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Abstract

In automated planning, the most common task consists of
finding a plan that achieves a set of goals. In this paper, we
focus on a different task; that of finding states that minimize
some goal-related metric. First, we present some domains for
which that task is useful. Second, we propose two of such
types of states: (1) centroid states, which minimize the dis-
tance to all the goals in the problem; and (2) minimum cov-
ering states, which minimize the maximum distance to any
of the goals. Third, we define optimal and suboptimal algo-
rithms to find such states. Finally, we show some experimen-
tal results in planning instances from different domains.

Introduction
Consider a domain like the one shown in Figure 1 where a
forest ranger has to put out fires. Suppose that some fires
might arrive dynamically in the locations marked with a
flame. Under these circumstances, the ranger should gen-
erate a plan to set the camp at a location that minimizes the
cost (time) of a plan to put out any fire that might arrive.

In this short paper, we propose to find two types of states
in planning instances, which allow agents to reason about
the potential goals in two different ways. The first type of
states are the centroids, which are those states that minimize
the average of the costs towards all goals in the problem. In
other words, agents would approach to most of the poten-
tial goals. These states have a direct impact in anticipatory
planning (Burns et al. 2012; Pozanco, Fernández, and Bor-
rajo 2018; Fuentetaja, Borrajo, and de la Rosa 2018), which
focuses on generating plans prior to the arrival of goals. Ex-
amples of domains in which finding centroid states can be
useful are: locations where the ranger should set a camp to
put out potential fires; areas to be patrolled by police (or
robots), where potential incidents might happen; source lo-
cations for picking up customers by taxis or packages by
delivery companies; or locations where some natural disas-
ter might happen and drones (rovers or satellites) are needed
to take images or any other kind of intervention action.

The second type of states are minimum covering states,
which are those states that minimize the maximum dis-
tance to any of the goals. In other words, agents would
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Figure 1: The green square represents the centroid (left im-
age) and minimum covering state (right image) of the plan-
ning instance.

not be far from any potential goal. These states have a di-
rect impact in competitive domains. For example, in scenar-
ios where an agent tries to hide her goal to an opponent
as long as it can (Keren, Gal, and Karpas 2016; Masters
and Sardina 2017; Kulkarni, Srivastava, and Kambhampati
2018), or wants to block an enemy (Speicher et al. 2018;
Pozanco et al. 2018). In the former case, plans that move
towards minimum covering states make the enemy’s goal
recognition task more difficult because the agent moving to
that state is not fully compromising to any goal. In the lat-
ter case, intelligent agents should move towards minimum
covering states to increase the chances of stopping the op-
ponent, regardless of the goal she ends up trying to achieve.
Following our example, if the ranger sets the camp at a min-
imum covering state: (1) it would be harder for a possible
arsonist to know the fire area the ranger is trying to cover;
and (2) the ranger would not be far from any potential fire.

Related work solves a similar subtask when obfuscating
goals (Keren, Gal, and Karpas 2016; Kulkarni, Srivastava,
and Kambhampati 2018). However, they do not compute
centroids nor minimum covering states, nor they consider
the full set of potential goals.

The main contributions of this paper are: (1) definition of
two new planning tasks (computing the sets of centroids and
minimum covering states of a set of goals); and (2) definition
of an algorithm for computing those two sets optimally and
suboptimally. We present an empirical study that shows the
quantitative performance of our approach, as well as shed-
ding some light on the kind of states that can be obtained.
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Background
Classical automated planning is the task of choosing a se-
quence of actions such that, when applied in a given initial
state, it results in a goal state. Formally, a STRIPS planning
task can be defined as a tuple Π = 〈F,A, I,G〉, where F
is a set of propositions, A is a set of instantiated actions,
I ⊆ F is an initial state, and G ⊆ F is a set of goals. Each
action a ∈ A is described by a set of preconditions (pre(a)),
which represent literals that must be true in a state to execute
an action, and a set of effects (eff(a)), which are the literals
that are added (add(a) effects) or removed (del(a) effects)
from the state after the action execution. The definition of
each action might also include a cost c(a) (the default cost
is one). The execution of an action a in a state s is defined
by a function γ such that γ(s, a) = (s \ del(a)) ∪ add(a) if
pre(a)⊆ s, and s otherwise (it cannot be applied). The out-
put of a planning task is a sequence of actions, called a plan,
π = (a1, . . . , an). The execution of a plan π in a state s can
be defined as:

Γ(s, π) =

{
Γ(γ(s, a1), (a2, . . . , an)) if π 6= ∅
s if π = ∅

A plan π is valid for solving Π iff G ⊆ Γ(I, π). The plan
cost is commonly defined as c(π) =

∑
ai∈π c(ai).

In this work, we solve the following alternative planning
task P = 〈F,A, I,G〉. Given the same F , A and I as Π; and
a set of potential goal sets G; find a set of states S that are
either (a) the centroids or (b) the minimum covering states
of P . In the next section, we formalize both types of states.

Planning Centroids and Planning Minimum
Covering States

In a geometric space, centroid points are those that minimize
the distance to all the points in a given set. Likewise, min-
imum covering points are those that are in the center of a
minimum covering sphere, i.e., the smallest sphere that con-
tains all of a given set of points (Sylvester 1857). This point
minimizes the maximum distance to any point in the set.
Computing these points in a geometric space is straightfor-
ward since: (1) every point is reachable from any other; (2)
point’s features (coordinates) are fully specified; and (3) the
distance from one point to another can be simply calculated
as the euclidean distance of its coordinates.

In automated planning, there are states instead of points.
These states: (1) are not necessarily reachable from all other
states; (2) are not necessarily fully specified (we can find
partial states); and (3) the computation of the distance be-
tween two states becomes more complicated. Therefore,
next we define reachability and distance between states for
automated planning.

Definition 1 (Reachable State) A state s is reachable from
I (or simply reachable) iff there is at least one valid plan
π such that its execution from I , Γ(I, π), achieves s; i.e.
s ⊆ Γ(I, π). We will refer to the set of all reachable states
from I in P asRP .

Next, we need to define a distance between states. Since
goals are partial states, we cannot easily compute the dis-
tance between two goals. Instead, we can compute the dis-
tance between a regular (full) state and a partial state (goal).

The set of distances D from a fully specified state s to all
goals in G given P can be defined as:

Ds(P ) = {(Gi, d)‖Gi ∈ G, d = c(F,A, s,Gi, h)}

We refer to this procedure as COMPUTEDISTANCES, where
c(F,A, s,G, h) represents the cost of achieving each set of
propositions Gi ∈ G from s using h as the function that
computes the cost. This function can compute either the ac-
tual optimal cost h∗ of achievingGi from s, or an estimation
of that cost (as the one returned by a heuristic function).

We can now define centroid and minimum covering states
using the arithmetic mean, µ, and the maximum distance
over a set, max, as follows:

Definition 2 (Planning Centroid State) A state s ∈ RP
is a centroid state of a planning task P iff ∀s′ ∈ RP ,
µd(Ds(P )) ≤ µd(Ds′(P )) and D is computed using h∗.
The set of centroid states of a planning task P is denoted as
C∗(P ).

Definition 3 (Planning Minimum Covering State) A
state s ∈ RP is a minimum covering state of a planning
task P iff ∀s′ ∈ RP , maxd(Ds(P )) ≤ maxd(Ds′(P )) and
D is computed using h∗. The set of minimum covering states
of a planning task P is denoted asM∗(P ).

Computing Centroids and Minimum Covering
States in Planning
We propose C&MCS, a common algorithm that can com-
pute centroids and minimum covering states both optimally
and suboptimally, depending on the input parameters. Algo-
rithm 1 details the full procedure. It consists of a Best-First
Search algorithm that receives as input: a planning task P ,
the function h used to compute D, the evaluation function
used to sort the nodes in the open list e, and a parameter o
that determines whether the full state space reachable from
the initial spaceRP should be explored or not.

The function COMPUTEHEURISTICS returns two heuris-
tic values: the arithmetic mean µ and the maximum value
max of the set of costs in Ds, which are computed us-
ing h. The states are compared and sorted in the open list
according to the evaluation function e. When looking for
centroid states, the evaluation function minimizes the arith-
metic mean µ(Ds), breaking ties in favour of the minimum
max(Ds). When looking for minimum covering states, the
evaluation function minimizes max(Ds), breaking ties in fa-
vor of the minimum arithmetic mean µ(Ds). The algorithm
returns S, which corresponds to the set of states s ∈ S that
minimize the evaluation function e. We are not taking into
account the cost of achieving these states from the initial
state, since centroids and minimum covering states, apart
form being reachable, are only related to the goals.

To compute optimal centroids C∗ and minimum covering
states M∗ for planning, we need to know the value of h∗
from every state s ∈ RP to every set of goals Gi ∈ G. In
classical forward search planning, h∗ is computed generat-
ing an optimal plan from a state to the goal. This means that,
C∗ andM∗ will compute n optimal plans ∀s ∈ RP , where
n = |G|. On the other hand, if we are fine with suboptimal
solutions, (1) we can use any cost estimator h to compute
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Algorithm 1 C&MCS

Inputs: P = 〈F,A, I,G〉, h, e, o
Outputs: S

1: DS ←COMPUTEDISTANCES(F,A, I,G, h)
2: hS ← COMPUTEHEURISTICS(DS )
3: open← {〈I, hS〉}
4: S ← {〈I, hS〉}
5: while open 6= ∅ do
6: n, hn ← POP(open, e)
7: if e(hn) > e(hS) and not o then
8: return S
9: successors← GENERATESUCCESSORS(n)

10: for s in successors do
11: Ds ←COMPUTEDISTANCES(F,A, s,G, h)
12: hs ← COMPUTEHEURISTICS(Ds)
13: if e(hs) < e(hS) then
14: hS ← hs
15: S ← {〈s, hS〉}
16: else if e(s) = e(S) then
17: S ← S ∪ {〈s, hs〉}
18: open← open∪{〈s, hs〉}
19: return S

the distance to the goals; and (2) we can decide whether to
explore the entire state space or not (parameter o). Subop-
timal solutions that explore the full state space are denoted
as Cf andMf . Suboptimal solutions that greedily stop the
algorithm when there is no state in the open list with a better
heuristic value than the best states visited so far are denoted
as C andM.

Experimental Evaluation
We implemented C&MCS in FastDownward (Helmert
2006). We vary the parameters h, e, and o of C&MCS to
get the six different algorithms shown in Table 1. We use
the FF heuristic (Hoffmann and Nebel 2001) to compute D
in the suboptimal algorithms. To compute h∗ in the opti-
mal algorithm, we run n optimal plans at each search node
using A∗ with the LMCUT heuristic (Helmert and Domshlak
2009), where n = |G|. The experiments were run on Intel(R)
Xeon(R) CPU X3470 @ 2.93GHz machines with a time
limit of 3600s and a memory limit of 16GB. We consider

Version h e o
C∗ h∗ < µ(D),max(D) > Yes
Cf FF < µ(D),max(D) > Yes
C FF < µ(D),max(D) > No
M∗ h∗ < max(D), µ(D) > Yes
Mf FF < max(D), µ(D) > Yes
M FF < max(D), µ(D) > No

Table 1: C&MCS versions.

two types of domains: with and without conflicting goals.
In domains without conflicting goals, there is always a state
s ∈ RP where all Gi ∈ G can be achieved at the same time.
Such state s has µ(Ds) = max(Ds) = 0. Therefore, it is

both a centroid and a minimum covering state. This is the
case of all solvable instances of IPC domains, where each
Gi = {gj} where the gj are the goals of the standard plan-
ning task. For instance, in the Barman domain, centroids and
minimum covering states are any state where all shots have
been generated. When we run our algorithms in these do-
mains, we obtain those states.

In the second type of domains, G consists of conflicting
goals. This means that there is no state s ∈ Rp where all
Gi ∈ G can be jointly achieved. This is the case of domains
described in the Introduction. We selected two domains with
conflicting goals that encompass many others.

Ranger, the domain of the example presented in the In-
troduction, where a ranger has to set a camp at a location that
minimizes the cost of a plan that puts out one of the fires that
may arrive in the near future. We generated 20 random prob-
lems in 20 × 20 maps. A 15% of the cells can be obstacles
that the ranger cannot pass through. For each problem, we
randomly generated 4 potential goals and the initial state.
This domain represents the set of domains where an agent
has to move to a given location such that it minimizes time to
achieve goals once they appear. Examples of such domains
are patrolling, surveillance, or service providing domains.

Blocks Words (Ramı́rez and Geffner 2009), a variation
of the well-known Blocksworld domain. Here, each block
contains a letter and an agent has to build a word using the
different letters. We generated 20 random problems with the
same 5 blocks with a random initial distribution. Each prob-
lem has 3 potential goals, randomly selected from a dictio-
nary containing 26 English words that can be built using the
5 blocks. The length of these words is between three and five
letters. An example of a set G may be to build APE, EAR,
or PEAR, where for the first word, the agent would need to
make true the propositions (clear A),(on A P),(on
P E), and (ontable E). This domain can be seen as a
competitive scenario where an agent hides the real word that
she is building to an opponent agent. This example subsumes
many other competitive and privacy protection domains such
as cybersecurity and games.

Quantitative Evaluation
Table 2 summarizes the results of a quantitative evaluation.
For each domain, each row shows the results obtained by
each of the six versions. Each column represents different
measures of quality and performance over the 20 problems.
(1) µ: arithmetic mean of Ds, for any s ∈ S; (2) ∆(µ): per-
centage of improvement of µ for any returned state s ∈ S
with respect to the initial state I; (3) max: maximum value
in Ds, for any s ∈ S; (4) ∆(max): percentage of improve-
ment of max for any returned state s ∈ S with respect to
the initial state I; and (5) t: time in seconds to compute S.
In addition, we compute the suboptimality ratio as the µ or
max values returned by the suboptimal versions divided by
the µ or max values returned by the optimal version.

We get the best results for µ when computing centroid
states and the best max results when computing minimum
covering states in all the domains. In general, all versions
compute centroids and minimum covering states that im-
prove µ and max respecting the initial state. However, this
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improvement varies among instances due to: (1) the given
initial state, which may be close/far from the computed cen-
troid or minimum covering state; and (2) the heuristic, which
can overestimate or underestimate the actual cost.

The execution times of C∗ and M∗ are three orders of
magnitude higher than the ones of the suboptimal versions.
They need to explore the whole state space reachable from
the initial state, computing an optimal plan to each goal in
every state. Suboptimal versions present a good balance be-
tween quality and time, computing average/max of distances
that are closer to the optimal ones in less than a second. We
also observe this behavior in Figure 2, where we measure
the suboptimality ratios obtained in both domains. The up-
per image shows the degradation of Cf and C with respect
to the µ values returned by the optimal algorithm, C∗. Cf is
always able to return states that are at most 1.6 times sub-
optimal and whose median is less than 1.3. The C version
returns worse solutions, as shown by the bigger variety of
suboptimality values. However, its median value is 1.5.

Domain Version µ ∆(µ) max ∆(max) t

RANGER

C∗ 8.0±2 41.6±22 11.8±3 41.1±18 530.6±7
Cf 8.0±2 41.6±22 11.8±3 41.1±18 0.2±0
C 8.4±2 38.9±21 11.9±3 40.8±17 0.1±0
M∗ 8.5±2 38.1±21 10.6±2 46.7±17 530.6±7
Mf 8.5±2 38.1±21 10.6±2 46.7±17 0.2±0
M 9.2±3 33.9±21 11.4±3 43.2±17 0.1±0

BLOCKS
WORDS

C∗ 6.5±1 35.9±16 9.4±1 26.3±16 358.3±4
Cf 8.1±2 21.1±17 12.6±3 2.9±20 0.1±0
C 10.1±3 5.8±9 12.5±3 5.6±8 0.1±0
M∗ 7.0±1 30.9±18 7.4±1 42.4±10 358.3±4
Mf 8.5±2 16.6±24 11.2±2 12.0±23 0.1±0
M 10.1±3 5.8±9 12.5±3 5.6±8 0.1±0

Table 2: Comparison among different versions. Numbers
represent averages and standard deviations over the set of
problems.

In domains where the FF heuristic computes more accu-
rate estimations, as in the case of Ranger, the performance
of suboptimal versions is closer to the optimal one. As a
matter of fact, FF is a perfect estimator in that domain; the
Mf and Cf versions get the same results as their respec-
tive optimal versions in all the problems, since both are ex-
ploring all RP . The M and C versions get similar results
in Ranger, but they can fall in local minima. To test their
accuracy in the presence of different local minima, we gen-
erated problems with increasing percentages of obstacles in
Ranger. Results are depicted in the lower image of Figure 2.
In the absence of obstacles, the M version is able to get
optimal minimum covering states. As the percentage of ob-
stacles increases, some solutions start moving away from the
optimum. However, the performance of this version is equiv-
alent to the optimal one on average.

The scalability of the algorithm depends on |Rp|×|G|. We
performed a test where |G| increases in powers of 2 from 2
to 64. Results show that the optimal version did not solve the
problems within the time bounds when |G| > 16. The sub-
optimal versions solved all problems in less than a second
with a linear increase in solving time.

Figure 2: The upper image shows the degradation of Cf
and C with respect to C∗ in Blocks Words. The lower im-
age shows the degradation ofM with respect toM∗ when
increasing the obstacles in Ranger.

Qualitative Evaluation
It is easy to visualize centroids and minimum covering states
in path-planning domains such as Ranger. However, we
might ask how they look like in other domains. Figure 3
shows a graphical representation ofM∗,Mf , C∗, and Cf in
two different Blocks Words problems. The first example de-
picts minimum covering states for the set of potential goals
G in the cloud. In the solutions given byM∗ andMf , the
agent is not fully committed to build any of the goals. In
other words, the agent would not be far from building any
Gi ∈ G. However, in the solution given by M∗, it would
be less costly to build any of the potential words than using
Mf . The second example depicts centroid states in a differ-
ent problem. In the solutions given by C∗ and Cf , the agent
could build most of the Gi ∈ G with very little cost, since
each solution already contains a word of G. However, in the
solution given by C∗, it would be a bit less costly to build the
word PEA.

Discussion and Future Work
We introduced a novel planning task, which consists of com-
puting the set of centroids and minimum covering states of
a set of potential goals. This highlights how finding such
states can be very useful in many applications, which range
from anticipatory planning to competitive environments. Fi-
nally, we presented three different versions of C&MCS to
compute centroids and minimum covering states.
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Figure 3: Optimal Centroid and Minimum Covering State in
two different instances of the Blocks Words domain.

The behavior of the suboptimal versions is not only re-
lated to the presence of local minima but also to the use of
accurate heuristics closer to h∗. In this paper, we used the FF
heuristic, but in future work we would like to compare algo-
rithm’s performance by using others. Including non-uniform
goal’s probability distribution is straightforward as well as
including a cost bound or considering the cost of reaching
the states from the initial state when looking for centroids
and minimum covering states. We would also like to explore
these options in future work. Finally, there might exist more
efficient ways of computing these states optimally by using
backward and/or symbolic search. It would be interesting to
see how to tackle this problem from that perspective.
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