
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Advanced Factoring Strategies for
Decoupled Search Using Linear Programming

Frederik Schmitt, Daniel Gnad, Jörg Hoffmann
Saarland University

Saarland Informatics Campus
Saarbrücken, Germany

s8fkschm@stud.uni-saarland.de, {gnad,hoffmann}@cs.uni-saarland.de

Abstract

Star-topology decoupled state space search decomposes a
planning task and searches over the component state spaces
instead of multiplying the state variables. This can lead to
an exponential reduction of the search effort. To do so, in a
preprocess before the search, the given planning task is parti-
tioned into factors, such that the interaction between these
factors takes the form of a star topology. Prior work has
identified several ways to automatically decompose planning
tasks, however, was not able to release the full potential of
decoupled search. We try to close this gap by introducing an
integer linear programming formulation of the factoring pro-
cess, allowing us to explicitly specify the properties that a
factoring should have. We prove that our approach returns
the factoring that maximizes the number of factors, if this is
the objective, and employ two other properties to assess the
quality of a factoring. Our experimental evaluation shows that
this leads to superior performance and substantially increases
the applicability of decoupled search.

Introduction
In classical planning, star-topology decoupled state space
search, or decoupled search for short, has been introduced
as a reduction method to compactly represent huge transition
systems (Gnad and Hoffmann 2018). To do so, the variables
of a given planning task are partitioned into a set of disjoint
factors, such that the interaction between these factors takes
the form of a star topology. This factoring process is crucial
for the performance of decoupled search, highly influencing
its reduction power. It results in a factoring of the state vari-
ables, such that there exists a center factor C and a set of
leaf factors L, where the interaction between any two leaves
also has to involve the center.

Prior work has identified factoring strategies that are
based on the causal graph of a task (e. g., Knoblock (1994),
Jonsson and Bäckström (1995), Brafman and Domsh-
lak (2003), Helmert (2006)), by analyzing its strongly con-
nected components if the causal graph is only weakly con-
nected (Gnad and Hoffmann 2015; Gnad, Hoffmann, and
Domshlak 2015), or computing a maximum independent
set if it is strongly connected (Gnad, Poser, and Hoffmann
2017). The latter work also proposed a greedy strategy that

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

puts variables densely connected in the causal graph (with
many incident arcs) into the center, making each weakly
connected component in the remainder a leaf factor.

All existing factoring methods have in common that they
look for so-called strict-star factorings, where no interac-
tion between any two leaves is allowed. Our method is not
restricted to strict stars, but able to identify general-star fac-
torings, where interaction between leaves is allowed as long
as the center is affected at the same time. We do so by for-
mulating the factoring process as an integer linear program
(ILP). Integer linear programming is a well-known mathe-
matical optimization problem. It has gained increased atten-
tion in classical planning due to its descriptive power to ex-
press complex properties (e. g., Bylander (1997), Bonet and
van den Briel (2014), Pommerening et al. (2014)).

We encode both types of factorings as constraints of an
ILP with a decision variable xLi

for each of a set of iden-
tified potential leaf factors. The constraints ensure that the
resulting factoring is valid. We formulate different objective
functions that we want to maximize, e. g., the number of leaf
factors. We prove that our ILP encoding guarantees to return
the strict/general-star factoring with the maximum number
of mobile leaf factors, if such a factoring exists, where we
call a leaf L mobile if there exists an action with an effect
only on the variables ofL. Following Gnad, Poser, and Hoff-
mann (2017), we also encode the mobility and flexibility of
a factoring in the objective function of the ILP, and show
that maximizing these can be beneficial over maximizing the
number of mobile leaves.

Our evaluation shows a substantial increase in the number
of planning instances that can be tackled with our factoring
strategies, and that we can even improve in instances where
existing strategies already performed well.

For space reasons, we only state proof sketches. Full
proofs (and a running example) are available in an online
TR (Schmitt, Gnad, and Hoffmann 2019).

Background
We use the finite-domain representation (FDR) of planning
(Bäckström and Nebel 1995; Helmert 2006), where a plan-
ning task is a tuple Π = 〈V,A, I, G〉. Here, V is a set
of variables, each v ∈ V associated with a finite domain
D(v). We identify (partial) variable assignments with sets
of variable/value pairs. A state is a complete assignment

377

to V . I is the initial state of Π, and G is its goal, a par-
tial assignment to V . For a partial assignment p, we denote
by vars(p) ⊆ V the subset of variables on which p is de-
fined. For V ⊆ vars(p), by p[V] we denote the assignment
to V made by p. We say that a (partial) assignment p satis-
fies a condition q, denoted p |= q, if vars(q) ⊆ vars(p), and
p[v] = q[v] for all v ∈ vars(q). A is a finite set of actions,
each a triple 〈pre(a), eff(a), cost(a)〉 of precondition, effect,
and cost, where pre(a) and eff(a) are partial assignments to
V , and cost(a) ∈ R0+. An action a is applicable in a state
s if s |= pre(a). Applying a in s changes the value of all
v ∈ vars(eff(a)) to eff(a)[v], and leaves s unchanged else-
where. The outcome is denoted by sJaK. A plan for Π is an
action sequence π iteratively applicable in I and ending in a
state sG s.t. sG |= G. The plan is optimal if its summed-up
cost, denoted cost(π), is minimal among all plans.

Our factoring strategies are based on the causal graph,
which captures the structure of a task in terms of pairwise
state-variable dependencies (e. g., Knoblock (1994), Jons-
son and Bäckström (1995), Brafman and Domshlak (2003),
Helmert (2006)). The causal graph CGΠ of a planning task
Π is a directed graph whose vertices are the variables V .
The graph has an arc (v, v′) if v 6= v′, and there exists an
action a ∈ A such that v ∈ vars(pre(a)) ∪ vars(eff(a))
and v′ ∈ vars(eff(a)). We assume that CGΠ is weakly con-
nected. Otherwise, we can separate each weakly connected
component into a sub-task and solve it independently.

Integer linear programming (ILP) is a well-known mathe-
matical optimization problem. A linear program is described
as a set of linear constraints

∑n
j=1 aijxj ≤ bi over a set of

variables xj , and a linear objective function
∑n

j=1 ojxj over
the variables that should be maximized.

Decoupled Search
Due to space restrictions, we only give the minimal re-
quired background to decoupled search. We refer the reader
to Gnad and Hoffmann (2018) for full details.

The most relevant part for us is the factoring process,
where, prior to the actual search, the planning task Π is
decomposed by partitioning its state variables V into non-
empty subsets, the factoring F . A factoring is a general-star
factoring, if there exists a center factor C ∈ F , such that,
denoting by L := F \ {C} the leaf factors, for all actions
a ∈ Awhere vars(eff(a))∩C = ∅, there exists a leaf L ∈ L
such that vars(eff(a)) ⊆ L and vars(pre(a)) ⊆ L ∪ C. We
call actions that affect (with an effect on) C center actions
AC , and actions affecting an L ∈ L leaf actions AL. In
words, there is no restriction for center actions in general-
star factorings; leaf actions of a leaf L without center effect,
the leaf-only actions AL \ AC , are restricted to effects on
L only, and preconditions on C and L. A factoring F is a
strict-star factoring, if no two leaves L 6= L′ ∈ L, are con-
nected via an edge (v, v′) in CGΠ, where v ∈ L and v′ ∈ L′.

Leaf-only actions are important for us, since their number
quantifies the possible state space size reduction of decou-
pled search compared to standard search. This is because de-
coupled search only branches over the center actions, main-
taining the set of leaf states (assignments to anL ∈ L) reach-

able via leaf-only actions separately. The latter is possible
because the leaves are conditionally independent, the only
interaction between leaves is via the center. Due to this in-
dependence, no multiplication across leaves is necessary, the
possible reduction is exponential in the number of leaves,
and linear, for each leaf, in the number of its leaf-only ac-
tions. Therefore, our factoring methods aim at maximizing
the number of leaf-only actions. Like Gnad, Poser, and Hoff-
mann (2017), we use the mobility and flexibility of leaves to
capture the number of leaf-only actions of a factoring. The
mobility of a leaf L ∈ L is the number of its leaf-only ac-
tions |AL \ AC |; its flexibility is the ratio of leaf-only to
all leaf actions of a leaf, |AL \ AC |/|AL|. With a mobil-
ity/flexibility of 0, a leaf does not contribute to the reduction,
and its variables can be moved into the center. We call such
leaves frozen. Leaves that are not frozen are called mobile
and a factoring F is mobile if all its leaves are mobile.

ILP Formulation of the Factoring Process
When we started to work on this paper, we experimented
with an ILP encoding of factorings that searches over all
possible combinations of the state variables across any num-
ber of leaf factors. While this is an interesting concept in the-
ory, possibly resulting in factorings that are different from
the ones that we introduce next, it is infeasible to solve the
generated ILPs for non-trivial planning instances, due to the
high number of constraints. Furthermore, the method never
resulted in better factorings when given reasonable runtime
limits. Therefore, we herein only introduce a more efficient
encoding, that builds on the observation that a leaf is mobile
iff it subsumes the variables of at least one effect schema.
This avoids the complete search of the naive approach while
preserving the guarantee that we can construct the factoring
that maximizes the number of mobile leaf factors.

An effect schema E ⊆ V is a subset of the variables of Π,
such that there exists an action a ∈ A with vars(eff(a)) =
E. We denote the set of all effect schemas of a task by ESΠ.
Observe that, if we want to obtain a mobile factoringF , then
every leaf L ∈ L must be the superset of at least one effect
schema E ∈ ESΠ. Every leaf L for which there does not
exist an effect schema E ⊆ L is necessarily frozen. Based
on this observation, we consider each effect schema E ∈
ES∗Π := ESΠ\{V} as a potential leaf, and construct a graph
with nodes ES∗Π, such that any independent set of the graph
forms a proper factoring. Since these graphs are different
for strict and general-star factorings, we dedicate a separate
subsection to each of the two.

Strict-star factorings
The potential strict-leaf graph PSLGΠ(S) is an undirected
graph with vertices S ⊆ P(V) \ {∅,V}, where P(V) de-
notes the powerset of V , and edges (i) (S, S′) if S 6= S′

and S ∩ S′ 6= ∅, and (ii) (S, S′) if S 6= S′ and there exist
v ∈ S and v′ ∈ S′, such that (v, v′) is an edge in CGΠ. So,
PSLGΠ(S) has an edge between (i) every pair of overlap-
ping variable sets, and (ii) sets that are connected via their
variables in the causal graph. Note that this exactly captures
the requirements of a factoring, such that two connected sets
cannot both be leaves in a strict-star factoring.

378

B F IF IA MIS SL SF SM GL GF GM Cov. Abs. t/o m/o
Base - 1 1 6 4 5 6 5 6 8 6 942 0 0 0
F 5 - 5 7 5 7 6 5 8 8 6 975 1367 0 0
IF 3 4 - 9 7 7 8 6 8 10 8 956 1364 0 0
IA 8 4 6 - 5 7 6 4 8 9 6 950 805 0 0
MIS 5 2 4 3 - 4 5 2 7 8 5 946 1097 22 0
SL 9 6 6 8 7 - 3 1 6 9 7 956 459 85 16
SF 9 6 7 9 6 3 - 0 8 7 6 960 459 86 15
SM 10 7 7 11 8 5 3 - 10 9 6 968 459 89 13
GL 8 6 5 7 7 4 4 3 - 4 4 934 359 188 9
GF 8 6 6 7 5 5 3 3 4 - 3 941 359 190 9
GM 8 6 6 8 6 6 4 2 7 5 - 948 359 189 9

Figure 1: Coverage comparison in optimal planning when
using the LM-cut heuristic. “Cov.” is the total coverage,
“Abs.” the number of abstained instances, and “t/o” (“m/o”)
the number of instances where the factoring timed out (ran
out of memory). An entry in row A, column B shows the
number of domains in which method A has strictly higher
coverage than method B; bold facing for each pair (A,B),
(B,A) the maximal entry.

Lemma 1 Let Π be a planning task and let S = P(V) \
{∅,V}, where P(V) is the powerset of V . Then F =
{L1, . . . , Ln, C} is a strict-star factoring for Π, iff L =
{L1, . . . , Ln} forms an independent set of PSLGΠ(S),
where C = V \

⋃n
i=1 Li.

Proof Sketch: The potential strict-leaf graph PSLGΠ(S)
encodes exactly the conditions that a strict-star factoring F
has to satisfy. Namely,F has to be a partitioning of V , which
is guaranteed by type (i) edges in the graph, and for any pair
of leaves L1 6= L2 ∈ L, there must not be a causal-graph
connection between contained variables, which is guaran-
teed by the type (ii) edges. �

With Lemma 1, and the observation that every leaf that
subsumes an effect schema is mobile, we can construct
mobile strict-star factorings from the independent sets of
PSLGΠ(ES∗Π), and vice versa.

Theorem 1 Let Π be a planning task and let ES∗Π be the set
of its potential leaves. Then from an independent set of size
k of PSLGΠ(ES∗Π) we can construct a mobile strict-star
factoring F with k leaves, and vice versa.

It follows that from a maximum independent set of
PSLGΠ(ES∗Π) we can construct a strict-star factoring F
with the maximum number of mobile leaves.

General-star factorings
The potential general-leaf hypergraph PGLGΠ(S) is a hy-
pergraph with vertices S ⊆ P(V) \ {∅,V}, and edges (i)
{S, S′} if S ∩ S′ 6= ∅, (ii) {S, S′} if there exist v ∈ S, and
a ∈ A, such that v ∈ vars(pre(a)), and vars(eff(a)) ⊆ S′,
and (iii) {S1, . . . , Sn} if n > 1 and there exists an action
a ∈ A such that vars(eff(a)) ⊆ S1 ∪ · · · ∪ Sn and ∀Si :
vars(eff(a))∩Si 6= ∅∧vars(eff(a)) 6⊆ Si. PGLGΠ(S) has
an edge between (i) every pair of overlapping variable sets as

B F IF IA MIS SL SF SM GL GF GM Cov. Abs. t/o m/o
Base - 2 1 7 2 8 9 9 12 11 11 1320 0 0 0
F 9 - 5 9 6 9 9 9 10 10 10 1350 1339 0 0
IF 11 11 - 14 11 13 12 13 15 13 13 1432 1352 0 0
IA 10 5 3 - 5 8 8 10 13 11 12 1349 859 0 0
MIS 6 3 3 5 - 8 8 9 12 11 11 1345 1079 30 0
SL 13 10 7 12 11 - 6 4 7 7 8 1378 390 149 7
SF 13 10 6 10 10 5 - 6 9 5 9 1383 390 150 6
SM 12 9 7 11 10 4 5 - 7 6 7 1388 390 150 6
GL 14 9 8 13 11 6 7 8 - 4 6 1351 317 216 13
GF 15 11 8 13 12 9 6 8 7 - 7 1371 317 216 13
GM 14 11 9 14 12 10 9 8 6 4 - 1376 317 217 13

Figure 2: Coverage comparison when using the hFF heuris-
tic. For explanations, see caption of Figure 1 and text.

in the strict-star case. Type (ii) edges prevent precondition-
effect dependencies between two leaves caused by leaf-only
actions a ∈ AL \ AC . Condition (iii) ensures that no ac-
tion a ∈ A in the obtained factoring affects more than one
leaf without affecting the center at the same time. At least
one of S1, . . . , Sn cannot become a leaf, since otherwise a
affects only leaf factors. Note that the last part of the condi-
tion (vars(eff(a)) 6⊆ Si) only prevents hyperedges between
sets that are connected by type (i) edges, anyway.

As in the strict-star case, we can prove that from an inde-
pendent set of size k of PGLGΠ(ES∗Π) we can construct
a mobile general-star factoring F with k leaves. The proof
idea is similar to that of Theorem 1.

Theorem 2 Let Π be a planning task and let ES∗Π be the set
of its potential leaves. Then from an independent set of size k
of PGLGΠ(ES∗Π) we can construct a mobile general-star
factoring F with k leaves, and vice versa.

ILP construction & optimization criteria
We construct ILPs that compute independent sets on the
aforementioned graphs, maximizing an objective function
that encodes the desired property. For each potential leaf
L ∈ ES∗Π, we have a binary variable xL that encodes if
L is a leaf (xL = 1) or not. We add a constraint for every
(hyper-)edge in the potential-leaf graphs G:

xL1
+ · · ·+ xLk

≤ k − 1 for {L1, . . . , Lk} ∈ G
For every potential leaf, we specify an objective value oL,
which is 1 if we aim at maximizing the number of mo-
bile leaves, or the mobility or flexibility of the leaf. Then∑

L∈ES∗
Π
oL · xL is the objective function of the ILP, maxi-

mizing the sum of the respective measures in the factoring.

Experiments
We implemented our new factoring strategies in Fast Down-
ward (FD) (Helmert 2006), extending the decoupled search
implementation of Gnad and Hoffmann (2018). To solve the
ILPs, we use the IBM CPLEX solver1. We conduct exper-
iments in optimal and satisficing planning, using all IPC

1https://www.ibm.com/analytics/cplex-optimizer

379

100 101 102 103
100

101

102

103 Base vs. SM

100 101 102 103
100

101

102

103 F vs. SM

100 101 102 103
100

101

102

103 IA vs. SM

100 101 102 103
100

101

102

103 SM vs. GM

Figure 3: Scatter plots showing the runtime of A vs. B, with
A on the x-axis and B on the y-axis, in optimal planning.

STRIPS benchmarks (1998 – 2018) with a total of 1819 in-
stances in each track, distributed across 66/65 domains for
the optimal/satisficing suite. In the optimal planning setting,
all configurations run A∗ search using the LM-cut heuris-
tic (Helmert and Domshlak 2009); in satisficing planning,
we run greedy best-first search with the hFF heuristic (Hoff-
mann and Nebel 2001). The experiments were performed on
a cluster of Intel E5-2660 machines running at 2.20 GHz,
with time (memory) cut-offs of 30 minutes (4 GB).

We compare to standard search (Base), and all factoring
strategies from Gnad, Poser, and Hoffmann (2017), namely
fork (F), inverted-fork (IF), incident-arc (IA), and maxi-
mum independent set (MIS). We use our new strict-star (S*)
and general-star (G*) encodings, maximizing the number of
mobile leaves (*L), flexibility (*F), or mobility (*M).

We adopt the abstain mechanism of prior work on de-
coupled search, abstaining from solving a task if the fac-
toring has less than two leaf factors. Moreover, we imple-
mented a timeout of 30s for the factoring process. We take
the best factoring found up to this point (if one exists), run-
ning CPLEX in anytime mode. Not imposing the limit leads
to not abstaining on 113 additional instances, and 5 instances
with slightly higher objective value, across all benchmarks
for GM, for which this happens most often. Yet, abstaining
on the former instances and running Base after the timeout
(cf. next paragraph) leads to superior coverage (+14/+1 in
the satisficing/optimal setting). We conclude that the factor-
ings found on instances with tightly coupled graphs – those
where it is hard to find an independent set – do not lead to
significant performance gains of decoupled search over stan-
dard search. Our slowest factoring (GM) terminates within
1s in 74% and within 30s in 86% of all tasks.

Figures 1 and 2 compare the coverage of our new factor-
ings to the existing methods and standard search. For the de-
coupled search methods, an instance is considered solved if
the factoring succeeds and decoupled search solves the task,
or if the factoring fails but the sum of factoring time and

100 101 102 103
100

101

102

103 Base vs. SM

100 101 102 103
100

101

102

103 IF vs. SM

100 101 102 103
100

101

102

103 IA vs. SM

100 101 102 103
100

101

102

103 SM vs. GM

Figure 4: Runtime scatter plots for satisficing planning.

runtime of the baseline in the task is smaller than 30min (we
can still run standard search if no factoring is found). Our
new factoring methods tackle significantly more instances,
and perform better than both standard search and the exist-
ing methods in many cases. Strict-star factorings are always
better (in total coverage) than general-star factorings, al-
though the latter abstain less. Computing a general-star fac-
toring is computationally more costly, causing the methods
to time out more often than the strict-star configurations. In-
terestingly, the “*M” variants consistently outperform “*L”
and “*F”, so just having more leaves does not seem to be
beneficial in general. On our benchmark suites, Comple-
mentary2 (Franco, Lelis, and Barley 2018) solves 1075 in-
stances; LAMA (Richter and Westphal 2010) solves 1606.

Figures 3 and 4 directly compare the runtime (FD’s
“search-time”) of some pairs of configurations. The plots
include all instances where neither method abstains (all for
Base). Strict-star factorings also seem to perform better than
general-stars in terms of runtime. Except IF in satisficing
planning, which performs clearly better than SM (except in
a few instances), there is quite a large number of instances
where we see a significant speed-up compared to the exist-
ing methods. SM is also often substantially faster than Base.

Conclusion
In this work, we introduced new factoring methods for de-
coupled search that are based on integer linear programming
(ILP). The encoding builds on the effect schemas of a plan-
ning task, making each of them a potential leaf factor. We
formulate the conditions required for strict and general-star
factorings as a graph that connects two potential leaves if
they cannot both become actual leaf factors of a factoring.
We prove that the constructed factorings maximize the num-
ber of mobile leaf factors, if this is the objective function
of the ILP. Our experiments show that the new methods can
tackle significantly more planning instances, lead to an in-
creased performance compared to standard search, and even
compared to previous factoring methods in many instances.

380

Acknowledgments
Daniel Gnad was supported by the German Research Foun-
dation (DFG), under grant HO 2169/6-1, “Star-Topology
Decoupled State Space Search”. Jörg Hoffmann’s research
group has received support by DFG grant 389792660 as part
of TRR 248 (see perspicuous-computing.science).

References
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and van den Briel, M. 2014. Flow-based heuris-
tics for optimal planning: Landmarks and merges. In Chien,
S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS’14), 47–55. AAAI Press.
Brafman, R., and Domshlak, C. 2003. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research 18:315–349.
Bylander, T. 1997. A linear programming heursitic for op-
timal planning. In Kuipers, B. J., and Webber, B., eds., Pro-
ceedings of the 14th National Conference of the American
Association for Artificial Intelligence (AAAI’97), 694–699.
Portland, OR: MIT Press.
Franco, S.; Lelis, L. H.; and Barley, M. 2018. The com-
plementary2 planner in the IPC 2018. In IPC 2018 planner
abstracts.
Gnad, D., and Hoffmann, J. 2015. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Brafman, R.; Domshlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15), 88–96.
AAAI Press.
Gnad, D., and Hoffmann, J. 2018. Star-topology decoupled
state space search. Artificial Intelligence 257:24 – 60.
Gnad, D.; Hoffmann, J.; and Domshlak, C. 2015. From fork
decoupling to star-topology decoupling. In Lelis, L., and
Stern, R., eds., Proceedings of the 8th Annual Symposium
on Combinatorial Search (SOCS’15), 53–61. AAAI Press.
Gnad, D.; Poser, V.; and Hoffmann, J. 2017. Beyond forks:
Finding and ranking star factorings for decoupled search. In
Sierra, C., ed., Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI’17). AAAI
Press/IJCAI.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I.,
eds., Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Jonsson, P., and Bäckström, C. 1995. Incremental planning.
In European Workshop on Planning.
Knoblock, C. 1994. Automatically generating abstractions
for planning. Artificial Intelligence 68(2):243–302.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In
Chien, S.; Do, M.; Fern, A.; and Ruml, W., eds., Proceedings
of the 24th International Conference on Automated Planning
and Scheduling (ICAPS’14), 226–234. AAAI Press.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research 39:127–177.
Schmitt, F.; Gnad, D.; and Hoffmann, J. 2019. Ad-
vanced factoring strategies for decoupled search using
linear programming – technical report. Technical re-
port, Saarland University. Available at http://fai.cs.uni-
saarland.de/hoffmann/papers/icaps19b-tr.pdf.

381

