
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Eliminating Redundant Actions in
Partially Ordered Plans — A Complexity Analysis

Conny Olz, Pascal Bercher
Institute of Artificial Intelligence, Ulm University, Germany

conny.olz@uni-ulm.de, pascal.bercher@uni-ulm.de

Abstract

In this paper we study the computational complexity of post-
optimizing partially ordered plans, i.e., we investigate the
problem that is concerned with detecting and deleting un-
necessary actions. For totally ordered plans it can easily be
tested in polynomial time whether a single action can be
removed without violating executability. Identifying an ex-
ecutable subplan, i.e., asking whether k plan steps can be re-
moved, is known to be NP-complete. We investigate the same
questions for partially ordered input plans, as they are created
by many search algorithms or used by real-world applica-
tions – in particular time-critical ones that exploit parallelism
of non-conflicting actions. More formally, we investigate the
computational complexity of removing an action from a par-
tially ordered solution plan in which every linearization is a
solution in the classical sense while allowing ordering inser-
tions afterwards to repair arising executability issues. It turns
out that this problem is NP-complete – even if just a single
action is removed – and thereby show that this reasoning task
is harder than for totally ordered plans. Moreover, we iden-
tify the structural properties responsible for this hardness by
providing a fixed-parameter tractability (FPT) result.

Introduction
While most of today’s planning systems produce totally
ordered action sequences as solutions, many also produce
partially ordered courses of action, such as partial-order
causal link (POCL) planners (McAllester and Rosenblitt
1991; Penberthy and Weld 1992; Younes and Simmons
2003), temporal planners based on constrained posting (Vi-
dal and Geffner 2006), and hierarchical planning systems,
since many of the latter like FAPE (Dvor̆ák et al. 2014;
Bit-Monnot 2016) or PANDA (Schattenberg 2009; Bercher,
Keen, and Biundo 2014) rely directly on POCL techniques
(see, e.g., the overview by Bercher et al. (2016)). Partially
ordered plans are basically a compact representation for a
set of total-order plans. Mutually unordered actions can be
executed simultaneously allowing to postpone the decision
about the exact execution order until runtime, which makes
these plans more flexible in time-sensitive applications (Vi-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dal and Geffner 2006; Muise, Beck, and McIlraith 2016;
Aghighi and Bäckström 2017).

We investigate the computational complexity of post-
optimizing partially ordered plans. That is, we aim at re-
moving redundant actions so that the remaining – shorter or
cheaper – plan still solves the planning task. It goes without
saying that cheaper solutions are (probably always) prefer-
able. However, solving tasks optimally in the first place is
not always feasible, since this may be much harder than
solving them suboptimally (Helmert 2003). For instance,A∗
with an admissible heuristic is known to explore an expo-
nential search space even with “almost-perfect” heuristics
on several standard planning benchmark domains (Helmert
and Röger 2008). Thus, we pursue the approach of checking
whether an action can be removed from a given solution.

Answering this question is not only relevant for optimiz-
ing a given plan, but also for related tasks: In the context
of mixed-initiative planning – a well-known example be-
ing the MAPGEN system used for the Mars Exploration
Rovers Spirit and Opportunity (Bresina and Morris 2007;
Ai-Chang et al. 2004) – change requests have to be real-
ized. Knowing the computational complexity of such re-
quests (like removing an action) is one first step towards
automatic support for human experts (Bäckström 1998;
Behnke et al. 2016). Fink and Yang (1992) give the appli-
cation of plan-reuse: Given we found a solution to some
problem and we want to find a solution to a subproblem
thereof, we can simply use post-optimization. The last pos-
sible application of our findings that we would like to men-
tion is plan explanation (Seegebarth et al. 2012; Bercher et
al. 2014). Here, justifications for actions in a plan are ver-
balized – and presented to a human user in the form of a
so-called explanation. These justifications basically follow
the chain of causal links in a plan to a goal, presenting all
actions in between as justification for the action in question.
Explanations like these are of doubtful use in case the ac-
tion in question is actually redundant. Post-optimizing plans
will thus improve trust in explanations if no redundant ac-
tions will remain since questions about such redundant ac-
tions cannot even be asked.

The outline of this paper is as follows. In the next sec-
tion we provide an overview of related work. We continue

310

with the formal framework introducing the concept of par-
tially ordered plans. We then introduce and investigate the
post-optimization problem: Here, we show our main result
that it is NP-complete to decide whether we can remove
a (given) single plan step from such a solution plan, such
that it can be turned into a solution again by adding or-
dering constraints. In the following section we introduce a
fixed-parameter tractability result that sheds more light on
the source of hardness of the problem. We also provide a re-
spective fixed-parameter tractable (FPT) algorithm to solve
the respective problem. We then discuss our findings and its
implications. Finally, we conclude the paper.

Related Work

For a given totally ordered solution plan it can trivially
be tested in polynomial time whether the removal of one
or more given actions results again in a solution (since
the result is again a totally ordered action sequence). Fink
and Yang (1992) proved the NP-completeness of deciding
whether there exists a group of removable actions (not nec-
essarily consecutive) in a totally ordered plan, i.e., whether
a given solution is free of any redundant actions. Indepen-
dently, Nakhost and Müller (2010) showed a slightly more
general result. They proved that it is NP-complete to decide
whether there exist k actions that can be removed from a
totally-ordered solution plan.

Some only loosely related work on theoretical investiga-
tions of partially ordered plans studied the complexity of
finding an executable action linearization under various re-
strictions (Nebel and Bäckström 1994; Tan and Gruninger
2014), the complexity of finding a solution given a delete-
relaxed model (Bercher et al. 2013), and the complex-
ity of reordering actions to optimize ordering constraint-
related optimality criteria (Bäckström 1998; Aghighi and
Bäckström 2017).

There are also various techniques that aim at optimizing a
given solution plan. Fink and Yang (1992) investigated par-
tially ordered plans by presenting polynomial algorithms for
removing some of its redundant actions. In contrast to the
investigations done by us, their algorithms do not allow or-
dering insertion after redundant actions got deleted. This is
allowed by Muise, Beck, and McIlraith (2016), who provide
a partial weighted MaxSAT encoding to find deorderings
(only remove ordering constraints) or reorderings (orderings
can be changed) with or without action eliminations to find
partially ordered plans with maximal flexibility, i.e., mini-
mal number of ordering constraints. Their work does not in-
vestigate the respective computational complexity, however.
Closely related, the approach by Say, Cire, and Beck (2016)
also aims at improving a partially ordered plan’s flexibil-
ity while allowing action elimination. For this, they intro-
duce several optimization criteria and corresponding mixed-
integer linear programming (MILP) models. Siddiqui and
Haslum (2015) present another technique, based on improv-
ing subproblems, to optimize the cost of a given plan. In con-
trast to the other approaches mentioned such a plan, while
being cheaper, must not necessarily be a subplan, however.

Formal Framework
We consider the problem of optimizing partially ordered
plans by removing unnecessary actions from it. These plans
are solutions to standard (STRIPS) planning tasks, which
we define first. A planning task Π is a tuple (V,A, sI , g),
where V is a finite set of propositional state variables,
sI ∈ 2V is the initial state, and g ⊆ V the goal descrip-
tion. A is a finite set of actions in the standard STRIPS
notation, where each action a ∈ A consists of a precon-
dition prec ⊆ V , an add list add ⊆ V , and a delete list
del ⊆ V . If a = (prec, add , del), we also write prec(a),
add(a), del(a) to refer to the respective elements. As usual,
an action a is called applicable in a state s ∈ 2V if and only
if prec(a) ⊆ s. If a is applicable in s, then the state transi-
tion function γ : A × 2V → 2V returns the state resulting
from applying a to s, γ(a, s) = (s\del(a))∪add(a). A se-
quence of actions ā = (a0a1 . . . an) is called applicable to a
state s0 if there exists a sequence of states s1 . . . sn+1 such
that for all 1 ≤ i ≤ n + 1 holds γ(ai−1, si−1) = si. The
state sn+1 is called the result from applying the sequence. A
goal state is a state s with g ⊆ s.

Solutions to planning tasks are ordinarily defined in terms
of totally ordered action sequences, as given next.

Definition 1. We call an action sequence ā a total-
order (t.o.) plan P (also t.o. solution) to a planning task
(V,A, sI , g) if and only if it is applicable to sI and results in
a goal state.

Normally, t.o. plans contain many orderings that are not
required to ensure their executability. If certain actions do
not depend on each other, they do not have to be ordered with
respect to each other and could also be executed in parallel.
This can be achieved by simply maintaining only a partial
order among those actions. The standard semantics for such
partially ordered action plans is that all of its linearizations
are executable and generate a goal state.

Several planning algorithms do not produce t.o. plans, but
partially ordered ones instead. These approaches ordinar-
ily rely on so-called causal links, the main concept behind
partial-order causal-link (POCL) algorithms (McAllester
and Rosenblitt 1991; Penberthy and Weld 1992; Younes and
Simmons 2003). Causal links are further exploited in tem-
poral constraint-based planning (Vidal and Geffner 2006),
but even in state-based satisficing search (Lipovetzky and
Geffner 2011) as well as in optimal state-based search
(Karpas and Domshlak 2012). Also many hierarchical plan-
ning approaches produce partially ordered plans, as many of
them rely upon POCL planning techniques or structures as
well (Bercher et al. 2016).

A partial plan is a tuple P = (PS ,≺,CL), where PS
is a finite set of plan steps ps = (l, a) with l being a label
unique in PS , a ∈ A an action, and ≺ is a partial order on
PS . The distinction between actions and plan steps is im-
portant because an action may occur multiple times within
a partial plan, so unique labeling is required in order to dif-
ferentiate different occurrences of the same action. As for
actions, we use prec(ps), add(ps), and del(ps) to refer to
the precondition, add list, and delete list of a plan step.

311

Causal links are used to make the implicit causal rela-
tionships between actions in a plan explicit and to serve
as a technical vehicle to document and verify the progress
of turning a partial plan into an actual solution. More pre-
cisely, a causal link cl = (ps, v, ps′) ∈ PS × V × PS indi-
cates that the precondition v of the consumer plan step ps′
is supported by the producer plan step ps (i.e., it also im-
plies v ∈ add(ps) ∩ prec(ps′)). The variable v is also said
to be protected by the causal link. We call v “protected” by
its causal link because the solution criteria ensure that v re-
mains true for all state sequences between the link’s pro-
ducer and consumer. Every causal link raises a so-called
causal threat in case there is another action in the current
plan that could delete this protected condition – and all so-
lutions need to be threat-free. Formally: Let a partial plan
P = (PS ,≺,CL) contain a causal link, (ps, v, ps′) ∈ CL.
A causal threat is the situation where a plan step ps′′ with
v ∈ del(ps′′) may be ordered between ps and ps′, i.e., if
(≺ ∪ {(ps, ps′′), (ps′′, ps′)})+ (with X+ denoting the tran-
sitive closure of X) is a strict partial order. The step ps′′ is
then called a threatening plan step. Threats can be resolved
by ordering the threatening step before the link’s producer,
ps′′ ≺ ps (called promotion) or by ordering it behind the
consumer, ps ′ ≺ ps′′ (called demotion).

To ease definitions, we require that any causal link be-
tween two plan steps implies the respective ordering. So,
without loss of generality, there is a corresponding order-
ing (ps, ps′) in ≺ for every causal link (ps, v, ps′) in CL.
Due to the absence of states in partial plans we require, as
usual in POCL planning, that each partial plan contains two
artificial actions encoding the initial state and goal descrip-
tion. The former, called init, does not show a precondition
and uses the initial state as add effect and, analogously, the
latter, called goal, has no effects and uses the goal descrip-
tion as precondition. We demand that init is always the first
action according to ≺ and goal always the last.

We can now extend the concept of t.o. plans to partially
ordered ones.

Definition 2. A partial plan P = (PS ,≺,CL) is called a
partial-order causal link (POCL) plan (also POCL solution)
to a planning task if and only if every precondition is sup-
ported by a causal link and there are no causal threats.

It is common knowledge (and trivial to prove) that every
linearization of a POCL plan is a t.o. plan. It thus compactly
represents an up to exponentially large set of totally ordered
solutions.

Post-optimizing Actions
When investigating whether the removal of an action (i.e.,
plan step) from a partially ordered plan is feasible, we still
need to discuss which further operations on the resulting par-
tial plan are allowed afterwards. Simply removing a single
action and checking whether the resulting partial plan is a
solution is possible in polynomial time, but this will very
often result in a negative answer to the question – although
a solution exists without the removed action. Consider the
following POCL plan as an example.

in
it

go
al

g1

g3

g4

g2

a1

l1
¬l2
g1

a2

g2
¬l1
l2

a3

l2

g3
l1

a4

l1

g4
l2

ps∗
l1

l2

g1

g2

Figure 1: A POCL plan with seven plan steps (including init
and goal), which are depicted as rectangles. The precondi-
tions are represented on the left side of each action, the ef-
fects on the right side, where ¬ denotes a delete effect. The
arrows indicate causal links. The plan does not possess more
ordering constraints other than those implied by the links.
The plan can be further improved with respect to the num-
ber of plan steps by removing ps∗ and adding causal links
and ordering constraints afterwards.

In the plan depicted here (Figure 1), only ps∗ could pos-
sibly be removed, since all other actions are essential for the
goal. Just removing it will not result in an improved solution
for two reasons. First, it cannot be a solution syntactically,
because there are preconditions that are not yet protected
by a causal link (namely the l1 and l2 preconditions of a3
and a4, respectively). For protecting these conditions, there
are several options available and not every one will lead to
a solution. Second, also semantically it cannot be regarded
a solution because not every linearization is an executable
t.o. plan (e.g., a1, a2, a3, a4 is not). We can, however, ob-
tain a solution by further refining the resulting partial plan
by the “correct” ordering and link insertions (add the links
(a4, l1, a3) and (a2, l2, a4) as well as the ordering a1≺a2).

We call this problem REMOVE & REPAIR and explore its
computational complexity.

The Problem REMOVE & REPAIR
We start with the formal problem definition:
Definition 3. The decision problem REMOVE & REPAIR
(R&R) is defined as follows: Let Π be a planning task, P
a POCL plan that solves Π, and ps∗ ∈ P a plan step. Is
there an ordering-refinement1 P̃ of P \ ps∗2 such that P̃ is a
solution plan for Π?

Before we address the hardness of R&R, we mention the
complexity of verifying whether a partial plan is a POCL
solution, since we need it for the upcoming membership
proofs. It is well-known that this problem is in P, since
checking the existence of the required causal links and the
absence of causal threats is obviously a lower polynomial.

1Ordering refinement means that only ordering constraints and
causal links may be added.

2P \ ps denotes the partial plan P ′ = (PS ′,≺′,CL′) that re-
sults from P by removing ps, i.e., PS ′ = PS \{ps},≺′ = ≺|PS ′ ,
and CL′ = CL|PS ′ , where X|Y denotes the set X restricted to el-
ements of Y . We use the straight-forward extension of this notation
to sets of plan steps PS′, P \ PS′.

312

a b

c d

e

f

a b

c d

e

f

Figure 2: Examples of instances of CDP. In both cases the
subset of vertices that one can remove are drawn in color,
i.e. V̂ = {{c, f}, {a, e}}.

Lemma 1. Deciding whether a partial plan P =
(PS ,≺,CL) is a POCL plan to a planning task is in P.

To prove the NP-completeness of R&R we reduce an-
other NP-hard problem to it. This problem is a new deci-
sion problem, which we defined to be close to our origi-
nal problem. We call it CYCLE DISSOLVING PAIRS (CDP).
We first formally define this problem, then prove its NP-
completeness, and then reduce it to R&R.

Given a directed graph G and a partition of a subset of its
vertex set such that each element has size two, the decision
problem is: Is it possible to make G acyclic by deleting at
most one vertex of each partition element? CDP mirrors the
core hardness of R&R but is technically easier to handle.

Definition 4. The decision problem CYCLE DISSOLVING
PAIRS (CDP) is defined as follows: Let G = (V,E) be a
directed graph and V̂ = {V1, V2, . . . , Vm} a partition of a
subset of V such that |Vi| = 2 for all 1 ≤ i ≤ m. Is there a
U ⊆ V such that

• U ⊆ ⋃
Vi∈V̂ Vi, • |U ∩ Vi| ≤ 1 for all i = 1 . . .m and

• G \ U is acyclic?

We illustrate CDP with two examples given in Figure 2.
For both examples given in Figure 2 the subset of ver-

tices that we are allowed to remove is given by V̂ =
{{c, f}, {a, e}}. The graph on the left side is an example
of a yes-instance. The vertices c and e can be removed so
that the remaining graph is acyclic. Thus, U = {c, e}. The
graph on the right side is an example of a no-instance. The
cycle consisting of the vertices a and b can only be dissolved
by removing a, because b is not a member of any of the sub-
sets of V̂ . But then e, which is the partner of a, must not be
deleted. Thus, the answer to the decision problem is “no”, as
e is the sole vertex that could dissolve the cycle consisting
of the vertices e, d and b, because d and b do not exist in V̂ .

Theorem 1. CDP is NP-complete.

Proof. Membership: Guess a solution, verification can ob-
viously be done in polynomial time.

Hardness: Proof by reduction from 3-SAT, which is NP-
complete (Cook 1971; Garey and Johnson 1979).

Let an instance φ of 3-SAT be given, where φ consists of
the clauses C1 . . . Cn, which depend on the Boolean vari-
ables x1, . . . xm. The basic idea is that we associate every
clause with a cycle of three vertices which correspond to
the Boolean variables of that clause. The vertex that will be

Ci = (xj,¬xk, xl)

V Clauses
i,2

V Clauses
i,3

V Var
1

V Clauses
i,1 V Var

j

V Var
k

V Var
l

V Var
m

x1 ¬x1

xj ¬xj

xk ¬xk

xl ¬xl

xm ¬xm

ci1

ci2

ci3

yi1

yi2

yi3

Figure 3: Part of a reduction from 3-SAT to CDP. The sub-
graph has been constructed given clause Ci top left.

removed to dissolve the cycle indicates which variable will
make the clause true. Therefore, we need further construc-
tions. For every Boolean variable we construct two more
vertices, which stand for the variable and its negation. More-
over, each of these pairs forms a partition element of V̂ ,
which guarantees the allocation of every variable. Now, we
want to connect those vertices to the above-mentioned 3-
cycles encoding the clauses such that we can only delete
vertices from the cycles in such a way that there is a unique
choice whether a variable is true or false.

In greater detail, we construct an instance of CDP with
G = (V,E) and V̂ with 2 · m + 2 · 3 · n vertices and
3 · n + 2 · 3 · n directed edges. Figure 3 illustrates the
subsequently described construction. For every variable xj ,
1 ≤ j ≤ m, there are two vertices that we label xj and
¬xj , respectively. For every clause Ci, 1 ≤ i ≤ n, we intro-
duce six vertices, which we label ci1, c

i
2, c

i
3 and yi1, y

i
2, y

i
3,

respectively. The cs will form the cycles, whereas the ys
are just auxiliary vertices, which form something like a
bridge between the cycles and variables. So, there are cy-
cles {(ci1, ci2), (ci2, c

i
3), (ci3, c

i
1)} ⊆ E for all i = 1 . . . n as-

sociated with the clauses. To establish a connection to the
literals we add more arcs in the following way. Let xik ,
ik ∈ {1 . . .m} be the k-th literal in clause i. Then we add
(yik, xik) and (xik , y

i
k) or (yik,¬xik) and (¬xik , yik) if xik is

negated, for all i = 1 . . . n and k = 1 . . . 3.
Finally, we can define a partition V̂ =

{V Var
1 , . . . , V Var

m , V Clauses
1,1 , . . . , V Clauses

n,3 } of a sub-
set of V, where V Var

j = {xj ,¬xj} for 1 ≤ j ≤ m and
V Clauses
i,k = {cik, yik} for 1 ≤ i ≤ n and 1 ≤ k ≤ 3.
V Var
j will determine the assignment of the variables xj

for all j = 1 . . .m as mentioned before, whereas V Clauses
i,k

ensures that we can not delete both a vertex associated with
a variable in one cycle and another vertex associated with
its negation in a different cycle. This yields a graph G. This
construction is illustrated in Figure 4.

Now we claim that there is a subset U as described in the
problem definition such that G\U is acyclic precisely when

313

φ = (xj,¬xb,¬xc)︸ ︷︷ ︸
C1

∧ (¬xd, xe,¬xj)︸ ︷︷ ︸
C2

∧ · · · ∧ (. . .)︸ ︷︷ ︸
Cn

C1 C2

V Clauses
1,1 V Clauses

2,3V Var
j

c12 c11

c13 c22

c21c23y11 xj ¬xj y23

Figure 4: Illustrates the main mechanism of the reduction.
The subgraph has been constructed from the clauses above
it. If we delete the vertex xj , the cycle containing xj and
y11 is dissolved. Therefore c11 can be removed, which cor-
responds to xj in clause C1. In order to dissolve the cycle
containing ¬xj and y23 , only y23 can be removed. Then, c23
must remain, which corresponds to ¬xj in clause C2.

the formula φ can be satisfied.
⇒ Assume first that there exists such a subset U . Claim:

For all j = 1 . . .m the vertex inU∩V Var
j induces an assign-

ment of true and false to the Boolean variable xj so that φ
evaluates to true, namely xj = true if xj ∈ U ∩ V Var

j , oth-
erwise xj = false . Figure 4 exemplarily illustrates the fol-
lowing explanations. Without loss of generality, assume xj
has been deleted from the graph, then the cycles including
the adjacent vertices yik, 1 ≤ i ≤ n, 1 ≤ k ≤ 3 disappear as
well. Therefore, the partner of yik in V Clauses

i,k , which is cik,
can possibly be put in U . Thus, we can assume that the vari-
able xj evaluates Ci to true, since the V Clauses are defined
accordingly to the literals in the clauses. On the other hand,
as the vertex ¬xj remains in the graph, the adjacent vertices
yi
′
k′ , 1 ≤ i′ ≤ n, 1 ≤ k′ ≤ 3, must be removed in order to

dissolve the cycles containing them and ¬xj . But then the
ci
′
k′ corresponding to ¬xj in clause i′ must not be removed,

which is what we wanted. As G \ U is acyclic, in particular
there is no more cycle of the form (ci1, c

i
2), (ci2, c

i
3), (ci3, c

i
1)

left, the assignment evaluates to true. As either xj or ¬xj
can be deleted because of the construction of V Var

j , there
are no conflicts concerning the assignment of a variable.
⇐ For the other direction, assume that there is an assign-

ment to x1, . . . xm so that φ evaluates to true. If xj = true ,
we put the vertex xj into U and for every adjacent vertex yik,
1 ≤ i ≤ n, 1 ≤ k ≤ 3, we also put cik in U . Otherwise,
if xj = false, we put the vertex ¬xj into U and also for
every adjacent vertex yi

′
k′ , 1 ≤ i′ ≤ n, 1 ≤ k′ ≤ 3, we

put ci
′
k′ into U . We do this for all variables xj , j = 1 . . .m.

As the assignment evaluates to true, every clause evaluates
to true and therefore there is no cycle including vertices la-
beled ci

′′
k′′ , 1 ≤ i′′ ≤ n, 1 ≤ k′′ ≤ 3, left. To dissolve the

remaining cycles that necessarily contain the vertices yi
′′
k′′

and xj′′ or yi
′′
k′′ and ¬xj′′ , 1 ≤ j′′ ≤ m, we can put those

yi
′′
k′′s intoU . By construction,G\U is acyclic andU satisfies

the properties stated in the problem definition.

Before we formally prove the hardness of R&R via CDP
we first show how the two problems relate to each other.

Consider Figure 5, where a POCL plan for a simple plan-

in
it

go
al

l3

l2

l1

a1

l1
¬l2
p1

a2

l2
¬l3
p2

a3

l3
¬l1
p3

ps∗
l1
l2
l3

p1
p2
p3

b l3l1

c l1l3

Figure 5: Partial instance of R&R that demonstrates difficult
structural properties on a small scale.

ning task is given. Plan step ps∗ establishes the variables
l1, l2, and l3 but ps∗ will be removed. We want to find an
ordering-refinement of the resulting partial plan that is again
a solution. First, take a look at the plan steps ai, i = 1 . . . 3,
which are ordered before ps∗. They form something like a
cycle in their effects because in whatever order we put them,
there is always a variable not true at the end. But there are
also actions that are ordered after ps∗, which allow two op-
tions of ordering. If we order b ≺ c and add the causal link
(b, l3, c) all preconditions concerning l3 are satisfied, analo-
gously the same holds for l1 if we order c ≺ b instead. But
we have to make a choice, so assume we add (b, l3, c) in this
case. Then, we do not need to take l3 into account regard-
ing the ordering of the ais as well. Thus, adding (a2, l2, g)
and (a1, l1, b) and a3 ≺ a1 ≺ a2 results in a solution plan.
Therefore, the pair of plan steps b and c perform like a parti-
tion element in the CDP instance in the sense that the choice
of ordering determines which state variable will be removed
from consideration regarding the cycles of the effects of the
ais. Note that if there is no more cycle left in the effects of
the ais we can order them such that all needed preconditions
are satisfied. We now generalize this idea.

Theorem 2. REMOVE & REPAIR is NP-complete.

Proof. Membership: Guess an ordering-refinement P̃ of P \
ps∗ such that P̃ is a valid POCL plan for Π. Validation can
be done in polynomial time (Lemma 1).

Hardness: Karp-reduction3 from CDP to R&R. Suppose
we are given a directed graph G = (V,E), where V =

{v1 . . . vn}, and V̂ = {V1, V2, . . . , Vm} a partition of a sub-
set of V such that |Vj | = 2 for all j = 1 . . .m. Let us
construct a corresponding planning task Π = (V,A, sI , g)
and a POCL plan P for it. Let V = {l1 . . . ln}. For ev-
ery vertex vi ∈ V we introduce one action ai ∈ A
that has no preconditions and add(ai) = {li}. For ev-
ery outgoing edge (vi, vi′) of vi there is a negative ef-
fect li′ , so del(ai) =

⋃
vi′∈N

+
G (vi)

{li′}4. Moreover, for
every Vj = {vi, vi′}, j = 1 . . .m, we introduce two
more actions bj ∈ A and cj ∈ A, where prec(bj) =

3Karp-reductions are polynomial-time many-one reductions,
named after Richard Karp.

4N+
G (v) denotes the set of all successors of a vertex v.

314

{li}, prec(cj) = {li′}, add(bj) = {li′}, add(cj) = {li}
and del(bj) = del(cj) = ∅. There is one more action
ps∗ ∈ A with prec(ps∗) = del(ps∗) = ∅ and add(ps∗) =
{l1 . . . ln}. As initial state we use sI = ∅ and as goal
g = {l1 . . . ln}. For convenience, we label the plan steps
according to their action names, as each action will appear
just once in our plan. So, define P = (PS ,≺,CL), where
PS =

⋃
i=1...n{ai} ∪

⋃
j=1...m ({bj} ∪ {cj}) ∪ {ps∗} and

≺′= {(ai, ps∗) | i = 1 . . . n} ∪ {(ps∗, bj), (ps∗, cj) | j =
1 . . .m} and ≺=≺′+. Furthermore, CL = {(ps∗, li, g) |
i = 1 . . . n} ∪ {(ps∗, lj′ , bj), (ps∗, lj′′ , cj) | lj′ ∈
prec(bj), lj′′ ∈ prec(cj), j = 1 . . .m}.

Then P is a POCL plan for Π, because all preconditions
are protected by ps∗ and the plan steps ai, 1 ≤ i ≤ n, which
are the sole plan steps which can threaten the causal links
originating in ps∗, are ordered before ps∗. Hence, there are
no causal threats. This construction can clearly be done in
polynomial-time.

in
it

go
al

l1

l2

l3

. . .

ln

a1

l1
¬l2¬l3 . . .

a2

l2
¬l3 . . .

a3

l3

an

ln
. . .

.
.
.

ps∗ l1 . . . ln

bµ
lnl2

cµ
l2ln

.
.
.

.
.
.

Vµ = {v2, vn}v1 v2

v3

vn

Figure 6: Reduction of a partial instance of CDP at the top to
a partial instance of R&R. To maintain clarity in the figure,
causal links and ordering contains are not drawn in but im-
plied by the arrangement of the actions from left to right, i.e.
a1 . . . an are not ordered w.r.t. each other, but only to ps∗. bµ
and cµ analogously.

Now we need to show that our instance of CDP is a yes-
instance if and only if there is an ordering-refinement P̃ of
P \ ps∗ such that P̃ is a valid POCL plan for Π.
⇒Assume there is a subset U ⊆ V that satisfies the prop-

erties given in the problem definition and G̃ = (Ṽ , Ẽ) =

G \U is acyclic. Let P̃ = P \ ps∗ and R = {r | vr ∈ U} ⊆
{1 . . . n} be the indices of vertices in U . For every r ∈ R
and 1 ≤ j ≤ m such that add(bj) = {lr} we add the causal
link (bj , lr, cj) and implied ordering constraints bj ≺ cj to
P̃ . Analogously, for every r ∈ R and 1 ≤ j′ ≤ m such that
add(cj′) = {lr} we add the causal link (cj′ , lr, bj′) and the
implied ordering constraints cj′ ≺ bj′ . So, the selection of
vertices that were removed from the graph determine the or-
dering of the plan steps labeled b and c. This implies that the
deletion of an vertex vr guarantees that preconditions con-
cerning the corresponding variable lr are supported in the
whole plan by one of the bjs or cjs. Thus, the plan steps ar
for all r ∈ R are then not needed and can be ordered in the

front before all as, s ∈ S = {1 . . . n}\R, so that their nega-
tive effects do not threaten any causal link. Hence, we extend
≺̃ by {(ar, as) | r ∈ R, s ∈ S}. Furthermore, we add the
causal links {(as, ls, g) | s ∈ S} and order the plan steps as,
s ∈ S, according to the direction of arcs incident with the
corresponding vertices in G̃. As a consequence, their posi-
tive effects were not deleted by plan steps that are executed
after them such that there do not occur causal threats. More
formally, for every edge (vi, vi′) ∈ Ẽ we add ai ≺̃ ai′ .

Let us verify the resulting POCL plan. The preconditions
(including the goal state) concerning the variables {lr | r ∈
R} are supported by the bjs and cjs as stated before, which
are in particular not threatened. We claim that the remain-
ing preconditions are protected by causal links originating
in one of the ass, which are also not threatened. By con-
struction, an action ai has a negative effect ¬lk if and only
if there is an edge (vi, vk) ∈ E. Therefore, for every causal
link protecting a precondition ls, s ∈ S, that is supported
by plan step as, there does not exist another plan step at,
1 ≤ t ≤ n with del(at) = ls, which may be ordered after
as, because G̃ is acyclic and we ordered the ass according
to G̃. Thus, P̃ is a POCL plan that solves Π.
⇐ For the other direction consider a POCL plan P̃ =

(P̃S, ≺̃,CL) that is an ordering-refinement of P \ ps∗. Let
us construct a subset U ⊆ V̂ such that G̃ = G\U is acyclic.
For every ordering of the form (bj , cj) ∈ ≺̃ remove the ver-
tex vi with add(bj) = li and analogously for every order-
ing of the form (cj , bj) ∈ ≺̃ remove the vertex vi′ , where
add(cj) = li′ . This is permitted since we constructed the
actions bj and cj according to the elements of V̂ . We claim
that the remaining graph G̃ is acyclic.

Define again R = {r | vr ∈ U}, S = {1 . . . n} \ R and
PSS = {as | s ∈ S}. So, the plan steps in PSS correspond
to the remaining vertices in G̃. The ass in P̃ must be ordered
in a way such that they establish the variables {ls | vs ∈ G̃}
because they are not established by the bjs or cjs because of
the orderings of the bjs and cjs. Consider as ∈ PSS , that is
ordered at the beginning, i.e. there does not exist as′ ∈ PSS
such that as′ ≺ as. as must support the precondition ls of
the bjs, cjs or g. Therefore, there must not be a plan step
at ∈ PSS with ls ∈ del(at), since it would threaten the
causal links originating in as because of the choice of as.
This implies that vs does not have any ingoing edge in G̃.
Thus, there is no cycle containing vs. We can repeat these
arguments with respect to PSS \ {as} and G̃ \ vs, respec-
tively. Then we find another vertex vs′′ that is not contained
in any cycle. Inductively, it follows thatG\U is acyclic.

Note that the arguments in the hardness proof can easily
be adapted to standard partially ordered plans, where exe-
cutability is defined without causal links by demanding that
all linearizations are executable. Membership is trivial. We
can thus also consider the variant of R&R with standard par-
tially ordered plans to be NP-complete.

So, we have seen that R&R is a computationally hard
problem, unfortunately. Moreover, R&R modified by allow-
ing not only adding ordering constraints but deleting them as

315

well is also NP-hard since it would not change the previous
proof. There is no benefit in ordering one of the ais after
the bjs or cjs as the ais do not have preconditions and the
bjs and cjs have empty delete lists. So only adding ordering
constraints is a special case and the possibility of deleting
ordering constraints could make the problem harder. Mem-
bership is trivial due to Lemma 1.

Corollary 1. Let Π be a planning task, P a POCL plan that
solves Π, and ps∗ ∈ P a plan step. The problem of deciding
whether ps∗ can be removed such that the remaining plan
can be repaired by changing causal links and ordering con-
straints arbitrarily is NP-complete.

In the definition of R&R we are given a predetermined
plan step, which we try to remove. But we can also ask our-
selves whether there exists any plan step that we can remove
such that there exists an ordering-refinement of the remain-
ing plan that is a solution.

Definition 5. Let P be a POCL plan to some planning task
Π. The problem of deciding whether there exists a plan step
ps∗ such that there exists an ordering-refinement of P \ ps∗
that solves Π is called ∃PS - R&R.

Theorem 3. ∃PS - R&R is NP-complete.

Proof. Membership: Guess a plan step ps∗ and an appro-
priate ordering-refinement P̃ of P \ ps∗. We can verify in
polynomial time whether P̃ is a POCL plan to Π according
to Lemma 1.

Hardness can be shown by reducing R&R to it. So let
P = (PS ,≺,CL) be a POCL plan to some planning task Π
and let ps∗ be given. Moreover, let {ps1 . . . psn} = PS\ps∗
be the remaining plan steps. Modify this instance in the fol-
lowing way: For all i = 1 . . . n add an additional state vari-
able gi that has not been in the domain before to add(psi)
and the goal state g. Moreover, add the appropriate causal
links (psi, gi, g) for all i = 1 . . . n. Then clearly, ps∗ is the
sole plan step that can possibly be removed from the result-
ing plan and therefore finding any plan step that can be re-
moved solves the problem instance of R&R.

By combining our main result (Thm. 2) with the last one
(Thm. 3) we can obtain their generalization to k actions.

Corollary 2. Let Π be a planning task and P a POCL plan
that solves Π. The following two problems are NP-complete:

• Given k plan steps, PS∗ = {ps∗1, . . . , ps∗k} ⊆ P , is there
an ordering-refinement P̃ of P \ PS∗ such that P̃ is a
solution plan for Π?

• Are there k plan steps PS∗ = {ps∗1, . . . , ps∗k} ⊆ P , such
that there is an ordering-refinement P̃ of P \PS∗ with P̃
being a solution plan for Π?

Note that the second part of the previous corollary already
follows from the fact that deciding whether k actions can
be removed from a t.o. plan is NP-complete (Nakhost and
Müller 2010).

Parameterized Complexity
We have seen that R&R is NP-complete. So there does not
exist a polynomial time algorithm that solves the problem
for an arbitrary instance unless P = NP. Nevertheless, the
proof indicates that the hardness results from certain struc-
tural properties in the plan. In practice, they may not appear
extensively. Therefore, we look at the problem again under
the light of fixing them as a parameter in the input. This leads
to the theory of parameterized complexity, which has been
initiated by Downey and Fellows (1999), but we follow the
definition of Aghighi and Bäckström (2017).

A parameterized problem is a language L ⊆ Σ∗ × N0,
where Σ is a finite alphabet and N0 is the set of non-negative
integers5. An instance of the problem is a pair (I, k), where
I is a string over Σ∗ and k ∈ N0 is the parameter. A param-
eterized problem is fixed-parameter tractable (fpt) if there
exists an algorithm that solves every instance (I, k) in time
f(k) · |I|c where f is a computable function and c is a con-
stant. FPT is the class of all fixed-parameter tractable deci-
sion problems.

Let us come back to R&R. If we delete a plan step and its
respective causal links, there most likely remain plan steps
with unsupported (also called open) preconditions. The pa-
rameter of the R&R instance that we fix is the number of
plan steps satisfying all of the following three properties:
• They are ordered (not necessarily directly) behind the re-

moved plan step,
• can be ordered before plan steps with unsupported pre-

conditions (so they are not already ordered after them),
• and can support any of these open preconditions.
We will call the steps satisfying these properties Atweens .

More precisely, let P be a POCL plan, ps∗ ∈ P the plan
step to be removed and cl = (ps∗, l, ps) ∈ CL, l ∈ V , ps ∈
PS , a causal link originating in the plan step to be removed.
Then define Acl = {a ∈ PS | (ps∗, a) ∈ ≺ ∧ (ps, a) /∈
≺ ∧ l ∈ add(a)}, Atweens =

⋃
cl=(ps∗,l,ps)∈CLAcl and

#Atweens = |Atweens|. The notation #Atweens - R&R
refers to the variant of R&R parameterized with the param-
eter #Atweens .

In order to show that #Atweens - R&R is fixed-parameter
tractable we present Algorithm 1, which runs in time
O(#Atweens ! · |PS |3 + |Prec| · |PS |2), where |Prec| =∑

ps∈PS |prec(ps)|. The main idea is: After fixing a lin-
earization of the Atweens we can compute in polynomial
time whether there exists an ordering-refinement that solves
the planning task or not. In the worst case we need to try all
linearizations, of which there are at most #Atweens !.

Theorem 4. #Atweens - R&R is in FPT.

Proof. Let Π be a planning task, P a POCL plan to Π,
ps∗ ∈ P a plan step, and #Atweens be given. We ask for an
ordering-refinement P̃ of P \ ps∗ such that P̃ is a solution
plan for Π, i.e. we try to choose alternative supporters for
causal links that were removed with ps∗. Therefore, we run

5Given an alphabet Σ, the set of all strings of length n over the
alphabet Σ is indicated by Σn. The set

⋃
i∈N Σi of all finite strings

is indicated by the Kleene star operator as Σ∗, and is also called
the Kleene closure of Σ.

316

this input on Algorithm 1. The procedure and the plan steps
are split into three parts, which are sketched in Figure 7.

in
it

go
al

Unordered

ps∗Pr
ec

ur
so

rs

relevant

SuccessorsAtweens

(i)

(ii)(iii)

Figure 7: A high-level sketch of Algorithm 1.

Plan steps that are unordered with respect to ps∗ (i) have
assessable properties. Thus, we first try to find producers for
open preconditions among these, because we can not make
wrong decisions (as they did not threaten any of the causal
links originating in ps∗). After that we fix an arbitrary to-
tal ordering of the Atweens (ii) and check whether we can
achieve a POCL plan by bringing the plan steps that were
ordered before ps∗ (iii) in an appropriate order. If this is
not possible, we try the same with a different total order of
the Atweens . Note that we are always done once we found
producers for all open preconditions and there are no causal
threats, so in the following we assume that after each step
there are still open preconditions left.

To start with, we analyze plan steps that are unordered
with respect to ps∗, so let Unordered = {ps ∈ PS |
(ps, ps∗) /∈ ≺ ∧ (ps∗, ps) /∈ ≺}. This property implies
that they will not threaten any future causal link support-
ing one of the open preconditions since they did not threaten
the links originating in ps∗. Therefore, without loosing any
solution we could order all of them at the position where
ps∗ has been and add respective causal links. Then, pos-
sible threatening plan steps are already ordered before the
Unordered or after the consumers since there were no
threats concerning causal links originating in ps∗. This pro-
cedure would in most cases insert more ordering constraints
than necessary. To counter this, we just pick relevant pro-
ducers among Unordered as described in the he first forall-
loop in line 3. So, consider a plan step c whose precon-
dition l is not supported anymore. If there is a plan step
a ∈ Unordered with l ∈ add(a), we can insert the causal
link (a, l, c). Possible threatening plans steps to this link
must have been ordered before ps∗, thus we order them also
before a. We do this for every unsupported precondition,
which takes at most |Prec| · |PS |2 computation steps, where
|Prec| = ∑

ps∈PS |prec(ps)|.
Now, let Atweens be as defined with respect to ps∗. Select

a total order of these steps consistent with ≺ (line 10) and
insert possible threat-free causal links where the plan steps
out of Atweens function as producer (line 11). Because of
the total order we do not insert further ordering constraints
to resolve causal threats and all other plan steps are already
ordered before the Atweens or are harmless.

After that we can try to find producers for the remaining
open preconditions among the relevant plan steps that were
ordered before ps∗, which are called RelevantPrecursors
(RelPrecurs) (line 14). By relevant we mean plan steps that

have any of the open preconditions as a positive effect. As-
sume there does not exist a relevant precursor a such that
neither a nor any of the plan steps ordered between a and
ps∗ deletes any of the remaining open preconditions. In this
case there does not exist an ordering-refinement of this par-
tial plan solving Π because no matter which total order of
the Precursors we pick, there is always a plan step deleting
one of the needed literals ordered after all RelPrecurs such
that this open precondition can not be supported. Then, we
need to try a different linearization of the Atweens . So, as-
sume we can select a relevant precursor a such that neither
a nor any of the plan steps ordered before ps∗ but after a
deletes any of the remaining open preconditions and insert
the respective causal links. Threatening plan steps can then
be ordered before a. Afterwards, we pick the next relevant
precursor with the same properties and inductively repeat
this procedure with the remaining relevant precursors until
either there are no open preconditions left (and return the
resulting POCL plan) or such a relevant precursor does not
exist and there are still open preconditions. In the latter case
there does not exist a further ordering-refinement that solves
Π as argued before. Thus, we must go back to line 10 and try
a different total order of the Atweens . If we fail after testing
all possible total orders of the Atweens , P̃ does not exist.

We can assume that the single lines in the algo-
rithm can be computed efficiently if the plan is en-
coded in an intelligent way. The while loop runs at most
|RelevantPrecursors| times for every linearization of the
Atweens , which are at most #Atweens ! many. Per iteration
at most |RelevantPrecursors| · |Precursors| steps of calcu-
lation are needed. Thus, the algorithm runs roughly in time
O(#Atweens ! · |PS |3 + |Prec| · |PS |2).

If #Atweens � |PS |, Algorithm 1 is at least better than
the brute force method to try all linearizations of the plan.

We have seen that the exponential runtime of the Algo-
rithm 1 is due to the exponentially many linearizations of
the Atweens . If the set of Atweens is empty, Algorithm 1
runs in polynomial time. Therefore, we can impose the fol-
lowing restriction to the plan step to be removed such that
R&R can be solved in polynomial time.
Definition 6. Let P = (PS ,≺,CL) be a POCL plan. We
call a plan step ps ∈ PS last establisher if for all l ∈ {l ∈
add(ps) | ∃ (ps, l, ps′) ∈ CL, ps′ ∈ PS} there does not
exist a plan step p̂s such that ps ≺ p̂s and l ∈ add(p̂s).
Corollary 3. R&R can be decided in polynomial time if ps∗
is a last establisher.

Discussion
Our main result, REMOVE & REPAIR (R&R) being NP-
complete, is also related to the NP-completeness of decid-
ing whether there exists an applicable action sequence given
a partial plan without causal links, which was shown inde-
pendently by Nebel and Bäckström (1994) (cf. Thm. 15) for
event systems and later by Erol, Hendler, and Nau (1996)
(cf. Thm. 8) in the context of hierarchical planning6. We

6This was shown for the special case where there are no abstract
actions, which then coincides with the plan linearization problem.

317

Algorithm 1: Solves an instance of #Atweens - R&R in
O(#Atweens ! · |PS |3 + |Prec| · |PS |2)

Input: POCL plan P = (PS ,≺,CL) to planning
problem Π, ps∗ ∈ P and #Atweens

Output: Answer to R&R, i.e. a POCL plan P ′ if one
exists or fail otherwise.

1 P ′ = (PSnew ,≺new ,CLnew)← P \ ps∗;
2 open ← {cl ∈ CL | cl originates in ps∗};
3 forall (ps∗, l, c) ∈ open do
4 if ∃ a ∈ PSnew s.t. l ∈ add(a) ∧ (a, ps∗) /∈

≺ ∧ (ps∗, a) /∈ ≺ then
5 CLnew ← CLnew ∪ {(a, l, c)};
6 ≺new ← ≺new ∪ {(t, a) | t ∈ PSnew ∧ l ∈

del(t) ∧ (c, t) /∈ ≺new}+;
7 open ← open \ {(ps∗, l, c)};
8 Atweens ← ⋃

cl∈open Acl;
9 forall linearizations of plan steps in Atweens consistent

with ≺′ denoted ≺|Atweens do
10 ≺temp ← ≺new ∪ ≺|Atweens ;
11 CLtemp ← {(b, l, c) | b ∈ Atweens ∧ (ps∗, l, c) ∈

open ∧ l ∈ add(b) ∧ (b, c) ∈ ≺temp};
12 opentemp ← {(ps∗, l, c) ∈ open | (b, l, c) /∈

CLtemp};
13 Precursors ← {a ∈ PSnew | (a, ps∗) ∈ ≺};
14 RelPrecurs ← {a ∈ PSnew | (a, ps∗) ∈

≺ ∧ add(a) ∩ {l | (ps∗, l, c) ∈ opentemp} 6= ∅};
15 while RelPrecurs 6= ∅ and opentemp 6= ∅ do
16 if ∃ a ∈ RelPrecurs s.t. (del(a) ∩ {l | (ps, l, c) ∈

opentemp} = ∅ ∧ a ⊀ b∀ b ∈ Precursors with
del(b) ∩ {l | (ps, l, c) ∈ opentemp} 6= ∅) then

17 CLa ← {(a, l, c) | l ∈ add(a) ∧ (ps∗, l, c) ∈
opentemp};

18 CLtemp ← CLtemp ∪ CLa;
19 ≺temp ← ≺temp ∪ {(t, a) | t ∈ Precursors

threatens any of CLa} ;
20 opentemp ← {(ps∗, l, c) ∈ opentemp | (a, l, c) /∈

CLa};
21 RelPrecurs ← RelPrecurs \ {a};
22 else
23 break;

24 if opentemp = ∅ then
25 return P ′ = (PSnew ,≺temp ,CLnew ∪ CLtemp)

26 return fail

regard this relationship interesting as is shows that finding
an executable action sequence (without any prior knowledge
about the input plan) is equally hard as “repairing” a plan in
which all sequences have already been executable.

We would also like to highlight the relationship of our
result to the ones by Fink and Yang (1992) and Nakhost
and Müller (2010). Due to their work, it’s known that it is
NP-complete to decide whether there are k actions that can
be removed from a t.o. plan so that the resulting plan still
solves the problem. Note that it is trivially tractable to decide

whether one or more given actions can be removed, because
one can simply verify the executability of the remaining plan
in polynomial time. Interestingly, for partially ordered plans
the situation is more complicated. While we get exactly the
same results if we only allow the removal of actions from a
standard partially ordered plan (because verification is also a
tractable problem for such partial plans without causal links
(Nebel and Bäckström 1994, Thm. 12)7) or from a POCL
plan, we showed that it already becomes NP-hard for a sin-
gle given action if we allow “repairing” the resulting plan by
ordering insertions as discussed above.

One of the implications of this finding is that it rules out a
polynomial greedy-optimization algorithm that would have
been possible if the R&R problem were decidable in poly-
nomial time for k = 1 actions. If that problem were in P (as
it is the case for t.o. plans), we could select any redundant ac-
tion and repair the resulting partial plan. We could then con-
tinue until no more (single) action can be removed, thereby
obtaining a greedy optimization algorithm. This algorithm,
of course, would only find local minima since it could not
identify all cases where groups of actions could still be re-
moved. Due to our result, however, such a tractable greedy
optimization algorithm cannot exist (unless P = NP), which
raises the question whether further efficient approximation
algorithms exist or whether it’s equally efficient to aim
for optimal optimizations in the first place. As mentioned
in the related work section, several efficient approaches
exist already despite the hardness of the problem (Sid-
diqui and Haslum 2015; Muise, Beck, and McIlraith 2016;
Say, Cire, and Beck 2016).

Conclusion
We investigated the computational complexity of detect-
ing unnecessary plan steps in partially ordered plans that
can be deleted such that the resulting plan can be repaired
to a solution by adding causal links and ordering con-
straints. Therefore, we could prove that this problem, called
REMOVE & REPAIR, is NP-complete – even if there is just
a single given action that we want to delete from the given
solution. This is an interesting result since the similar prob-
lem for a totally ordered input plan is only in P. Moreover,
we presented a fixed-parameter tractable algorithm, which
exploits the structural properties that are responsible for the
hardness. Future work can be done by extending the stud-
ies Bäckström (1998) has done concerning the possibilities
of post-optimizing the makespan of a partially ordered plan,
i.e., the execution time of a partially ordered plan when tak-
ing parallelism into account.

Acknowledgements
We would like to thank the reviewers for their thorough re-
views and useful comments that helped improving the paper.
This work was done within the technology transfer project

7Nebel and Bäckström (1994) showed this result for event sys-
tems, but they essentially translate to standard partially ordered
plans. One only has to check whether for each precondition there
exists a predecessor action producing it, such that there is no other
action that can delete it afterwards.

318

“Do it yourself, but not alone: Companion-Technology for
DIY support” of the Transregional Collaborative Research
Centre CRC/TRR 62 “Companion-Technology for Cogni-
tive Technical Systems” funded by the German Research
Foundation (DFG). The industrial project partner is the Cor-
porate Research Sector of the Robert Bosch GmbH.

References
Aghighi, M., and Bäckström, C. 2017. Plan reordering and
parallel execution – A parameterized complexity view. In
Proc. of AAAI’17, 3540–3546. AAAI Press.
Ai-Chang, M.; Bresina, J.; Charest, L.; Chase, A.; Hsu, J.
C.-j.; Jonsson, A.; Kanefsky, B.; Morris, P.; Rajan, K.; Ygle-
sias, J.; Chafin, B. G.; Dias, W. C.; and Maldague, P. 2004.
MAPGEN: mixed-initiative planning and scheduling for the
mars exploration rover mission. IEEE Intelligent Systems
19(1):8–12.
Behnke, G.; Höller, D.; Bercher, P.; and Biundo, S. 2016.
Change the plan – how hard can that be? In Proc. of
ICAPS’16, 38–46. AAAI Press.
Bercher, P.; Geier, T.; Richter, F.; and Biundo, S. 2013. On
delete relaxation in partial-order causal-link planning. In
Proc. of the 25th Int. Conf. on Tools with Artificial Intelli-
gence (ICTAI’13), 674–681. IEEE Computer Society.
Bercher, P.; Biundo, S.; Geier, T.; Hörnle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, repair, execute,
explain - how planning helps to assemble your home theater.
In Proc. of ICAPS’14, 386–394. AAAI Press.
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a name? On implications of preconditions and
effects of compound HTN planning tasks. In Proc. of
ECAI’16, 225–233. IOS Press.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proc. of
SoCS’14, 35–43. AAAI Press.
Bit-Monnot, A. 2016. Temporal and Hierarchical Models
for Planning and Acting in Robotics. Dissertation, Univer-
sité de Toulouse.
Bresina, J. L., and Morris, P. H. 2007. Mixed-initiative plan-
ning in space mission operations. AI magazine 28(2):75–88.
Bäckström, C. 1998. Computational aspects of reorder-
ing plans. Journal of Artificial Intelligence Research (JAIR)
9:99–138.
Cook, S. A. 1971. The complexity of theorem-proving pro-
cedures. In Proc. of the 3rd Annual ACM Symposium on
Theory of Computing (STOC’71), 151–158. ACM Press.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Springer.
Dvor̆ák, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and acting with temporal and
hierarchical decomposition models. In Proc. of the 26th Int.
Conf. on Tools with Artificial Intelligence (ICTAI’14), 115–
121. IEEE.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence (AMAI) 18(1):69–93.

Fink, E., and Yang, Q. 1992. Formalizing plan justifica-
tions. In Proc. of the 9th Conf. of the Canadian Society for
Computational Studies of Intelligence, 9–14.
Garey, M. R., and Johnson, D. S. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. A
Series of Books in the Mathematical Sciences. W. H. Free-
man and Company.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proc. of AAAI’08, 944–949. AAAI Press.
Helmert, M. 2003. Complexity results for standard
benchmark domains in planning. Artificial Intelligence
143(2):219–262.
Karpas, E., and Domshlak, C. 2012. Optimal search with in-
admissible heuristics. In Proc. of ICAPS’12, 92–100. AAAI
Press.
Lipovetzky, N., and Geffner, H. 2011. Searching for plans
with carefully designed probes. In Proc. of ICAPS’11, 154–
161. AAAI Press.
McAllester, D. A., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In Proc. of AAAI’91, 634–639. AAAI
Press.
Muise, C.; Beck, J. C.; and McIlraith, S. A. 2016. Optimal
partial-order plan relaxation via maxsat. Journal of Artificial
Intelligence Research (JAIR) 57:113–149.
Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Proc. of ICAPS’10, 137–144. AAAI Press.
Nebel, B., and Bäckström, C. 1994. On the computational
complexity of temporal projection, planning, and plan vali-
dation. Artificial Intelligence 66(1):125–160.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proc. of KR’92,
103–114. Morgan Kaufmann.
Say, B.; Cire, A. A.; and Beck, J. C. 2016. Mathematical
programming models for optimizing partial-order plan flex-
ibility. In Proc. of ECAI’16, 1044–1052. IOS Press.
Schattenberg, B. 2009. Hybrid Planning & Scheduling. Dis-
sertation, University of Ulm, Germany.
Seegebarth, B.; Müller, F.; Schattenberg, B.; and Biundo, S.
2012. Making hybrid plans more clear to human users – a
formal approach for generating sound explanations. In Proc.
of ICAPS’12, 225–233. AAAI Press.
Siddiqui, F. H., and Haslum, P. 2015. Continuing plan qual-
ity optimisation. Journal of Artificial Intelligence Research
(JAIR) 54:369–435.
Tan, X., and Gruninger, M. 2014. The complexity of partial-
order plan viability problems. In Proc. of ICAPS’14, 307–
313. AAAI Press.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence 170:298–335.
Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research (JAIR) 20:405–430.

319

