieves
size-independence through the use of two key ideas. First, it
uses max pooling of object embeddings to produce a fixed-
dimensionality state embedding. Max-pooling, intuitively,
helps the state embedding retain the best value for each fea-
ture (dimension), while losing information about the specific
object(s) responsible for that value. Second, while it still pro-
duces a probability distribution over all actions, it does so
by projecting an object embedding onto the probability with
which the action applied on that object is taken in the policy.
The parameters for this projection function are tied across all
objects, making this size-independent also.

We perform experiments on three RDDL domains – SysAd-
min, Game of Life and Academic Advising. These are chosen
because while they are highly challenging (because they can
have very large state and transition spaces, and complex dy-
namics), they also satisfy the assumption of unary actions
and binary non-fluents. Training on small-sized problems
in these domains, and testing on larger instances in IPPC
2014, we find that TRAPSNET achieves excellent zero-shot
transfer, i.e., it has a very high reward even before any RL

631

on test problem. Compared to when training from scratch,
TRAPSNET has vastly superior learning curves. We release
the code of TRAPSNET for future research.1

2 Related Work
Most current state of the art reinforcement learners are neural
models. A popular deep RL agent is Asynchronous Advan-
tage Actor-Critic (A3C) (Mnih et al. 2016), which simultane-
ously trains a policy and a value network, by running simu-
lated trajectories and backpropagating an advantage function
(which is a function of obtained rewards). We refer to the
parameters in these two networks as θπ and θV , respectively.

Any RL agent is naturally applicable to probabilistic plan-
ning, since any RDDL (Sanner 2010) or PPDDL (Younes
et al. 2005) problem can always be converted to a simulator
for training the agent. Existing literature on neural planning
includes: Value Iteration Networks, which operate in flat state
spaces (Tamar et al. 2017), Action-Schema Networks (AS-
Nets) for solving PPDDL problems (Toyer et al. 2018), and
deep reactive policies for RDDL problems (Issakkimuthu,
Fern, and Tadepalli 2018). Some works have also studied
neural transfer, which include Groshev et al. (2018), which
experiment on only two deterministic domains, and ASNets.
While all RDDL problems can, in principle, be converted to
PPDDL, the potential exponential blowup of the representa-
tion makes ASNets unscalable to our domains. The closest
to our work is TORPIDO – our recent architecture for equi-
sized transfer in RDDL domains (Bajpai, Garg, and Mausam
2018).

TORPIDO is based on the principle that there may exist
a latent embedding space for a domain, where similar states
in different problems will have similar embeddings. It tries
to uncover this latent structure using object connectivities
exposed in RDDL via non-fluents. It has a state encoder,
which creates object embeddings as projections of this graph
adjacency matrix and fluents in a state (using a GCN), and
then concatenates them to construct a (latent) state embed-
ding. An RL module maps this state embedding to a (latent)
state-action embedding. An action decoder maps state-action
embedding to a policy (distribution over action symbols).
While other modules transfer directly, the decoder needs to
be re-trained at test time, resulting in a near zero-shot transfer.
Because its embeddings and action decoder are size-specific,
TORPIDO only allows equi-sized transfers – a limitation
we relax in our work. Furthermore, TRAPSNET requires no
retraining at start, and achieves a full zero-shot transfer.

3 Problem Formulation
An RDDL (Sanner 2010) domain enumerates the various
fluent predicates (flj), non-fluent predicates (nfl), a reward
function R and action templates (actk) with their dynam-
ics. Here, fluents refers to predicates that can change value
as a consequence of actions, whereas non-fluents stay fixed
throughout execution – these often describe the connectiv-
ity structure among objects in a problem. An RDDL do-
main can be likened to a Relational Markov Decision Pro-

1Available at https://github.com/dair-iitd/trapsnet

cess (Boutilier, Reiter, and Price 2001). An RDDL prob-
lem within a domain lists the specific objects, values of all
non-fluent predicates for those objects and the fluent val-
ues for those objects (which define state variables) in the
initial state. This completes the description of a factored
MDP with a known initial state (Mausam and Kolobov 2012;
Kolobov, Mausam, and Weld 2012). Note that different prob-
lems can have differing sizes based on the number of objects.

Our goal is to develop a good anytime algorithm for com-
puting an offline policy πT for an RDDL test problem PT .
An anytime MDP algorithm is one that can be stopped at
any time and will return a reasonable policy; it typically pro-
duces better policies given more computation time. We use a
transfer setting for this, where we are given N training prob-
lems P1, P2, . . . , PN from the same domain, but of different
(typically smaller) size as that of PT . The transfer objective
is to, at training time, learn domain-specific but problem-
independent information from training problems, and, at test
time, transfer that to PT .

Post transfer, training further on PT should achieve a good
anytime MDP planner. That has two indicators. First, in zero-
shot setting, i.e., when the algorithm is given no access to PT
simulator and cannot retrain, it must return a policy with a
high long term reward. Second, it must have superior learning
curves compared to a policy learned from scratch on PT .

As the first step towards the objective of size-independent
transfer, we focus on domains where all fluents, non-fluents
and action templates are unary, except one non-fluent is bi-
nary. This is a common setting in many benchmark RDDL
domains such as SysAdmin, Game Of Life and Academic
Advising. Let our factored MDP have a set of objects o ∈ O,
parameterized fluents flj(o) and non-fluents nfl(o), ac-
tions actk(o), and a special parameterized binary non-fluent
nf(o, o′).

4 The TRAPSNET Architecture
We name our neural transfer model, TRAPSNET – a Network
that can Transfer across Problem Sizes. At a high level, it ex-
tends A3C and trains problem-independent policy and value
networks. The transfer itself is based on two hypotheses: (1)
for every domain, neural embeddings can capture similarities
of objects and states across problem sizes; (2) Q-value of
a specific action (say actk(o)) can be effectively estimated
via a problem-oblivious function that depends on the current
state and o’s embeddings.

Both the policy and value net of TRAPSNET have a state
encoder each, whose output feeds into an action decoder
(for policy net), and a value decoder (for value net). The
parameters of these modules are shared across all training
problems in a domain. The state encoders operationalize the
first hypothesis by outputting a fixed-size object embedding
o for each object o in the problem based on the non-fluent
graph structure, and fluent values related to o. For different
problems, a variable number of object embeddings are max-
pooled to construct a fixed-size state embedding s. The action
decoder operationalizes the second hypothesis. It projects
each object embedding o, in conjunction with action id k
and the overall state embedding s, to a real-valued score.
This is the un-normalized probability of taking actk(o) in the

632

state s. All actions in a problem are run through a softmax
to compute a randomized policy π. A similar idea is used in
value decoder for estimating V (s). Figure 1 illustrates the
policy net of TRAPSNET schematically.

4.1 State Encoder
We want to construct an embedding for each object based
on its individual properties, its neighborhood, and also the
global information of the overall state. Similar to Bajpai et
al. (2018), this is achieved by casting the state information
in a graph. The nodes of the graph are objects o ∈ O. There
is an edge between o and o′ if nf(o, o′) = 1. The input
features at each node o are the concatenated values of flj(o)
and nfl(o) . To compute fixed-size object embeddings o,
TRAPSNET constructs local embeddings for each node o
in the graph. For this purpose, it uses a Graph Attention
Network (GAT)2 followed by a fully connected layer. This
takes in the adjacency matrix of the graph and outputs node
embeddings.

It then computes an embedding s for the whole state s, i.e.,
the entire graph. To achieve a size-invariant s, TRAPSNET
pools all ois to get s. After experimenting with various pool-
ing schemes (max, sum, average), max pooling produced the
best results. Similar results have been seen in NLP and vision
literature (e.g., (Zhang and Wallace 2017)). Max-pooling,
intuitively, helps the state embedding retain the “best” value
for each feature (dimension), while losing information about
the object(s) responsible for that value. For each object o, s
is concatenated with o to produce a contextual object embed-
ding, [o|s], which is used as input to both the decoders.

4.2 Action & Value Decoders
A fully-connected network maps a contextual [o|s] embed-
ding into several real-valued scores for each object, one for
each action template. Let these networks represent functions
fπk and fV for the action and value decoder, respectively.
fπk ([o|s]) is interpreted as a score for action actk(o) – a soft-
max over fπk for all (o, k) pairs produces a randomized policy
π. The value of a state V (s) is approximated by value net as∑
o∈O f

V ([o|s]).
This architecture enables TRAPSNET to apply the same

action decoder for problems of different sizes, since the net-
work itself is not size-dependent – it is replicated |O| times
(with tied parameters) to compute the values of each action. It
also enables estimation of V (s) in different ranges for prob-
lems of different sizes, akin to the sum of values of objects
approximation in Relational MDPs (Guestrin et al. 2003).

4.3 Learning and Transfer
TRAPSNET is trained end to end using a standard RL objec-
tive on P1, . . . , PN . For each problem, its RDDL simulator
interacts with the agent to generate trajectories. The rewards

2Lack of space precludes a detailed description of a GAT (Velick-
ovic et al. 2017). Briefly, a GAT improves on a GCN by computing,
in each node, self-attention coefficients for each neighbor and itself.
These coefficients multiplied with node features and added to obtain
an intermediate node embedding. This process is repeated K times
and the results are max pooled to obtain a final node embedding.

(advantage) obtained in these trajectories are backpropagated
through value and policy nets according to the A3C loss to
train θπ and θV . We make one small modification in which at
each step the gradients are accumulated from trajectories of
all training problems, so that the learned parameters do not
overfit on any one problem.

At transfer time, pre-trained TRAPSNET can be run di-
rectly on PT using its adjacency matrix, to obtain an initial
πT , without any modification or retraining, since there are
no problem-specific parameters. Due to this, we expect the
model to have good zero-shot transfer performance. Training
using RL on PT improves the policy further.

5 Experiments
Our experiments evaluate the ability of TRAPSNET to per-
form zero-shot transfer, as well as compare its anytime per-
formance to training from scratch.

5.1 Domains
We use three RDDL benchmark domains from Interna-
tional Probabilistic Planning Competition 2014: SysAdmin
(Guestrin, Koller, and Parr 2001), Game of Life (GoL) (San-
ner 2010) and Academic Advising (Guerin et al. 2012). These
are chosen, because they are challenging due to their large
state spaces and complex dynamics, but also amenable for
our algorithm because their non-fluent is binary and actions
unary. Briefly, each SysAdmin problem has a network of
computers (arranged in different topologies via non-fluent
connected), and the goal is to keep as many computers on
as possible. The agent can reboot a computer in each step.
Each Game of Life problem represents a grid world (of a
different size). Each cell is alive or dead, and the agent can
make one cell alive in each time step. The goal is to keep as
many cells alive as possible. Each Academic Advising prob-
lem represents a student in a university trying to graduate by
completing his degree requirements. The student needs to
pay a certain cost to register for a course (can be different for
different courses). Courses can be compulsory or optional.
The probability of passing a course depends on the number of
pre-requisite courses completed by the student. The student
is also charged a fixed cost for each semester in the university.
The goal is for the student to complete his degree at minimum
cost.

5.2 Experimental Settings
For each domain, we train TRAPSNET on randomly gen-
erated problem instances of small sizes and then test on
benchmark problems of larger sizes. For SysAdmin, we use
N = 5 training problems with 10, 11, 12, 13 and 14 com-
puters, and test on IPPC problems 5 to 10, which have 30
to 50 computers. For Game of Life, we use N = 3 different
problems with 9 cells each, and again test on IPPC problems
5 to 10, which have 16 to 30 cells. For Academic Advising,
we use N = 2 different problems with 10 courses each, and
again test on IPPC problems 5 to 10, which have 21 to 30
courses. The largest test problems are SysAdmin 9 and 10,
with state space of 250, and 50 available actions.

633

+

Figure 1: Model architecture for TRAPSNET (only policy network is shown)

Figure 2: Learning curves on 7th and 9th problems in IPPC 2014 for SysAdmin, Game Of Life and Academic Advising.
TRAPSNET outperforms other baselines by wide margins – reward is very high right from the beginning because of an effective
zero-shot transfer. The graphs in columns represent sysadmin, game of life and academic advising respectively.

We use the same hyperparameters for all problem instances
of all domains keeping in the spirit of domain independent
planning. The GAT layer of state encoders uses a neighbour-
hood of 1. It takes in one feature per node as input, and
outputs 3 features per node. A fully connected layer then
projects this into a 20-dimensional space for o, which is
also the dimensionality of s. The action and value decoders
are 2-layer fully connected networks with an intermediate
layer of size 20. All layers use a leaky ReLU activation as
non-linearity. TRAPSNET is trained using RMSProp with a
learning rate of 10−3. All models are written in TensorFlow
and run on an Ubuntu 16.04 machine with Nvidia K40 GPUs.

5.3 Baselines & Evaluation Metrics
To the best of our knowledge, no size-invariant transfer al-
gorithm exists for RDDL domains. We compare against our
base non-transfer algorithm, A3C. For fairness, we augment
A3C with GCN (which is already known to outperform A3C
(Bajpai, Garg, and Mausam 2018)). We also compare against

A3C-GAT, to verify if the benefit is due to GAT or transfer.
We note that the results of neural architectures are not di-

rectly comparable to modern symbolic planners like PROST
(Keller and Eyerich 2012). This is because neural architec-
tures are offline planners, i.e., after the training is accom-
plished, the policy can be run with little computation (in this
case, one forward pass). However, PROST is an online plan-
ner – it has a significant deliberation phase after observing the
result of each action. This difference makes the two planners
incomparable.

We measure the transfer capability of our model using the
evaluation metrics from Bajpai et al. (2018). We measure
the performance of our model at intermediate training times
t by simulating the policy network at t upto the specified
execution horizon, and averaging the values. This simulation
is run 100 times to get a stable result. We call this value Vπ(t).
We report α(t) = (Vπ(t)−Vinf)/(Vsup−Vinf), where Vsup
and Vinf represent the highest and lowest values obtained on
the current problem by any planning algorithm at any t. α(t)

634

Time (hrs) 0 3 6
Arch. A3C-GCN A3C-GAT TNET A3C-GCN A3C-GAT TNET A3C-GCN A3C-GAT TNET
Sys 5 0.00 0.07 0.84 0.32 0.53 0.88 0.54 0.79 0.89
Sys 6 0.06 0.04 0.63 0.50 0.58 0.73 0.65 0.87 0.78
Sys 7 0.03 0.04 0.92 0.41 0.51 0.89 0.69 0.78 1.00
Sys 8 0.00 0.06 0.93 0.28 0.58 0.86 0.51 0.53 0.89
Sys 9 0.00 0.06 0.89 0.41 0.51 0.89 0.57 0.87 0.92

Sys 10 0.05 0.1 0.88 0.25 0.50 0.93 0.31 0.52 0.92
GoL 5 0.00 0.07 0.83 0.48 0.68 0.87 0.71 0.79 0.85
GoL 6 0.00 0.06 0.77 0.62 0.61 0.88 0.56 0.58 0.88
GoL 7 0.00 0.05 0.88 0.71 0.69 0.92 0.60 0.90 0.88
GoL 8 0.00 0.10 0.70 0.74 0.75 0.86 0.71 0.96 0.78
GoL 9 0.00 0.08 0.90 0.56 0.78 0.87 0.75 0.48 0.93

GoL 10 0.05 0.10 0.32 0.78 0.84 0.28 0.79 1.00 0.35
Acad 5 0.07 0.00 0.93 0.61 0.93 0.98 0.86 0.91 0.94
Acad 6 0.02 0.01 0.99 0.00 0.94 0.99 0.31 0.95 0.97
Acad 7 0.27 0.01 1.00 0.30 0.80 0.94 0.33 0.78 0.92
Acad 8 0.39 0.03 0.92 0.18 0.76 0.86 0.61 0.97 0.90
Acad 9 0.00 0.05 0.99 0.44 0.53 0.93 0.45 0.54 0.90
Acad 10 0.20 0.01 0.90 0.30 0.35 0.93 0.44 0.65 0.94

Table 1: Comparison of α(t) values of TRAPSNET (TNET) against baselines A3C-GCN and A3C-GAT at three different training
points of 0, 3 and 6 hours. TRAPSNET outperforms or obtains comparable performance for almost all problems.

signifies the fraction of best performance achieved at time t.
Moreover, α(0) acts as a measure of zero-shot transfer.

5.4 Results
Figure 2 compares the training curves of TRAPSNET and the
two baselines for the 7th and 9th problems of both domains
(first column is for SysAdmin, the next is for game of life
and last is for academic advising). The curves plot Vπ(t) as
a function of training time t. Comparing the baselines, we
notice that a GAT improves the performance over a GCN for
SysAdmin. We also observe that TRAPSNET demonstrates
excellent zero-shot transfer, obtaining a very high initial re-
ward. It is vastly superior to the baselines, because before
training they can only act randomly. As training times in-
crease, TRAPSNET’s anytime performance remains better or
very close to the baselines for most problems. In many cases,
baselines after 6 hours cannot even match up to TRAPSNET’s
performance at the start. This underscores the importance of
our transfer algorithm.

The detailed α(t) results for all problems (at three train-
ing times) are reported in Table 1, which corroborates these
observations. An exception is GoL problem 10, where after
excellent initial transfer, TRAPSNET’s performance does not
match up to that of the other baselines. Further investiga-
tion reveals that all training (and other test) problems in the
domain are square grids, whereas problem 10 is the only rect-
angular grid (10×3). We suspect that the training has overfit
somehow on the squareness of the grid.

6 Conclusions
We present TRAPSNET, the first neural transfer algorithm for
RDDL MDPs that can train on small problems of a domain
and transfer to a larger one. This requires TRAPSNET to

maintain a size-invariant ;atent representation of the state,
which is achieved by pooling over object embeddings, and
the use of a parameter-tied action decoder, which projects
objects onto corresponding actions. Experiments show vastly
superior performance compared to training from scratch.

Our work brings the classical formulation of Relational
MDPs back to the fore. We believe neural latent spaces may
overcome the limitations of a traditional sum of symbolic
basis function representation used previously for this problem
(Sanner and Boutilier 2005). While we demonstrate results
for a specific kind of Relational MDPs, in future, we plan to
study the robustness and generality of this approach for other
types of RDDL domains.

Acknowledgements
This work is supported by grants from Google, Bloomberg,
IBM and 1MG, and a Visvesvaraya faculty award by Govt.
of India. We thank Microsoft Azure sponsorships, and the
IIT Delhi HPC facility for computational resources.

References
Bajpai, A.; Garg, S.; and Mausam. 2018. Transfer of deep re-
active policies for mdp planning. In Bengio, S.; Wallach, H.;
Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett,
R., eds., Advances in Neural Information Processing Systems
31. 10988–10998.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order mdps. In IJCAI, 690–
700.
Groshev, E.; Tamar, A.; Goldstein, M.; Srivastava, S.; and
Abbeel, P. 2018. Learning generalized reactive policies using
deep neural networks. In ICAPS.

635

Grzes, M.; Hoey, J.; and Sanner, S. 2014. International
Probabilistic Planning Competition (IPPC) 2014. In ICAPS.
Guerin, J. T.; Hanna, J. P.; Ferland, L.; Mattei, N.; and Gold-
smith, J. 2012. The academic advising planning domain.
Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003.
Generalizing plans to new environments in relational mdps.
In IJCAI, 1003–1010.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Max-norm pro-
jections for factored mdps. In Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJ-
CAI 2001, Seattle, Washington, USA, August 4-10, 2001,
673–682.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
deep reactive policies for probabilistic planning problems. In
ICAPS.
Keller, T., and Eyerich, P. 2012. PROST: probabilistic plan-
ning based on UCT. In Proceedings of the Twenty-Second In-
ternational Conference on Automated Planning and Schedul-
ing, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19,
2012.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory
of goal-oriented mdps with dead ends. In Proceedings of
the Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, Catalina Island, CA, USA, August 14-18, 2012,
438–447.
Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes: An AI Perspective. Morgan & Claypool
Publishers.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T. P.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In Pro-
ceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016, 1928–1937.
Sanner, S., and Boutilier, C. 2005. Approximate linear
programming for first-order mdps. In UAI ’05, Proceedings of
the 21st Conference in Uncertainty in Artificial Intelligence,
Edinburgh, Scotland, July 26-29, 2005, 509–517.
Sanner, S. 2010. Relational Dynamic Influence Diagram
Language (RDDL): Language Description.
Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2017. Value iteration networks. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017,
4949–4953.
Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2018.
Action schema networks: Generalised policies with deep
learning. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, New Orleans, Louisiana, USA,
February 2-7, 2018.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2017. Graph attention networks. CoRR
abs/1710.10903.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and Asmuth,
J. 2005. The first probabilistic track of the international
planning competition. J. Artif. Intell. Res. 24:851–887.

Zhang, Y., and Wallace, B. C. 2017. A sensitivity analysis of
(and practitioners’ guide to) convolutional neural networks
for sentence classification. In IJCNLP, 253–263.

636

