
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Resource Constrained Deep Reinforcement Learning

Abhinav Bhatia, Pradeep Varakantham, Akshat Kumar
School of Information Systems

Singapore Management University
80 Stamford Rd, Singapore 178902

{abhinavb, pradeepv, akshatkumar}@smu.edu.sg

Abstract
In urban environments, resources have to be constantly
matched to the “right” locations where customer demand is
present. For instance, ambulances have to be matched to base
stations regularly so as to reduce response time for emergency
incidents in ERS (Emergency Response Systems); vehicles
(cars, bikes among others) have to be matched to docking sta-
tions to reduce lost demand in shared mobility systems. Such
problems are challenging owing to the demand uncertainty,
combinatorial action spaces and constraints on allocation of re-
sources (e.g., total resources, minimum and maximum number
of resources at locations and regions).
Existing systems typically employ myopic and greedy opti-
mization approaches to optimize resource allocation. Such ap-
proaches typically are unable to handle surges or variances in
demand patterns well. Recent work has demonstrated the abil-
ity of Deep RL methods in adapting well to highly uncertain
environments. However, existing Deep RL methods are un-
able to handle combinatorial action spaces and constraints on
allocation of resources. To that end, we have developed three
approaches on top of the well known actor-critic approach,
DDPG (Deep Deterministic Policy Gradient) that are able to
handle constraints on resource allocation. We also demon-
strate that they are able to outperform leading approaches on
simulators validated on semi-real and real data sets.

1 Introduction
This paper is motivated by aggregation systems that aggre-
gate supply to improve efficiency of serving demand. Such
systems have been employed in mobility systems, emergency
response, logistics, food delivery, grocery delivery, and many
others. There are multiple supply resources (e.g., ambulances,
delivery/movement vehicles, taxis) controlled by a central
agency that need to be continuously allocated to supply en-
tities (e.g., base stations, docking stations) so as to improve
service efficiency for customer demand. This sequential al-
location problem becomes challenging due to combinatorial
action space (allocating resources to entities), cost of reallo-
cation, uncertainty in demand arrival, constraints on resource
allocation and in some cases also due to uncertainty in re-
source movement.

Existing systems typically employ myopic (single or
few time steps) and greedy optimization approaches (Yue,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Marla, and Krishnan 2012; Ghosh et al. 2017; Powell 1996;
Lowalekar et al. 2017) to optimize allocation of supply
resources to locations. As we demonstrate in our exper-
imental results, greedy approaches perform poorly when
there are surges in demand or when variance in demand
is high. Recent extension to employ Deep Learning with
Reinforcement Learning, referred to as Deep RL, has sig-
nificantly improved the scalability and effectiveness of RL
in dealing with complex domains (Mnih et al. 2015; 2016;
Lillicrap et al. 2015). In this paper, we propose the use of
Reinforcement Learning (RL) approaches to learn decisions
in aggregation systems that can better represent and account
for the sequential nature of decision making and uncertainty
associated with demand.

However, current Deep RL methods are not directly suit-
able for handling aggregation systems of interest due to two
reasons: (i) Deep RL methods do not scale well in domains
with discrete and combinatorial action space, more so in prob-
lems at the scale of a city; (ii) Due to resource allocation con-
straints, action space is constrained. There have been research
works that have provided mechanisms for solving resource
allocation problems with Deep RL (Dulac-Arnold et al. 2015;
Mao et al. 2016). However, they do not consider constraints
on resource allocation. (Amos and Kolter 2017) have inte-
grated quadratic optimization problems as individual layers
in end-to-end trainable deep learning networks. Such net-
works (OptNet) could potentially be integrated with RL to
handle resource constraints. Unfortunately, as indicated in
their paper, they can only solve small problems due to the
computational complexity of training these networks. (Pham,
De Magistris, and Tachibana 2018) proposed an architecture
(OptLayer) building on ideas from OptNet for constrained
RL in the context of robotics. They were able to demonstrate
scaling to problems on a 6-DoF robot (6 dimensional ac-
tion space). Unfortunately, their approach does not scale to
problems of our interest where we have up to 95 dimensions.

DDPG (Deep Deterministic Policy Gradient) (Lillicrap
et al. 2015) is an approach that has been applied to multi
dimensional continuous control problems with great results.
However, like the other Deep RL methods, it is also unable to
handle constraints on resource allocation. We propose exten-
sions to DDPG that are able to handle constraints on resource
allocation. We make five key contributions in this paper. First,
we formally define the Resource Constrained Reinforcement

610

Learning (ReCO-RL) model to represent problems of interest
(decision making in aggregation systems). We are specially
interested in hierarchical linear constraints, a useful subset
of ReCO-RL problems. Second, we provide an extension
to DDPG referred to as Constrained Projection (CP) that is
generic (works for any kinds of resource constraints) but
ensures constraints only approximately and has adhoc theo-
retical justifications. Third, we provide a novel, fast, scalable,
easy-to-implement Constrained Softmax (CS) extension to
DDPG that provably ensures constraints on resource allo-
cation, but works only for a subset of hierarchical linear
constraints. Next, we provide another novel, fast and scalable,
Approximate OptLayer (ApprOpt) extension to DDPG that
can provably handle any hierarchical linear constraints, while
being orders of magnitude faster than OptLayer. Finally, we
demonstrate that our extensions DDPG-CP, DDPG-CS and
DDPG-ApprOpt provide either comparable or significantly
better solutions than existing best approaches on two simu-
lators for emergency response and bike sharing. Customer
demand in these simulators was generated using real or semi-
real datasets.

2 Background

In this section, we briefly describe the Reinforcement Learn-
ing (RL) problem (Sutton and Barto 1998) and the Deep
Deterministic Policy Gradient (DDPG) algorithm (Lillicrap
et al. 2015) that is used to learn in environments with contin-
uous action spaces.

The RL problem to maximize the long term reward while
operating in an environment can be represented as a Markov
Decision Process (MDP). Formally, an MDP is represented
by the tuple

〈
S,A, T ,R

〉
, where S is the set of states, A

is the set of actions, T (s, a, s′) represents the stochasticity
in the underlying environment and provides the probability
of transitioning from state s to state s′ on taking action a.
R(s, a) represents the reward obtained on taking action a in
state s. The RL problem is to learn a policy that maximizes
the long term reward from experiences without knowing the
exact model of transitions and rewards. An experience is
defined as a tuple (s, a, s′, r), and typically learning happens
over a batch of experiences (referred to as an episode) that
ends when s′ is a terminal state. Q-learning represents the
value function for being in state s and taking action a:

Q(s, a) = Es′,r[r + γ ·max
a′

Q(s′, a′)] (1)

where the expectation, E is over the stochasticity in the
environment with respect to transitions and also reward.

Since, we extend on Deep Deterministic Policy Gradient
(DDPG) approach in this paper, we provide a brief descrip-
tion. DDPG works in domains with continuous action spaces.
In DDPG, we have a critic function Q parameterized by θQ
that approximates the state-action-value function. We also
have an actor µ parameterized by θµ that outputs the de-
terministic action in a continuous space given the current
state. Let N denote the size of the batch of total experiences
ei = (si, ai, si+1, ri), i = 1..N collected in an episode. The

critic is updated by minimizing the loss:

L =
1

N

N∑
i=1

(yi −Q(si, ai|θQ))2,where

yi = ri + γ ·Q′(si+1, µ
′(si+1|θµ

′
)|θQ′

)

where Q′ and µ′ are target networks parameterized by θQ
′

and θµ
′

respectively. The parameters of these target networks
are made to slowly track the parameters of the original net-
works: θ′ ← τθ+(1−τ)θ′ with τ � 1. This is done to avoid
making targets yi non-stationary, and improve the stability
of updates. Next, the actor policy µ is updated by using the
sampled policy gradient:

∇θµJ ≈
1

N

∑
i

∇aQ(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si

3 Resource Constrained Reinforcement
Learning (ReCO-RL)

In our motivating problems of interest, supply resources have
to be allocated online to the right entities to efficiently serve
demand. There is uncertainty in demand (w.r.t. both serving
time and arrival) and potentially also in resource movement.
Since allocation decisions at one stage have an impact on the
subsequent stages and there is transitional uncertainty, RL is
an ideal model for problems of interest in this paper. However,
a key differentiating factor from typical RL problems is that
the action space in problems of interest is constrained due to
resource allocation constraints.

We propose a modification to the RL model that can rep-
resent such constraints on resource allocation. We call the
new model Resource Constrained Reinforcement Learning
(ReCO-RL). To capture the domains of interest, we have n
entities (e.g., base stations) where supply resources are situ-
ated and m zones that capture customer demand. Similar to
the RL setting, the underlying tuple is < S,A, T,R >.
• States, S: Each state s ∈ S is a tuple〈

b1, . . . , bn, d1, . . . , dm, t
〉

where bk is the number
of resources assigned to entity k, dl is the demand for
resources in zone l, and t is the decision epoch.

• Actions, A: Each action a ∈ A is a tuple〈
a1, . . . , ak, . . . , an

〉
where ak represents the number of

resources to be assigned to entity k. Depending on the
domain, there can be different allocation constraints on the
action, including but not limited to:

1. Global sum constraint: This enforces the global con-
straint on number of total resources available:∑

k

ak = C (2)

2. Local minimum and maximum bounds: These con-
straints enforce the minimum and maximum number
of resources to be allocated to an entity. For a given
entity k,

qCk ≤ ak ≤ Ĉk
∀k, qCk, Ĉk ∈ [0, C];

∑
k

qCk ≤ C ≤
∑
k

Ĉk (3)

611

G0 =
{1..n}

...

G1 =
{1, 2}

1 2

G2 =
{3, 4, 5}

3 4 5

...

...

... ...

...

... ...

...

n− 1 n

Figure 1: Region Hierarchy Example

3. Regional minimum and maximum bounds: These con-
straints enforce the minimum and maximum number of
resources to be allocated to a region (a subset of entities).
For a given region Gj :

qCGj ≤
∑
k∈Gj

ak ≤ ĈGj (4)

It should be noted that qC{1..n} = Ĉ{1..n} = C due to
the global sum constraint. Also, ∀k : qC{k} = qCk and
Ĉ{k} = Ĉk, due to the local minimum and maximum
bound constraints respectively. In the most general case,
constraints can be on any subsets of regions. However,
in practice and in problem domains of interest, there is
a region hierarchy to ensure effective management. For
instance, in emergency response domain, for allocating
ambulances:
(a) The city is divided into multiple major regions (East,
West, North, South, Centre);
(b) Each major region is divided into communities;
(c) Each community has some base stations;
The connection between regions and entities can in such
cases be represented as a tree as shown in Figure 1.

• Transitions and Rewards: T (s, a, s′) captures uncer-
tainty in demand and movement of resources between
entities. R(s, a, s′) represents the demand served or the
utility of serving the demand.

We now provide two examples of how ReCO-RL can rep-
resent the problems of interest:

Emergency Response as ReCO-RL: Emergency Re-
sponse Systems (ERSs) are tasked with reducing the response
times for emergencies in many cities by using resources like
ambulances, fire trucks etc. There are n base stations (enti-
ties) where ambulances (or other resources) are placed and
requests for ambulance can arise anywhere in the city that is
divided into m zones. The goal is to place the right number
of ambulances at the base stations, so as to optimize bounded
time response (number of requests served within bounded
time) (Yue, Marla, and Krishnan 2012). bk represents the
number of ambulances at kth base station; dl represents the
demand in lth zone. With respect to action, ak represents the
number of ambulances to be assigned to kth base station. For
bounded time response, reward is 1 for every request that

is served within bounded time, zero otherwise. Transitions
between states are dependent on demand patterns and action
taken with respect to movement of ambulances.

Bike Placement as ReCO-RL: In bike placement prob-
lem, there are n docking stations where bikes are placed and
requests for bikes can arise at these docking stations (thus
in this case m = n). The goal is to place the right number
of bikes at the right docking stations at the right times, so
as to reduce lost demand (Ghosh et al. 2017). With respect
to state, bk represents the number of bikes at kth docking
station. dl represents the demand in lth zone. With respect
to action, ak represents the number of bikes to be assigned
to kth docking station. Reward is -1 for every lost customer
due to lack of bikes at a docking station. Transitions between
states are dependent on demand patterns and action taken
with respect to movement of bikes.

3.1 Extensions to ReCO-RL
In the definition of ReCO-RL, we have considered a single
type of resource and we do not distinguish between resources
assigned to the same entity. However, it is easy to extend the
model to consider multiple types of resources (e.g., multiple
types of ambulances and bikes). We will have state features to
be sζk indicating the number of resources of type ζ assigned
to entity k. We will have a similar modification to action
features, aζk indicating the number of resources of type ζ
assigned to entity k. Constraints can then be defined on these
new action features in a similar way. As we show in Footnote
1, our approaches can still be applied, as state and actions
can be converted to continuous space in a similar way. For
purposes of easy explainability and since there are many
domains which operate with single resource types, we focus
on single resource type in this paper.

4 Approaches
ReCO-RL problems have a discrete and combinatorial action
space in problems of interest in this paper. For instance, even
the simplest ambulance allocation problems considered in
this paper have approximately 3225 possible actions. Due to
the combinatorial action space and the presence of constraints
on actions, existing approaches for Deep RL are not suitable.
Deep Deterministic Policy Gradient (DDPG) approach is
also not directly applicable. However, in this paper, we pro-
pose novel extensions on top of DDPG to solve ReCO-RL
problems effectively and efficiently.

For DDPG to be applicable for solving ReCO-RL prob-
lems, there are two key challenges:

1. Action space should be continuous and not discrete.

2. Address constraints on actions. Such constraints imply
not every action obtained using actor network is feasible
and furthermore, unconstrained exploration strategies (like
Ornstein-Uhlenbeck process) are not applicable (as they
result typically in violation of action constraints).

First, we consider the easier challenge of dealing with
discrete action space. Action space is discrete and combina-
torial in domains of interest due to the need for allocation
of resources at every decision epoch. However, it is easy

612

to approximate such discrete and combinatorial resource al-
location actions into continuous actions. For instance, con-
sider a discrete action a = (10, 20, 30, 40) that represents
10 resources assigned to entity 1, 20 resources assigned to
entity 2 and so on. This is (approximately) equivalent to
ã = (0.1, 0.2, 0.3, 0.4), where 0.1 refers to the fraction of
resources assigned to entity 1, 0.2 refers to the fraction of
resources assigned to entity 2 and so on.1 In this paper, we
employ such a conversion. Since we convert to a continu-
ous action space, the constraints also get normalized to be
between 0 and 1. We refer to qC as the normalized lower
bound of qC (i.e. qC =

qC
C) and Ĉ (= Ĉ

C) the normalized upper
bound. In this converted continuous action space, the action
components thus must sum to C = C

C = 1.
Addressing the second challenge of handling constraints

on actions within DDPG is one of the key contributions of
this paper. We provide three methods in the context of DDPG:

1. Constrained Projection (CP): For Reco-RL problems, the
actor network of DDPG generates infeasible actions. In
this method, we employ penalties to train the actor network
to generate feasible actions. Thus the policy gradient is
computed at the infeasible output of the actor network.
For the purpose of taking an action in the environment,
whenever the actor generates an infeasible action, we use
its nearest projection in the feasible action space, computed
using a Quadratic Program (QP).

2. Constrained Softmax (CS): In this approach, we introduce
modifications of the traditional softmax function as new
layers in the actor network to ensure that it generates fea-
sible actions. The layers are differentiable since they are
essentially closed form expressions. These layers are part
of the end to end backpropagation training of the actor
i.e. the policy gradient is computed at the output of these
layers. These layers can handle a subset of local and hier-
archical regional constraints.

3. Approximate OptLayer (ApprOpt): In this approach, we
introduce new differentiable layers based on ideas from
OptLayer, but orders of magnitude faster. The speedup
comes from solving the QP approximately in a semi closed-
form semi-iterative fashion, which makes computing the
gradients trivial. These layers are part of the end to end
backpropagation training of the actor. These can handle the
full breadth of local and hierarchical regional constraints.

The feasible action ~z computed using the above methods
is continuous and its components sum to 1. As in the Wolper-
tinger approach (Dulac-Arnold et al. 2015), we round off
C × ~z to the nearest (by L1 distance) discrete action a to
act in the environment. ã = a/C is added to the experience
buffer and thus used to train the critic.

As indicated earlier, unconstrained exploration strategies
(like Ornstein-Uhlenbeck process, which adds noise to the

1In case of multiple resource types, we will normalize each
resource type separately. For instance, if there are two resource
types, then an action (10, 20, 5, 10) – which indicates 10 resources
of type 1 to entity 1, 20 resources of type 1 to entity 1, 5 resources of
type 2 to entity 1, 10 resources of type 2 to entity 2 – gets converted
to (10

30
, 20

30
, 5

15
, 10

15
).

generated action) cannot be used in ReCO-RL problems be-
cause they can result in violation of action constraints. There-
fore, we employ adaptive parameter noise (Plappert et al.
2017) for exploration in all the approaches.

Now we will present each of the approaches in detail. For
DDPG-CS and DDPG-ApprOpt, first we will show how to
generate feasible actions ~z in presence of local constraints
only. Later, we will show how these local-constraints han-
dling layers (or LCHLs) can be nested to build a differentiable
module to handle hierarchical regional constraints as well.

4.1 Constrained Projection
In this method, we employ penalties to train the actor network
to generate feasible actions. In case the generated action is
infeasible, then for the purpose of taking an action in the
environment, we use the nearest projection of the infeasi-
ble action in the feasible action space, computed using a
Quadratic Program (QP).

Let xk = µk(st|θµ) refer to the actor output corresponding
to resource allocation for entity k on observing state st at
timestep t, with no activation function used in the final layer.
Let the activated output be:

yk =
tanh(xk) + 1

2
(5)

The actor is trained to satisfy the allocation constraints
by adding violation cost penalty terms to the policy gradient
equation. The violation cost ν is given by:

ν(~y) = |1−
n∑
k

yk|+
∑
Gj

max (0, qCGj −
∑
k∈Gj

yk)

+
∑
Gj

max (0,
∑
k∈Gj

yk − ĈGj) (6)

In DDPG-CP, the overall gradient is a linear combination
of the sampled policy gradient taken at ~y, and the negative of
the gradient of ν(~y).

5θµJ ≈
1

N

∑
i

[
5a Q(s, a|θQ)|s=si,a=~y(si) 5θµ ~y(s|θµ)|si

− λ · 5θµν(~y)|~y=~y(si)

]
(7)

where λ > 0 is tuned for each domain separately.2
For stepping in the environment, we identify the nearest

L2 projection ~z of ~y that satisfies all the given constraints
using the following QP:

Minimize‖~z − ~y‖L2
, subject to

n∑
k

zk = 1; qCGj ≤
∑
k∈Gj

zk ≤ ĈGj , ∀Gj (8)

This method has a very broad scope and can handle even
non-hierarchical regional constraints. The main weakness of
this approach is that the policy gradient is computed at ~y,
which need not be feasible. This can be a problem since the
critic is trained on feasible actions ã, making the Q function
at ~y theoretically undefined and practically ill defined. Thus
this method is theoretically adhoc.

2We use λ = 103 for emergency response domain and λ = 105

for bike sharing domain, as those values yield the best performance.

613

4.2 Constrained Softmax
In this method, we introduce new differentiable layers to the
actor network that are dependent on the type of constraints
present in the problem. These new layers compute a softmax
output ~z over the actor network output while satisfying the
allocation constraints, and hence we refer to these additional
layers collectively as constrained softmax layers. These lay-
ers become part of the end to end backpropagation training
of the actor i.e. the policy gradient is computed at ~z. Since
constrained softmax layers are dependent on the type of con-
straints, we describe the changes for each type of constraint
separately.

Global Sum Constraint We will start with the simplest
case of having just the global constraint i.e.

∑
k ak = 1. This

can be handled by having only one additional layer at the
end of the actor network, i.e. the traditional softmax layer.
Assume ~x = µ(st|θµ) is any arbitrary vector output of the
actor network, with no activation function used in the final
layer. We compute softmax over ~x to give the feasible action
~z as follows:

zk =
yk∑
k yk

(9)

where activation yk = emin(0,xk) (10)

Local Minimum and Maximum Bounds We now con-
sider the local minimum and maximum bounds for each en-
tity k. Like in the previous case, we just need one extra layer
that is a modification of the softmax layer to handle local
bounds. The goal here is to identify a function ~z (with inputs
~y and bounds {qCk} and {Ĉk}) that satisfies the following
properties:

Min, max bounds: qCk ≤ zk(~y, {qCi}, {Ĉi}) ≤ Ĉk

Global sum constraint:
∑
k

zk(~y, {qCk}, {Ĉk}) = 1

Monotonicity:
∂zk
∂yk
≥ 0 and ∀i 6= k,

∂zk
∂yi
≤ 0 (11)

Monotonicity is required to identify the conditions where
the functional form will yield a maximum. We have found
one functional form that satisfies the properties above un-
der some conditions. Proposition 1 provides this functional
form (which is a minor modification to the traditional soft-
max layer) along with the conditions under which they are
applicable.
Proposition 1 If we only have the sum constraint and lo-
cal maximum bounds {Ĉk} for individual entities, then the
feasible outputs {zk} are given by:

zk(~y,~0, {Ĉk}) =
yk + εk∑
i

[
yi + εi

] with εk =
Ĉk · (n− 1)∑

i Ĉi − 1
− 1

(12)

where ∀k, εk ≥ 0,
∑
i Ĉi 6= 1

Proof: There are three steps to the proof:
Step 1: zk satisfies monotonicity properties of (11):

∂zk
∂yk

=

∑
i

[
yi + εi

]
− (yk + εk)

(
∑
i

[
yi + εi

]
)2

=

∑
i 6=k

[
yi + εi

]
(
∑
i

[
yi + εi

]
)2

∂zk
∂yi

=
−(yk + εk)

(
∑
i

[
yi + εi

]
)2

Since ∀i, yi ≥ 0 (from Equation 10) , dzkdyk
≥ 0 and dzk

dyi
≤ 0

in all cases if we have ∀i, εi ≥ 0
Step 2: Given the monotonicity properties of zk, the maxi-
mum value for zk in Equation (12) occurs when yk = 1 and∑
j 6=k yj = 0. Therefore:

1 + εk
1 +

∑
k εk

= Ĉk =⇒ 1 + εk = Ĉk · (1 +
∑
k

εk)

=⇒ Ĉk · ε1 + . . .+ (Ĉk − 1) · εk + . . . Ĉk · εn = 1− Ĉk (13)

The above set of equations (13) for all k in matrix form is:
C× ε = C, which has a solution as long as determinant of C
is not zero. We calculate the determinant by performing the
following steps: (i) subtract first column values from all the
other columns; and (ii) add all rows to the first row.

|C| = (
∑
k

Ĉk − 1) · (±1) (14)

Therefore, determinant is zero only if
∑
k Ĉk = 1.3

Step 3: Closed form expression for εk can be verified by
substituting its value from (12) in (13). The L.H.S. of (13)
becomes:∑
j 6=k

Ĉk ·
[Ĉj · (n− 1)∑

i Ĉi − 1
− 1

]
+ (Ĉk − 1) ·

[Ĉk · (n− 1)∑
i Ĉi − 1

− 1
]

=
Ĉk · (n− 1) · [

∑
i Ĉi − 1]∑

i Ĉi − 1
− n · Ĉk + 1

= 1− Ĉk
This is the R.H.S. of (13) and hence verified. �

For local minimum bounds, we allocate each entity its min-
imum bounds and solve the problem for the remaining value
(1 - sum of minimum bounds) by normalizing the bounds.
For instance, in a problem with 3 entities with minimum
bounds as (0.1, 0.1, 0.1) and maximum bounds as (0.4, 0.5,
0.6). We convert it to a problem with minimum bounds as
(0, 0, 0) and maximum bounds as (0.3/0.7, 0.4/0.7, 0.5/0.7).
When there are both local minimum and maximum bounds,
the expression for zk is:

zk(~y, {qCi}, {Ĉi}) = qCk + (1−
∑
j

qCj) · zk(~y,~0, { Ĉi −
qCi

1−
∑
j

qCj
})

(15)

Therefore, we can use Proposition 1 to compute the expres-
sion for minimum bounds as well.

In general, if the sum constraint is C, then the expression
for zk is:

zk(~y, {qCi}, {Ĉi}, C) = qCk

+ (C −
∑
j

qCj) · zk(~y,~0, { Ĉi −
qCi

C −
∑
j

qCj
})

(16)

3When
∑
k Ĉk = 1, then we assign zk = Ĉk, as that is the limit

of zk in (12) as
∑
k Ĉk → 1+.

614

Limitation of Constrained Softmax The proof of propo-
sition (1) requires that ∀k : εk ≥ 0. i.e.

∀k :
Ĉk · (n− 1)∑

i Ĉi − 1
− 1 ≥ 0 (17)

An example when this condition will be violated is when
{Ĉ} = (0.3, 0.5, 0.6). Therefore, the applicability of con-
strained softmax is limited to the cases where (17) is satisfied.

4.3 OptLayer
One way to address different constraints on the actions is to
project the output of the actor neural network to the feasible
space of actions. This can be done using OptLayer (Pham,
De Magistris, and Tachibana 2018). Assume that ~y is the
output of the actor network with some activation function,
which may not satisfy all the constraints in our domain. We
can project ~y to the feasible space and get the feasible action
~z by solving the following QP:

min
~z

n∑
k=1

(zk − yk)2 subject to

n∑
k=1

zk − C = 0 : λ

∀k = 1..n : zk − Ĉk ≤ 0 : αi

∀k = 1..n : qCk − zk ≤ 0 : βi

(18)

Here λ, αi, βi are the corresponding Lagrange multipliers.
Since the objective function is strictly convex and the con-
straints are linear, there exists a unique solution to this QP.
The Lagrangian function is (Bertsekas 1999):

L(~z, ~α, ~β, λ) =
∑
k

(zk − yk)2 + λ(
∑
k

zk − C)

+
∑
k

αk(zk − Ĉk) +
∑
k

βk(qCk − zk) (19)

The KKT conditions (conditions satisfied by the optimal
solution ~z?, ~α?, ~β?, λ?) of the QP (18) are given by∇~z,λL =
~0, along with the equations of complementary slackness:

n∑
k

z?k − C = 0

∀k = 1..n : 2(z?k − yk) + λ? + α?k − β?k = 0

∀k = 1..n : α?k(z?k − Ĉk) = 0

∀k = 1..n : β?k(qCk − z?k) = 0

(20)

To include this layer in the end-to-end backpropagation train-
ing of the actor, in the backward pass, we need to compute the
gradients of the optimal solution of the QP w.r.t. the inputs ~y
or Jkj =

∂z?k
∂yj

. Such gradients can be computed using the im-
plicit function theorem as shown in (Amos and Kolter 2017).
The technique yields a system of linear equations in partials
∂z?k
∂yj

, which can be solved to find the Jacobian matrix J. Thus
in this method, the forward pass requires solving a QP using
an optimizer and the backward pass involves solving the set
of linear equations for each item in the sampled minibatch.

4.4 Approximate OptLayer algorithm
The main challenge in solving (18) in the forward pass is that
it becomes computationally slow given the large number of
iterations most RL approaches require. Therefore, we next
propose an approximate algorithm to solving the QP (18),
which apart from being very efficient, makes computing the
gradients in the backward pass computationally much faster.
The motivation for our proposed approach comes from simi-
lar iterative approaches that have been used to solve QPs, but
in different contexts such as graphical models (Kumar and
Zilberstein 2011; Duchi et al. 2008).

Before we describe the algorithm, we impose the condition
that the output yi∀i of the neural network always satisfies
respective upper/lower bounds or qCk ≤ yk ≤ Ĉk ∀k. This
condition is easy to enforce in a neural network. Assume
~x = µ(st|θµ) is any arbitrary vector output of the network,
with no activation function used in the final layer. We use the
activation function:

yk= qCk + (Ĉk − qCk)
xk −min(~x)

max(~x)−min(~x)
(21)

where min, max provide minimum, maximum component
of the vector respectively. We do this scaling only if any xk
violates its corresponding bounds. Else, we set yk = xk ∀k.

QP (18) computes the optimal L2 projection of ~y onto the
feasible space determined by the constraints. The main in-
sight behind this approach is that we do not need the optimal
L2 projection of ~y. We just need any differentiable projection
function which can respect the constraints. Empirically, the
projection derived by our proposed approach is not very far
from the optimal L2 projection.

Initially, we find a closed-form solution to the QP (18) by
ignoring the inequality constraints. That is to say, we solve
the KKT conditions (20) by setting ~α∗ = ~0 and ~β∗ = ~0 and
get:

∀k : zk = yk +
C −∑n

k=1 yk
n

(22)

After applying this formula, if all the zk are found to be
satisfying the bound constraints qCk ≤ zk ≤ Ĉk, then the
algorithm terminates. We compute the gradients (∂zk∂yj

) by
differentiating (22):

∂zk
∂yj

= δkj −
1

n
(23)

where δkj is 1 if k = j, else 0.
If the bound constraints are not satisfied for some zk, the

algorithm proceeds to correct ~z in two phases. The first phase,
referred to as LOWER, is to satisfy the min constraints, and
the second phase, referred to as UPPER, is to satisfy max
constraints. In the LOWER phase, all the outputs zk which
are below the respective min bounds are clamped to the re-
spective min bound qCk. The remaining value C′ (= C minus
sum of clamped outputs) is redistributed over the remaining
n′ (= n minus number of clamped outputs) outputs using
an expression similar to (22), but with new C = C′, n = n′

and involving only the yk corresponding to the unclamped zk.
The LOWER phase loops until there is no need for anymore
clamping i.e. it ends when ∀k : zk ≥ qCk.

615

Algorithm 1 Forward pass and gradient computation for
ApprOpt layer
Require: n ≥ 2

Require: ∀k = 1..n : 0 ≤ qCk < Ĉk ≤ C
Require:

∑
qCk < C <

∑
Ĉk

Require: ∀k : qCk ≤ yk ≤ Ĉk
1: n′ ← n . count of unclamped indices
2: C′ ← C . value to distribute to unclamped indices
3: Ω← {1, 2, ..., n} . unclamped output indices
4: phase← LOWER . possible values are:

LOWER = 0; UPPER = 1; DONE = 2
5: while phase 6= DONE do
6: Ω′ ← φ . indices clamped in this iteration of the while

loop
7: zk ← yk + (C′ −

∑
j∈Ω yj)/n

′ foreach k ∈ Ω

8: Jkj ← δkj − 1/n′ foreach j ∈ Ω, foreach k ∈ Ω
9: Jkj ← 0 foreach j /∈ Ω, foreach k = 1..n

10: for k ∈ Ω do
11: if zk < qCk and phase = LOWER then
12: zk ← qCk
13: Jkj ← 0 foreach j = 1..n
14: Ω′ ← Ω′ ∪ {k}
15: else if zk > Ĉk and phase = UPPER then
16: zk ← Ĉk
17: Jkj ← 0 foreach j = 1..n
18: Ω′ ← Ω′ ∪ {k}
19: end if
20: end for
21: n′ ← n′ − |Ω′|
22: C′ ← C′ −

∑
k∈Ω′ zk

23: Ω← Ω− Ω′

24: if Ω′ = φ then
25: phase = phase + 1
26: end if
27: end while
28: return ~z,J
Ensure: ∀k : qCk ≤ zk ≤ Ĉk
Ensure:

∑n
k=1 zk = C

Ensure: z = y if
∑n
k=1 yk = C

After the LOWER phase is over, the UPPER phase begins,
which similarly repeatedly clamps the outputs which violate
the respective max constraints and redistributes the remaining
value.

During the entire process, if a zk is clamped either to its
upper or lower bound, it remains clamped to the same value
for all the future iterations and remains out of the clamp-and-
redistribute loop along with the corresponding yk. Thus zk is
assigned to a constant and not affected by any input, and yk
does not affect any output. Thus at the end of the algorithm,
we have:

Jkj =
∂zk
∂yj

=

{
0 if zk or zj is clamped
δkj − 1

n′ otherwise
(24)

Algorithm 1 provides the pseudocode.
Proof for Algorithm 1: There are five steps to proving that
the algorithm terminates and always gives a feasible output.
Step 1: In LOWER phase, every iteration of the while loop
leaves at least one output zk unclamped. This can be proven

by contradiction.

Assume that after line 7 we have: ∀k ∈ Ω : zk < qCk

=⇒ ∀k ∈ Ω : yk +
C′ −

∑
j∈Ω yj

n′
< qCk

=⇒
∑
k∈Ω

yk + C′ −
∑
j∈Ω

yj <
∑
k∈Ω

qCk

=⇒ C′ <
∑
k∈Ω

qCk

=⇒ C −
∑
k/∈Ω

qCk <
∑
k∈Ω

qCk

=⇒ C <
n∑
k=1

qCk

This contradicts with given precondition that C ≥∑n
k=1

qCk
from (3). Thus, ∃k s.t zk ≥ qCk, which would not get
clamped.
Step 2: LOWER phase always terminates with not having
excluded all feasible solutions. With every iteration of the
while loop in the phase, the count of unclamped outputs
i.e. n′ monotonically decreases, due to line 21. But it cannot
decrease to less than 1 in any iteration, by step 1. Thus it must
terminate with n′ ≥ 1. After the LOWER phase terminates,
we also need to show that the remaining value to distribute,
C′, is less than or equal to the sum of upper bounds on the
unclamped outputs i.e. C′ ≤ ∑j∈Ω Ĉj . If this condition is
not maintained then the remaining value cannot be feasibly
distributed over zk, k ∈ Ω. We will prove that the condition
is maintained after every iteration in LOWER phase because
clamping of any zk preserves the condition. Output zk is
clamped if

zk < qCk
Also, we observe that before clamping, i.e. after line 7, zk is

minimum if yk is minimum, i.e. qCk, and yj ∀j ∈ Ω−{k} are
maximum, i.e. Ĉj .4 Thus,

qCk +
C′ − qCk −

∑
j∈Ω−{k} Ĉj

n′
≤ zk < qCk

=⇒ qCk +
C′ − qCk −

∑
j∈Ω−{k} Ĉj

n′
< qCk

=⇒ C′ − qCk <
∑

j∈Ω−{k}

Ĉj

which means that the remaining value to distribute after
clamping zk, i.e. C′ − qCk will be less than the sum of remain-
ing upper bounds, i.e.

∑
j∈Ω−{k} Ĉj .

Step 3: In UPPER phase, every iteration of the while loop
always leaves at least one output zk unclamped. This can be
proven by contradiction using the same tactics as step 1.
Step 4: UPPER phase always terminates: With every iteration
in the phase, the count of unclamped outputs i.e. n′ monoton-
ically decreases. But it cannot decrease to less than 1 in any
iteration, by step 3. Thus it must terminate with n′ ≥ 1.

4This is true because ∂zk
∂yk

> 0 and ∂zk
∂yj 6=k

< 0 in line 7 of
Algorithm 1

616

Step 5: By step 4, the while loop terminates with n′ ≥ 1,
i.e. at least one unclamped output. On termination of the
while loop, all the outputs must satisfy the min and max con-
straints, since the LOWER and UPPER phase have ended.
The sum of the unclamped outputs is C′ (by summing the
expression in line 7 over k ∈ Ω), and C′ = C −∑k/∈Ω zk =
(C minus sum of clamped outputs). Thus clamped and un-
clamped outputs add up to C.

Thus the algorithm provides a feasible solution that satis-
fies all the constraints. �

Whenever the input is already feasible, i.e.
∑
k yk = C

and qCk ≤ yk ≤ Ĉk, then zk = yk by equation (22) i.e. the
algorithm behaves as an identity function for feasible inputs.
Thus there exist a set of inputs such that the corresponding set
of outputs occupies the entire feasible solution space. Thus
this approach does not preclude any feasible solution.
Computing gradients: Notice that Algorithm 1 computes
all the required gradients Jkj = ∂zk

∂yj
in lines 8, 9, 13, and

17. There is no expensive matrix inversion or solving of a
system of linear equation required. This provides significant
speedup over the exact solving of QP using CPLEX and then
computing the gradients as in the standard OptLayer.
Practical Considerations: (Pham, De Magistris, and
Tachibana 2018) found that using only the OptLayer gra-
dient does not lead to efficient learning. We found the same
problem with the ApprOptLayer gradient. We suspect that
this is because when ~x is very far from feasible, it leads to
many zk getting clamped, resulting in many zero gradients.
Conversely, if ~x is close to feasible, then the mapping from
~x to ~z is close to identity, resulting in near-unit gradients.
Hence, to get ~x close to feasible, we penalize the actor output
~x for being infeasible. This is unlike the reward shaping used
in (Pham, De Magistris, and Tachibana 2018). Our penalty
term ν(~x) (as defined in (6)) is added to the actor’s train-
ing objective, like in DDPG-CP. This penalization method
gives direct gradient information to the actor network, as
opposed to the critic learning the penalty returns first and
then passing the gradient information back to the actor net-
work. Even though we use a penalty in the actor’s objective,
this approach is still superior to DDPG-CP, since it being an
end to end learning approach, the policy gradient feedback
from the critic is propagated via the ApprOpt layer, making
it theoretically more justified.

4.5 Hierarchical Regional Constraints
For DDPG-CS and DDPG-ApprOpt, we have shown how
to handle local constraints by adding a differentiable pro-
jection layer at the end of the actor network. We will now
show how these local constraints handling layers (or LCHLs)
can be nested to create a differentiable module for han-
dling hierarchical regional constraints. For example, sup-
pose there are two regions G1 and G2 and five entities. Say
G1 = {1, 2, 3} and G2 = {4, 5}. We approach this example
problem as follows. Let the actor neural network output seven
pins (instead of five): x1, x2, ..., x5, xG1

, xG2
, activated to

y1, y2, ..., y5, yG1
, yG2

using the appropriate activation func-
tion (10) or (21) depending on whether we are using CS
or ApprOpt. Then we use a LCHL to determine the allo-

cations for G1, G2 first i.e zG1 , zG2 using inputs yG1 , yG2

with sum constraint as 1 and (given) bound constraints as
qCG1

, qCG2
, ĈG1

, ĈG1
. Then we use another LCHL to deter-

mine z4, z5 using inputs y4, y5 with sum constraint as zG2

and bound constraints as qC4, qC5, Ĉ4, Ĉ5. Similarly, another
LCHL would compute z1, z2, z3 using inputs y1, y2, y3 with
sum constraint as zG1

.
To make nested-LCHLs end-to-end differentiable, it is

required that the LCHLs, for which the sum constraint input
is an output of another LCHL, should compute the gradients
of its outputs w.r.t the sum constraint as well.

For CS layer, this is handled automatically by auto-
differentiating frameworks such as TensorFlow, as (16) is
a closed form expression w.r.t. C.

For ApprOpt layer, ∂zk∂C = 0 for clamped outputs (k /∈
Ω) because clamped outputs are assigned to constants. For
unclamped outputs, i.e. k ∈ Ω,

∂zk
∂C =

∂yk
∂C +

1

n′
· (∂C

′

∂C −
∑
j∈Ω

∂yj
∂C) (From line 7 of Alg 1)

= 0 +
1

n′
· (∂C

′

∂C − 0) (input ~y independent of C)

=
1

n′
·
∂(C −

∑
k/∈Ω zk)

∂C (by def of C′)

=
1

n′
· ∂C
∂C (∂zk

∂C = 0 for k /∈ Ω)

=
1

n′
(25)

5 Experiments
Our goal in the experiments is to evaluate the performance
of our new approaches, DDPG-CP, DDPG-CS and DDPG-
ApprOpt in comparison to baseline approaches. DDPG-
OptLayer was at least an order of magnitude slower and on
the limited computation resources available to us, we were
unable to evaluate it completely. Within the limited evalu-
ations, we observed that DDPG-ApprOpt was on par with
DDPG-OptLayer.

We train and evaluate our approaches on two simulators5

related to emergency response and bike sharing that have
inherent constraints.
Emergency Response System (ERS): First, we consider a
simulator for emergency response with the transitional dy-
namics inspired by (Yue, Marla, and Krishnan 2012). In our
simulator, there are 32 ambulances to be distributed among
25 base stations. We define a zone (corresponding to a base
station) as the points which are closest to that base than any
other base. Thus m = n. All vehicles travel in straight lines
at a uniform speed. As requests (incidents) arrive accord-
ing to the patterns described in the next paragraph, they are
added to a request queue, to be served on a first-come-first-
serve basis. For a given request, an ambulance is dispatched
from the nearest base station which has an idle ambulance. If

5The OpenAI Gym environments for the two simulators are
available at: https://github.com/bhatiaabhinav/gym-ERSLE (ERS)
and https://github.com/bhatiaabhinav/gym-BSS (BS)

617

there are no idle ambulances, the request is not served until
an ambulance gets free. An ambulance is considered busy
throughout its life cycle which consists of picking the patient,
dropping them off to the nearest hospital, and coming back
to the base assigned to it. It might come back to a different
base than its starting base if it was reassigned to a new base
before leaving from the hospital. When an idle ambulance
is reassigned to a new base, it is considered unavailable to
serve requests during its journey to the new base. Thus there
is an implicit cost to reallocations.

One episode corresponds to one day. The episode starts
with a uniform allocation. Reallocation is done every 30 min-
utes i.e. the MDP frame consists of running the simulator for
30 simulated minutes, and returning the new observation and
a reward signal. The observation consists of: the allocation at
the end of that frame, the number of new requests per zone
during that frame, and the time of the day. The reward signal
is the number of request sites at which an ambulance reached
within 10 minutes during that frame. The RL system is ex-
pected to act by providing a 25-dimensional target-allocation.
The simulator achieves the target allocation in a way such that
it minimizes the number of ambulances which are assigned
to a new base.

For our experiments, we consider 2 demand patterns: “Sin-
gapore Poisson” (in which the probability of an incident at a
place is a function of the time of the day, inspired by actual
demand statistics in Singapore 2011 (Ji et al. 2013)), and a
“random surges” version in which we introduce unpredictable
random surges in demand at random places at random times,
once per episode. The surges are gaussian in nature. We
consider uniform local constraints for this environment.
Bike Sharing (BS): We consider the simulator described in
(Ghosh and Varakantham 2017) for Hubway bike sharing
system. The bike sharing system consists of 95 base stations
(zones) and 760 bikes. The planning horizon (episode) is of 6
hours in the morning peak (6AM-12PM) and the duration of
each decision epoch is considered as 30 minutes. The obser-
vation consists of: the distribution of bikes at the end of the
frame, the cumulative demand per zone during the 30 minute
frame, and the time of the day. The RL agent is expected to
act by providing a target allocation every 30 minutes. The
simulator may not be able to achieve this allocation at the end
of the next 30 minutes, since in this domain, the allocation
is influenced also by the customers picking up bikes at one
zone and leaving them at different zones.

For our experiments we consider the first demand data set
from (Ghosh and Varakantham 2017), which corresponds to
a slightly modified real demand data for 60 weekdays. Like
in that work, the dataset is divided as 20 days for training
and 40 days for testing. Corresponding to these, we create
a training MDP and a testing MDP, which use training data
and testing data respectively. There are non-uniform local
constraints in this environment.
Baselines: For ERS domain, we compare our approaches
against static allocation baselines, computed offline using a
greedy allocation algorithm, described in (Yue, Marla, and
Krishnan 2012). The optimization was done over a fixed set
of 32 episodes, initialized with seeds 0 through 31.

Briefly, in this algorithm, the best base station is decided

for each ambulance one by one. Each ambulance is tried on
every base station for the entire episode, and finally the base
station which results in maximum average gain (average over
the 32 random seeds) due to that ambulance is chosen. Since
the maximum average gain decreases as more ambulances
are assigned an appropriate base, i.e. the domain is (close
to) submodular (Manohar, Varakantham, and Lau 2018), this
myopic algorithm yields an allocation close to optimal. We
did not use a dynamic greedy repositioning baseline (i.e. use
this algorithm to find an offline allocation for every frame,
as opposed to the entire episode), partly due to the computa-
tional requirements (25x32x32x48 simulations), and partly
due to the fact that any gains from dynamic repositioning
are largely dampened by the cost of reallocation. Further, dy-
namic greedy repositioning would be greedy in time as well,
i.e. it might do a re-allocation which is good in short term, but
bad in long term. Static positioning does very well assuming
an average demand statistics across the day for each place.
As we will see later, RL too performs similar to static reposi-
tioning when the demand statistics are predictable/Poisson.
When they are not predictable, i.e. in the domain instances
with random surges at random places, greedy baselines are
expected to not work well, since the Poisson assumption
made in the (Yue, Marla, and Krishnan 2012) (that the prob-
ability of a request at a given place and time is independent
of other requests) breaks. Greedy algorithm cannot consider
constraints while calculating the allocation and hence the
results from baselines might appear stronger. It should be
noted that since we consider allocation problems, we cannot
employ planning methods like the one by (Dayapule et al.
2018), where the focus is on planning the dispatch rather than
allocation.

For bike sharing domain, we take the best results
from (Ghosh and Varakantham 2017), which correspond to
“RTrailer”: a dynamic repositioning algorithm using 10 bike
trailers, each having a capacity of 5. The work by (Ghosh
and Varakantham 2017) has demonstrated that with small
trailers, they get better performance than with 3 larger trucks
with a capacity of 20. We took their best setting (10 trailers
with 5 capacity) when comparing against our approach. Suc-
cessive allocations recommended by our approach requires
a maximum movement of bikes that is 10 (much lower than
large vehicle capacity of 20).

In summary, the big advantage with our approach is that it
is domain independent and we do not need a domain specific
approach (like greedy or optimization). It could be used for
replenishing vending machines serving fresh juices, or for
food delivery etc. and can handle unpredictable events which
can be handled only online.
Algorithmic Details: For the actor and critic deep learning
networks, we largely retain the basic architecture used in
(Lillicrap et al. 2015). Both the actor and the critic use two
hidden layers with 128, 96 ReLU units for emergency re-
sponse domain and 400,300 ReLU units for bike sharing
domain. For the critic, actions are not included until the
second hidden layer. Layer normalization (Ba, Kiros, and
Hinton 2016) is applied before non-linearities to all hidden
layers in both the actor and the critic. Weights are initial-
ized using glorot uniform initializer (scale=1.0) (Glorot and

618

Figure 2: Learning curves comparing different approaches. Each curve shows average reward per episode ± standard deviation
over different seeds. The last subfigure shows the average reward due to the incidents which were part of the surges.

Domain (Demand pattern) Baseline DDPG-CP DDPG-CS DDPG-ApprOpt
ERS Poisson 342.9 342.09± 0.35 339.42± 1.35 341.16± 0.84
ERS Poisson+Surge 309.3 316.46± 1.38 312.32± 3.59 353.20± 4.17
BS −175 −92.86± 5.69 −77.64± 3.02 −90.3± 11.2

Table 1: Average evaluation scores ± standard deviation over different seeds. The baseline approaches are Greedy-static for
Emergency Response System (ERS) domain and RTrailer for Bike Sharing (BS) domain.

Bengio 2010) for hidden layers and using orthogonal initial-
izer (gain=1.0) (Saxe, McClelland, and Ganguli 2013) for
final layers. The parameters of the target network are soft
updated from those of the main network after every training
step with τ = 10−3. The parameters of the main network are
trained using Adam optimizer (Kingma and Ba 2014) at a
learning rate of 10−3 for the critic and 10−4 for the actor. The
parameters of the critic (except those of the final layer and
the biases) are regularized with an L2 norm penalty of 10−2

for emergency response domain and 10−1 for bike sharing
domain. A gradient descent step is performed every 2 frames,
in which a minibatch of size 128 is randomly sampled from
an experience replay buffer of size 106. Adaptive parameter
noise (Plappert et al. 2017) is used for exploration with a
target divergence of 1/C, and adaptation factor of 1.05.

To make the environment more observable, the most recent
observation is modified to include the demand statistics from
the previous two frames as well. The observation input to the
actor and the critic are normalized with the running mean
and standard deviation of the observations. Additionally, the
action input to the critic is also normalized with a running
mean and standard deviation of the actions.

For DDPG-CP, we use λ = 103 for emergency response
domain and λ = 105 for bike sharing domain. For DDPG-
ApprOpt, we use penalty term coefficient of 103 for emer-
gency response Domain and 104 for bike sharing.
Training and Evaluation: Each experiment consisted of
training on the corresponding environment 5 times for 10,000
episodes using random seeds=0..4 to initialize the environ-
ment and model parameters. During the training, every 4th
episode was played without exploration. These exploitative
episodes were used to generate the learning curves. Each
learning curve shown in figure 2 shows the mean and stan-
dard deviation of the smoothed individual learning curves
across the random seeds. For evaluating a trained model, its
average score was taken across 100 test episodes without
exploration (simulator initialized with random seed=42). The
final evaluation score for an experiment was calculated as the
average score of the 5 trained models corresponding to it.

5.1 Results and Discussion
A summary of the results is presented in Table 1. Figure 2
shows the learning curves for emergency response and bike
sharing domains in different scenarios.

The scores for the emergency response domain instance
with Poisson demand pattern reflect that all three of our ap-
proaches, DDPG-CS, DDPG-CP and DDPG-ApprOpt are
competitive to the greedy baseline. This is in spite of greedy
providing near optimal solutions in this domain as the envi-
ronment is stationary. Additionally, greedy does not consider
the bound constraints and hence the results are an upper
bound on the actual solution that is achievable with con-
straints.

All three approaches outperform the baseline in the emer-
gency response domain instance with random surges. As is
clear from the last subfigure of Figure 2, the difference is
mainly due to RL performing much better during the surges
period in the episodes. This is owing to the unpredictability of
the surges, which cannot be handled by an offline and static
approach. DDPG-ApprOpt is particularly good in handling
surges and is able to very significantly outperform all other
approaches. DDPG-CS and DDPG-CP had roughly the same
performance with DDPG-CP having the slight edge.

On the bike sharing domain with real data, there is con-
siderable unpredictability in demand and so RL vastly out-
performs the baseline RTrailer, which once again being an
offline approach cannot handle unpredictability so well. Also,
it needs to be noted that all the RL approaches generalized
very well to the test environment, which uses different data
than the training environment. While DDPG-ApprOpt per-
formed best in the training environment, DDPG-CS general-
ized better and came out on top on in the test environment.

In summary, the results suggest that:

• DDPG-ApprOpt clearly produced the best learning curves
on all the benchmark problems. However, on bike sharing
domain, it did not generalize to test environment as well
as DDPG-CS.

• DDPG-CS had the best test score on bike sharing domain.

619

But this approach has the disadvantage of being limited to
the cases where ∀k, εk > 0.

• Finally, while DDPG-CP never wins clearly over the other
two approaches, it is very general and easy to implement,
which might make it desirable in some scenarios.

6 Conclusion
In summary, we have shown how RL can be used in online
resource allocation problems where traditionally offline ap-
proaches or heuristics were used due to exponential action
spaces and inability of RL to handle constraints. We pre-
sented three novel approaches based on DDPG for the same.
We showed that specially in settings with non-Poisson de-
mand patterns, RL has an important value due to its ability
to have a reactive policy based on the situation. We backed
up our claims with empirical evidence gathered by testing
our approaches on simulators based on emergency response
and bike sharing domains, using real or semi-real data. Each
approach seemed to have its own pros and cons in terms of
generality, efficiency and effectiveness.

7 Acknowledgements
This research was supported by the Singapore Ministry of
Education Academic Research Fund (AcRF) Tier 2 grant
under research grant MOE2016-T2-1-174.

References
Amos, B., and Kolter, J. Z. 2017. Optnet: Differen-
tiable optimization as a layer in neural networks. CoRR
abs/1703.00443.
Ba, L. J.; Kiros, R.; and Hinton, G. E. 2016. Layer normal-
ization. CoRR abs/1607.06450.
Bertsekas, D. 1999. Nonlinear Programming. Athena Scien-
tific.
Dayapule, D. H.; Raghavan, A.; Tadepalli, P.; and Fern, A.
2018. Emergency response optimization using online hybrid
planning. In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18,
4722–4728. International Joint Conferences on Artificial
Intelligence Organization.
Duchi, J. C.; Shalev-Shwartz, S.; Singer, Y.; and Chandra, T.
2008. Efficient projections onto the l1-ball for learning in
high dimensions. In International Conference on Machine
Learning, 272–279.
Dulac-Arnold, G.; Evans, R.; Sunehag, P.; and Coppin, B.
2015. Reinforcement learning in large discrete action spaces.
CoRR abs/1512.07679.
Ghosh, S., and Varakantham, P. 2017. Incentivizing the
use of bike trailers for dynamic repositioning in bike sharing
systems. In ICAPS 2017, 373–381.
Ghosh, S.; Varakantham, P.; Adulyasak, Y.; and Jaillet, P.
2017. Dynamic repositioning to reduce lost demand in bike
sharing systems. Journal of Artificial Intelligence Research
58:387–430.

Glorot, X., and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Teh,
Y. W., and Titterington, M., eds., Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and
Statistics, volume 9 of Proceedings of Machine Learning
Research, 249–256. PMLR.
Ji, Z.; Wei, S. L. S.; Yng, N. Y.; and Hock,
M. O. E. 2013. Designing effective ambu-
lance deployment strategies – a retrospective study.
http://www.singaporehealthcaremanagement.sg/Abstracts/
Documents/PDFs/OP0031%20-%20Zhang%20Ji.pdf.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochas-
tic optimization. CoRR abs/1412.6980.
Kumar, A., and Zilberstein, S. 2011. Message-passing al-
gorithms for quadratic programming formulations of MAP
estimation. In International Conference on Uncertainty in
Artificial Intelligence, 428–435.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous con-
trol with deep reinforcement learning. CoRR abs/1509.02971.
Lowalekar, M.; Varakantham, P.; Ghosh, S.; JENA, S. D.;
and Jaillet, P. 2017. Online repositioning in bike sharing
systems. AAAI.
Manohar, P.; Varakantham, P.; and Lau, H. C. 2018. Bounded
rank optimization for effective and efficient emergency re-
sponse. In ICAPS 2018, 375–382.
Mao, H.; Alizadeh, M.; Menache, I.; and Kandula, S. 2016.
Resource management with deep reinforcement learning.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature 518(7540):529.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.;
Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. In Inter-
national conference on machine learning, 1928–1937.
Pham, T.-H.; De Magistris, G.; and Tachibana, R. 2018. Opt-
layer - practical constrained optimization for deep reinforce-
ment learning in the real world. 2018 IEEE International
Conference on Robotics and Automation (ICRA).
Plappert, M.; Houthooft, R.; Dhariwal, P.; Sidor, S.; Chen,
R. Y.; Chen, X.; Asfour, T.; Abbeel, P.; and Andrychowicz,
M. 2017. Parameter space noise for exploration. CoRR
abs/1706.01905.
Powell, W. B. 1996. A stochastic formulation of the dynamic
assignment problem, with an application to truckload motor
carriers. Transportation Science 30(3):195–219.
Saxe, A. M.; McClelland, J. L.; and Ganguli, S. 2013. Exact
solutions to the nonlinear dynamics of learning in deep linear
neural networks. CoRR abs/1312.6120.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge.
Yue, Y.; Marla, L.; and Krishnan, R. 2012. An efficient
simulation-based approach to ambulance fleet allocation and
dynamic redeployment. In AAAI Conference on Artificial
Intelligence, 398–405.

620

