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Abstract

Infinite-horizon non-stationary Markov decision processes
provide a general framework to model many real-life
decision-making problems, e.g., planning equipment main-
tenance. Unfortunately, these problems are notoriously diffi-
cult to solve, due to their infinite dimensionality. Often, only
the optimality of the initial action is of importance to the
decision-maker: once it has been identified, the procedure can
be repeated to generate a plan of arbitrary length. The opti-
mal initial action can be identified by finding a time horizon
so long that data beyond it has no effect on the initial decision.
This horizon is known as a solution horizon and can be dis-
covered by considering a series of truncations of the problem
until a stopping rule guaranteeing initial decision optimality
is satisfied. We present such a stopping rule for problems with
unbounded rewards. Given a candidate policy, the rule uses a
mathematical program that searches for other possibly opti-
mal initial actions within the space of feasible truncations. If
no better action can be found, the candidate action is deemed
optimal. Our rule runs faster than comparable rules and dis-
covers shorter, more efficient solution horizons.

1 Introduction
Probabilistic planning is a long-standing challenge (Littman
and Younes 2004), which arises in many domains, includ-
ing inventory management (Shin and Lee 2015), equipment
replacement (Hopp and Nair 1991), and robot surveillance
(Witwicki et al. 2013). Infinite-horizon discounted Markov
decision processes (MDPs) are often employed to model
such problems, but they rely on a crucial but sometimes un-
realistic assumption: the problem’s data must remain con-
stant. In order to incorporate possible temporal changes
in the decision-making process, non-stationary (or non-
homogeneous) MDPs (NS-MDPs) have been introduced
(Hopp, Bean, and Smith 1987; Ghate and Smith 2013).

Unfortunately, NS-MDPs are infinitely-dimensional opti-
mization problems by nature. This means that standard so-
lution methods (e.g., value iteration and policy iteration) re-
quire an infinite number of calculations. To overcome this
computational hurdle, NS-MDPs have been solved using a
finite-time version of the problem, known as a truncation.
Ghate (2011) provides a broad survey of such methods.
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A typical approach is to use a rolling-horizon procedure
(Sethi and Sorger 1991). At each time step the original
infinite-horizon problem is truncated to a chosen time hori-
zon, known as a study horizon, the truncation is solved, and
the first decision is made based on this solution. The process
is then repeated whenever another decision has to be made.
While this approach is computationally feasible, it can lead
to sub-optimal decisions, as the truncation by definition con-
siders a limited horizon. Thus, it is important to identify a
study horizon that is guaranteed to give the same initial deci-
sion as the infinite-horizon problem. This horizon is known
as a solution horizon (Bès and Sethi 1988).

Due to unpredictability of future data and reduced com-
putation time for smaller truncations, the decision-maker is
often interested in a solution horizon that is as short as pos-
sible. The standard procedure for discovering such a horizon
is to construct a series of longer and longer truncations until
a certain condition is met. This condition, called a stopping
rule, must guarantee that the last considered horizon is a so-
lution horizon.

Several stopping rules have been proposed in the litera-
ture (Hopp, Bean, and Smith 1987; Bès and Lasserre 1986;
Hernández-Lerma and Lasserre 1988; Cheevaprawatdom-
rong et al. 2007). Almost all of them are based on the as-
sumption that the model data are uniformly bounded, and
explicitly use these bounds. While uniform bounds are easy
to work with, they can be very loose (e.g., if there is a large
spike in data at one time step), providing inaccurate esti-
mates of future states of the model. Moreover, for some
problems the boundedness assumption may not hold at all.

Therefore, the goal of this paper is to develop a method
applicable to unbounded problems. As an example of such
a problem, consider a long-term investment project, such as
a university endowment fund. The endowment needs to be
divided between several different assets, such as stocks and
bonds. In order to make the allocation, the decision-maker
needs to model future returns on these assets. One of the
most commonly employed models of discrete-time financial
time series is a geometric random walk. In this case the re-
turns rt of stocks are modeled as rt = rt−1 + µ + σεt,
where εt ∼ N(0, 1) is a sequence of i.i.d. random variables.
Given current return r0, future return forecasts are given by
rt ∼ N(r0 + µt, σ2t). They can not be uniformly bounded
for two reasons. Firstly, there is a slow unconditional growth
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µ > 0, known as drift, attributed to inflation, transaction
costs and general economic growth. This drift makes ex-
pected returns E[rt] = r0 + µt grow linearly, meaning that
any return value will be eventually exceeded. Secondly, fore-
casts farther into future become less precise, which means
that their variance Var[rt] = σ2t also increases with time,
even if there is no drift (i.e., if µ = 0), again without any
limit. As a result, reward forecasts can not be bounded by a
constant. However, bounds changing over time may exist.

In this paper, we propose a new stopping rule for infinite-
horizon discounted NS-MDPs with unbounded rewards. Our
rule searches for possible alternative initial decisions among
the feasible problem truncations; if no such decision exists,
the initial decision is deemed optimal, and the current hori-
zon is a solution horizon. We show how the stopping rule can
be implemented and demonstrate that it is capable of finding
shorter solution horizons than existing methods.

2 Previous Work
Chand, Hsu, and Sethi (2002) provided an exhaustive review
of literature on horizon methods. It shows that the majority
of research in this area focuses on deterministic problems:
of more than 200 papers reviewed, less than a third used
stochastic models, including MDPs.

The most common approach is to exploit the cost (or
reward) properties of a particular problem, both for deter-
ministic and stochastic models. Two most commonly used
properties are convexity (Smith and Zhang 1998; Cheevap-
rawatdomrong and Smith 2004) and supermodularity (Nair
1995; Cheevaprawatdomrong et al. 2007). For example, Nair
(1995) considered an investment problem under sequential
technological change. The proposed method is based on the
assumption that future technologies will generate higher rev-
enues than the current ones. While this assumption is not
restrictive in the particular setting, such monotonically im-
proving environment may not exist for other problems.

In the context of MDPs, Bès and Lasserre (1986) pro-
posed a rolling-horizon procedure and a stopping rule based
on the reward differences. Their stopping rule is elegantly
simple: an initial decision is deemed optimal if it outper-
forms all other possible decisions by a given threshold. This
threshold is chosen so as to guarantee that no matter what
policy is employed after the solution horizon, the differ-
ence is outweighed by the initial decision. This method was
later extended to the case of MDPs with Borel state spaces
(Hernández-Lerma and Lasserre 1988).

Ergodic (i.e., related to recurrence of states) properties of
the underlying Markov chains may be used as a source of so-
lution horizons as well. For example, Hopp (1989) suggested
the following stopping rule. For a given study horizon, ap-
proximate all of the future discounted rewards with some
constants, known as salvage values. If for all feasible salvage
values the resulting problems result in the same optimal ini-
tial decision, that decision must be optimal to the original
infinite-horizon problem as well. Feasibility of the salvage
values is established by bounding their spans using an er-
godicity coefficient for discounting. The resulting space of
possible salvage values forms a polyhedron, and linear pro-

gramming can be used to solve the resulting problem (Bean,
Hopp, and Duenyas 1992).

Another linear-programming based method for solving
NS-MDPs was proposed by Ghate and Smith (2013). Even
though their method addresses a slightly different problem
and thus does not involve stopping rules, it provides some
useful insights on the linear-programming formulations of
NS-MDPs. Their results were later extended to the case of
unbounded rewards in context of a more general class of
countable-state MDPs (Lee et al. 2017).

As already mentioned, virtually all of the stopping rules
require uniform bounds on the rewards (or their spans).
The unbounded case remains relatively untreated. Cheevap-
rawatdomrong et al. (2007) provided a possible remedy, but
necessarily introduced a different set of assumptions. To ad-
dress this gap, we propose a modification of Hopp’s stopping
rule based on the results of Puterman (1994) and Lee et al.
(2017) for countable-state MDPs and implement it using the
linear programming method of Bean, Hopp, and Duenyas
(1992). This modification is based on varying bounds in-
stead of uniform ones, which allows us to construct substan-
tially smaller spaces of possible salvage values, resulting in
better and faster solutions.

3 NS-MDPs with Unbounded Rewards
This section formally introduces the problem of finding an
optimal policy in an infinite-horizon discounted NS-MDP
with unbounded rewards and shows how this problem can
be reduced from a countably-infinite optimization problem
to a finite one.

First, we introduce uniformly bounded NS-MDPs and de-
fine some properties of their optimal values. Next, we con-
sider the case of unbounded rewards and show how it can be
treated in a similar manner. Finally, we introduce an integer-
programming formulation of the problem with unbounded
rewards and its approximation, known as truncation.

The content of this section is based on existing work by
Puterman (1994) and Lee et al. (2017) for countable-state
MDPs. We introduced a simplified matrix-based notation
and translated their results to the case of NS-MDPs, which
is the main contribution of this section.

Preliminaries
An infinite-horizon NS-MDP is an MDP in which both the
state space S and the action space A are discrete and finite,
and the transition function pt : S×A→ S and the immediate
reward function rt : S× A→ R are allowed to change over
time. Without loss of generality we set S , {1, 2, . . . , S}
and A , {1, 2, . . . , A}.
Definition 1. A function π : S × N0 → A is called a (de-
terministic Markov) decision rule. For each state-time tu-
ple (s, t) it gives an action a. A sequence of decision rules
π , {πt}t∈N0 is called a (deterministic Markov) policy. We
denote the space of all policies as D.

We denote the rewards and transitions under policy π ∈ D
as rπt (s) and pπt (s

′|s) respectively, that is,

rπt (s) , rt
(
s, πt(s)

)
, pπt (s

′|s) , pt
(
s′|s, πt(s)

)
;
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we use pπ,jt (s′|s) for the j-step transition probability (i.e.,
the probability to reach state s′ at time step t+j by following
policy π starting in state s at time step t).

At each time step t ∈ N0 the decision-maker observes
the state st and chooses an action at according to a decision
rule πt of the chosen policy π ∈ D. Given a state st at time
t, each policy has a value vπt (s) equal to the expected total
γ-discounted reward:

vπt (st) , Eπ
∞∑
τ=t

γt−τrt(st, at), (1)

where 0 < γ < 1. Assuming that the sum in equation (1)
is well-defined for all policies, the decision-maker’s goal
is to find a policy π∗ with the maximum value v∗0(s0) =
maxπ v

π
0 (s0), called an optimal policy.

Any NS-MDP can be rewritten as a stationary countable-
state MDP (CS-MDP) by augmenting the state space S with
time space N0. The new state space is given by X , S×N0

and the transition probabilities p′ and the rewards r′ for all
x = (s, t) and x′ = (s′, t′) are equal to

p′
(
x′|x, a

)
, δt+1,t′pt(s

′|s, a), (2)

r′
(
x′|x, a

)
, δt+1,t′rt(s

′|s, a), (3)

where δi,j , I{i=j} denotes the Kronecker delta. Thus,
properties of CS-MDPs can be translated back to NS-MDPs.
In the remainder of this section we present some of these
properties, translating them back to the original NS-MDP
formulation of the problem using equations (2) and (3).

Let V be the space of all functions v : X → R with finite
supremum-norm ‖v‖ = sup(s,t)∈X

∣∣vt(s)∣∣.
Definition 2. An operator L : V → V is called a k-stage
contraction on V if there exists a constant 0 ≤ λL,k < 1
such that for any v′ ∈ V and v′′ ∈ V

‖Lkv′ − Lkv′′‖ ≤ λL,k‖v′ − v′′‖.
If k = 1 then L is simply called a contraction.

Definition 3. A function v ∈ V is called a fixed point of an
operator L : V→ V if Lv = v.

Any contraction and multi-stage contraction has a unique
fixed point (Puterman 1994). When the rewards rt(s, a) are
uniformly bounded, values vπt (s) and v∗t (s) belong to V and
are equal to the fixed points of operators Lπ and L∗ respec-
tively, where

Lπvt(s) , rπt (s) + γ
∑
s′∈S

pπt (s
′|s)vt+1(s

′), (4)

L∗vt(s) , max
a∈A

{
rt(s, a) + γ

∑
s′∈S

pt(s
′|s, a)vt+1(s

′)

}
= sup
π∈D
Lπvt(s). (5)

Both operators are contractions on V.
To simplify the notation, we introduce the following ma-

trices and vectors. All of these are understood as the values

of the respective functions at a given time step t. For exam-
ple, equation (4) can be written as

Lπvt , rπt + γPπ
t vt+1,

where rπt are the immediate rewards and Pπ
t are the one-step

transition matrices under policy π ∈ D, and vt = [vt(s)]s∈S
are values of function v.

Using one-step transition matrices Pπ
t we define j-step

transition matrices Pπ,j
t ,

∏j−1
i=0 Pπ

t+i. Additionally, we de-
note Pπ,0

t , I, where I is an S × S identity matrix.
We denote the column-vector of expected immediate re-

wards for action a as ra,t , [rt(s, a)]s∈S and the vector of
all expected immediate rewards as

rt ,
[
r>1,t, r

>
2,t, . . . , r

>
A,t

]>
.

Similarly, we define S × S transition matrices Pa,t as

Pa,t ,
[
pt(j|i, a)

]S
i,j=1

.

Let Pt be an (S ·A)× S matrix produced by stacking Pa,t

for all actions a in a block-column:
Pt ,

[
P>1,t,P

>
2,t, . . . ,P

>
A,t

]>
.

Finally, we use 0 , [0, . . . , 0]>, i , [1, . . . , 1]> to denote
column-vectors of zeros and ones. Matrix N , [I, . . . , I]>

denotes a block-column of A identity matrices I; it has the
same dimensions as matrices Pt.

Unbounded Rewards
As mentioned, we are interested in the case of unbounded
rewards, that is, when there exists no constant R such that
|rt(s, a)| ≤ R. In this case the policy value function vπ(s)
may not belong to V, so equations (4) and (5) do not define
contractions on V. To address this issue, we assume that the
reward can be bounded by a function w : X → R which
changes over time, possibly unboundedly, but still guar-
antees that the values of different policies given by equa-
tion (1) are well-defined (Puterman 1994). This assumption
is paramount to the results of this paper and is formalized as
follows.
Assumption 1. There exists a functionw : X→ R such that
inf(s,t)∈X wt(s) > 0. Moreover, there exist constants κ ≥ 0,
0 ≤ λ < 1, and J ∈ N such that

|rt| ≤ Nwt, (6)
Ptwt+1 ≤ κNwt, and (7)

γJPπ,J
t wt+J ≤ λwt (8)

for all t ∈ N0, s ∈ S, a ∈ A, and π ∈ D.
In some cases an unbounded problem can be transformed

into a bounded one. For example, if ‖w‖ < ∞, we can
choose R = ‖w‖ as a uniform bound. Alternatively, we can
transform the problem as follows. Let S̃ , S∪{0} and define

r̃t(s, a) ,

{
w−1t (s) · rt(s, a), s ∈ S,
0, s = 0,

(9)

p̃t(s
′|s, a) ,


pt(s

′|s,a)·wt+1(s
′)

κwt(s)
, s ∈ S, s′ ∈ S,

1− ∑̃
s∈S

pt(s̃|s,a)·wt+1(s̃)
κwt(s)

, s ∈ S, s′ = 0,

1, s = s′ = 0,
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γ̃ , γκ.

Equation (7) guarantees that the probabilities in the trans-
formed problem are less than one, and the absorbing state
0 is added so that they add up to one. The new problem is
bounded by R = 1, and it is easy to check that its solution is
equivalent to the solution of the original problem. Unfortu-
nately, this method is only applicable if κ < γ−1, otherwise
the new discounting factor γ̃ is larger than one.

The existence of such function w guarantees that the val-
ues vπt of any policy π ∈ D are bounded by

|vπt | ≤ Lwt, and (10)

L ,

{
J

1−λ , γκ = 1,
1

1−λ ·
1−(γκ)J
1−γκ , γκ 6= 1.

Consequently vπ may not belong to V. However, we can
define a different space Vw so that vπ ∈ Vw.
Definition 4. The w-weighted supremum norm ‖ · ‖w of a
function v : X→ R is a norm given by

‖v‖w , sup
(s,t)∈X

w−1t (s) ·
∣∣vt(s)∣∣.

The space of functions with finite w-norm is denoted as Vw.
Obviously, vπ ∈ Vw for any π ∈ D, and operators Lπ and

L∗ are J-step contractions on Vw with fixed points equal to
vπt (s) and v∗t (s) respectively (Puterman 1994).

Linear Programming Formulation
One of the possible approaches to find optimal policies in
NS-MDPs uses linear programming based formulation pre-
sented in this subsection. Under Assumption 1 any NS-
MDP can be represented by the following pair of countably-
infinite linear programs (CILPs) (Lee et al. 2017):

min
v

g(v) =

∞∑
t=0

b>t vt (P)

s.t. Nvt − γPtvt+1 ≥ rt, ∀t ∈ N0, (P.1)
v ∈ Vw;

max
y

f(y) =

∞∑
t=0

r>t yt (D)

s.t. N>y0 = b0,

N>yt+1 − γP>t yt = bt+1, ∀t ∈ N0,

yt ≥ 0, ∀t ∈ N0,

y ∈ L1(X× A),

where L1(Y) is the space of absolutely summable functions
on Y. This formulation is similar to known linear program-
ming formulations for stationary MDPs (Puterman 1994),
and for uniformly bounded NS-MDPs (Ross, Birnbaum, and
Lukacs 1983).

The intuition behind the primal program (P) is as follows.
Any v ∈ Vw satisfying the constraints (P.1) is known to
be an upper bound for v∗. Minimization allows us to find

a bound that is as tight as possible. v∗ satisfies the con-
straints (P.1), so it is feasible for (P) and for any coefficients
bt > 0 the program (P) achieves the minimum v∗, if the
sum in g(v) converges. This can be ensured by choosing bt
so that

∑∞
t=0 b>t wt <∞. In our case, coefficients bt = γti

satisfy this assumption, but other values may be chosen.
The dual problem (D) for the unbounded rewards case was

derived by Lee et al. (2017). The pair of CILPs (P) and (D)
exhibit strong duality, resulting in the following properties.

Lemma 1 (Theorems 3 and 4 of Lee et al. (2017)). There
exists a feasible solution to (D) such that for all t ∈ N0 and
s ∈ S there exists exactly one a for which yt(s, a) > 0 and
yt(s, a

′) = 0 for all a′ 6= a. Moreover, the policy π that uses
these actions is an optimal policy.

Definition 5. The slack in (P.1) is called the reduced cost
of state-action pair (s, a) at time t. We denote it as nt(s, a).
Vectorized reduced costs nt can be expressed as

nt , rt −Nvt + γPtvt+1. (11)

Reduced cost nt(s, a) is also known as an advantage of
action a: it represents the benefit of taking action a over the
optimal action. Therefore, it is always non-positive. More-
over, there exists a useful lower bound, as shown by the fol-
lowing lemma.

Lemma 2. −ht ≤ nt ≤ 0 where ht , (L+γκL+1)Nwt.

Proof. The upper bound follows from the constraints (P.1).
The lower bound is derived using equations (6), (7), and
(10), and (11):

nt = rt −Nvt + γPtvt+1

≥ −Nwt − LNwt − γκLNwt = −ht.

Lemma 3 (Theorems 2, 5 and 6 of Lee et al. (2017)). Pro-
grams (P) and (D) are strongly dual (Lee et al. 2017), and
the following complementary slackness conditions hold due
to Lemma 1:

yt(s, a) · nt(s, a) = 0, ∀t ∈ N0, s ∈ S, a ∈ A.

Problem Truncation
The CILP formulation is useful for analyzing mathemati-
cal properties of NS-MDPs, but cannot be solved directly,
as it requires infinite computations: to find v0 one needs to
know v1, which in turn requires v2, and so on. On the other
hand, if at least one of the future value vectors vT+1 is ac-
tually known, all of the previous values v0, . . . ,vT can be
computed in finite time. Thus, one of the ways to reduce
the problem is to replace future values vT+1 with some ap-
proximation z. Even if the approximation is bad, the fact
that Lπ is a contraction means that each time it is applied to
find a preceding value vector, the resulting values get closer
to the fixed point (i.e., the true values). When T is suffi-
ciently large, the initial values of the truncation will be close
to those of the original problem.
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Definition 6. A T -truncation of the problem (P) with sal-
vage vector z is the problem given by

min
v0, . . . ,vT

g(v0, . . . ,vT ) =

T∑
t=0

b>t vt (P2)

s.t. Nvt − γPvt+1 ≥ rt, 0 ≤ t < T,

NvT − γPz ≥ rT .

The definition of truncation involves only one salvage
vector z. However, if we want to consider truncations of dif-
ferent lengths, we may want to use different salvage vectors.
Therefore, instead of a salvage vector z, we introduce a sal-
vage function u. If u ∈ Vw the solutions of these truncations
will be feasible solutions of the original problem (P).

Given such a function u, we obtain a series of trunca-
tions with different salvage vectors uT+1 at different study
horizons T . Just like with other functions, we use ut as a
short-hand notation for all of the values of u at time t.

Additionally, we define operators Lπu,T : Vw → Vw and
L∗u,T : Vw → Vw as follows:

Lπu,Tvt ,


rπt + γPπ

t vt+1, t < T,

rπt + γPπ
t ut+1, t = T,

ut, t > T.

L∗u,Tvt , sup
π∈D
Lπvt.

Both operators are multi-stage contractions, therefore,
they have unique fixed points (Puterman 1994). We denote
these points as vπu,T and v∗u,T , and their values at time t as
vπt,u,T and v∗t,u,T . By properly choosing a salvage function
u, we can obtain convergent upper or lower bounds on v∗t
using the following lemma.
Lemma 4 (Corollary 6.10.10 of Puterman (1994)). If there
exist functions u− and u+ in Vw such that Lπu,Tu− ≥ u−

and Lπu,Tu+ ≤ u+ for all π ∈ D, then

v∗t,u−,T ≤ v∗t,u−,T+1 ≤ v∗t ≤ v∗t,u+,T+1 ≤ v∗t,u+,T .

Definition 7. Functions u− and u+ of Lemma 4 are called
lower and upper value bounding functions, and the values
v∗t,u−,T (s) and v∗t,u+,T (s) are called lower and upper ap-
proximations respectively.

4 The Stopping Rule
Section 3 shows that NS-MDPs can be represented by
CILPs. Even though these representations cannot be solved
with finite computations, they can be approximated by trun-
cations. As an approximation, a truncation may result in a
solution with an immediate decision π0 that is different from
the optimal immediate decision of the original NS-MDP.
Therefore, we are interested in a method that allows us to
check optimality of this decision without solving the CILP.
In this section we design such a method for NS-MDPs with
unbounded rewards.

We start by presenting a problem formulation with vari-
able salvage vector introduced by Hopp (1989) and demon-
strate how it can be solved using a linear program of Bean,

Hopp, and Duenyas (1992). Then we extend the results to
NS-MDPs with unbounded rewards by introducing different
salvage spaces based on bounding functions instead of uni-
form bounds. Finally, we present a new algorithm for discov-
ery of optimal solution horizons that employs our stopping
rule and exploits the fact that the Bellman operator of the
unbounded problem is a multi-stage contraction.

Truncations with Variable Salvage Vector
Assume that for a given study horizon T and salvage func-
tion u we have solved a truncation and found the optimal
initial action π∗0,u,T (s0). We want to check if this action
is equal to the optimal initial action π∗0(s0) of the original
problem.

Suppose that we know that values v∗T+1 belong to some
sets ZT+1 ⊆ RS . For example, if the values are non-
negative and bounded from above by a constant R, Zt can
be S-dimensional cubes: Zt = {z | 0 ≤ z ≤ R · i}. If all
of the salvage vectors z ∈ Z of a given subspace Z ⊆ RS
result in T -truncations with the same optimal initial deci-
sion and optimal values v∗T+1 also belong to that set, then
the original problem has the same optimal initial decision
π∗0 as the truncation. The following proposition formalizes
this observation.

Proposition 1 (Generalized Hopp’s stopping rule). Study
horizon T is a solution horizon if the initial optimal action
is the same for all z ∈ ZT+1, where the sequence {Zt}t∈N0

of subspaces Zt ⊆ RS is chosen so that v∗t ∈ Zt.
Proposition 1 was used in Hopp’s stopping rule (Hopp

1989) for constant sequence Zt = Z based on the uniform
bounds of the value vector spans. Given this stopping rule,
solution horizons can be discovered by starting with a study
horizon T = 0, checking the stopping rule, and increment-
ing T until the stopping rule is satisfied. In order for the rule
to be of any practical use, we need to guarantee that this
solution horizon discovery method terminates in finite time.

The salvage subspaces {Zt}t∈N0
must be chosen so that

the stopping rule is able to find a solution horizon. This
condition can be satisfied due to the following lemma. If
Z ⊆ Vw, where Z is the set of all salvage functions u pro-
viding salvage vectors ut ∈ Zt, then the stopping rule ter-
minates due to the following proposition.

Proposition 2 (Generalized Lasserre and Bès 1984). If the
optimal initial decision is unique, and v∗0 is finite, there ex-
ists a finite horizon T ∗ such that for any salvage function
u ∈ Vw all T -truncations with T ≥ T ∗ have the same opti-
mal initial decision.

Note that the original statement of Proposition 2 only con-
siders zero salvage function u = 0 and uniformly bounded
rewards. Both conditions are only required to guarantee that
the value functions are finite, and the proof remains the same
if u ∈ Vw and ‖r‖w ≤ 1. The only crucial assumption is that
the action space A is finite.

Moreover, we need to ensure that the condition of the
stopping rule can be checked in finite time. When Zt are
polyhedrons it can be done by solving a mixed integer linear
program (Bean, Hopp, and Duenyas 1992).
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First, we find the optimal initial decision rule a0 =
π∗0,u,T (s0) for an arbitrary u ∈ ZT+1. Then we allow the
salvage vector z to vary within ZT+1 and seek a decision
rule π∗0,z,T (s0) 6= a0 by solving the following program:

min
z,vt, ỹt

n0 = j>0 (r0 −Nv0 − γP0v1) (P3)

s.t.

−ht ◦ (i− ỹt) ≤ rt −Nvt + γPtvt+1 ≤ 0, 0 ≤ t < T,

−hT ◦ (i− ỹT ) ≤ rT −NvT + γPz ≤ 0,

N>ỹT = i,

j>0 ỹ0 = 0,

vt ∈ Zt, 0 ≤ t < T,

z ∈ ZT+1,

ỹt ∈ {0, 1}S·A, 0 ≤ t < T,

where j0 is a vector of length S ·A, with all elements equal to
zero except for the element corresponding to the state-action
pair (s0, a0), which is equal to 1, so that n0 = n0(s0, a0);
constants ht are defined in Lemma 2; a ◦ b stands for
Hadamard (i.e., element-wise) product.

Program (P3) works as follows. By Lemma 3, if an op-
timal decision rule a 6= a0 exists for some salvage vector
z, the reduced cost n0 , n0(s0, a0) will be negative. We
can check if n0 can be made less than zero by minimizing it
for all feasible values of z and variables of the primal-dual
problem pair. By Lemmas 1–3, we only care for the sign of
yt: if yt(s, a) > 0, then nt(s, a) = 0, and if yt(s, a) = 0,
nt(s, a) < 0. Thus, we can replace yt(s, a) with binary vari-
ables ỹt(s, a) , sgn yt(s, a). The integer variables ỹt(s, a)
must be added to ensure that the found solution is a feasible
solution to the dual program.

The constraints of the program serve the following pur-
poses. The expressions rt − Nvt + γPtvt+1 in the first
two constraints are equal to nt. Whenever ỹt(s, a) = 1,
the corresponding constraint becomes tight and ensures that
nt(s, a) = 0. When ỹt(s, a) = 0, the left-hand side of the
corresponding constraint becomes equal to −ht(s, a), and
nt(s, a) > −ht(s, a) always holds as per Lemma 2. Con-
straint N>ỹT = i is equivalent to

∑
a∈A ỹt(s, a) = 1 for all

s ∈ S. It ensures that Lemma 1 holds.
Next, j>0 ỹ0 = 0 forces the program to search for policies

with π∗0,z,T (s0) 6= a0. This constraint is not necessary, and
it can make the program infeasible if no actions other than
a0 are available for s0, in which case a0 is also optimal.

We add constraints vt ∈ Zt to the formulation of Bean,
Hopp, and Duenyas (1992), because in our case v∗t is known
to belong to Zt. These new constraints are not strictly nec-
essary, but they help with speeding up computations by re-
ducing the search space for variables vt.

We exclude constraints vt ≥ 0 from the formulation of
Bean, Hopp, and Duenyas (1992), as this assumption does
not hold in our case. The non-negativity assumption was
used to show that n0 is zero only when a0 is optimal, but
Lemma 1 provides this result in our case.

Finally, we would like to note that it is not strictly nec-
essary to solve the optimization problem: if at any iteration

the solver finds a feasible solution with negative value of the
objective function, it can proceed to the next study horizon.

In order to implement the program (P3) the salvage spaces
ZT+1 need to be polyhedrons (i.e., we should be able to ex-
press them using sets of linear constraints). In the next sub-
section we provide such subspaces for the unbounded case.

Salvage Subspaces When Rewards Are Unbounded
To implement the program (P3) we need to be able to con-
struct salvage subspaces Zt so that they are polyhedrons and
v∗t ∈ Zt.

Consider a case when value bounding functions u+ and
u− of Definition 7 exist and are known. A sequence of
spaces {Zt}t∈N0

,Zt ⊆ RS where

Zt = {z | u−t ≤ z ≤ u+
t }. (12)

Due to Lemma 4, longer horizons will result in smaller
ranges of possible optimal initial values, until eventually all
of the truncations will agree in the optimal initial decision as
per Proposition 2.

In the general case the only bounds on v∗t are provided by
(10) and the only salvage spaces we can use are

Zt = {z | −Lwt ≤ z ≤ Lwt}.
Unfortunately, these bounds are not value bounding func-
tions in the sense of Lemma 4.

Nonetheless, functions ±Lw are the only information
about the problem available in the most general case, so we
want to establish similar properties for these functions. In or-
der to do so, for any j ∈ N and π ∈ D we define an operator
Lπ,j : Vw → Vw as

Lπ,jvt = (Lπ)jvt =
j−1∑
i=0

γiPπ,i
t rπt+i + γjPπ,j

t vt+j ,

and show the following property.
Lemma 5. For all π ∈ D, functions u± = ±Lw satisfy
Lπ,Ju− ≥ u− and Lπ,Ju+ ≤ u+.

Proof. We prove the statement for u+; the proof for u− is
identical. Note that L =

∑J−1
i=0 (γκ)

i + λL and recall equa-
tions (7) and (8). For all t ∈ N0

Lπ,Ju+
t =

J−1∑
i=0

γiPπ,i
t rπt+i + γJLPπ,J

t wt+J

≤
J−1∑
i=0

(γκ)iwt + λLwt = Lwt = u+
t .

Lemma 4 uses the operators Lπ to show that one-stage in-
crements in study horizons lead to monotone convergence.
In the unbounded case, Lemma 5 shows that similar proper-
ties hold if instead of looking one stage ahead, the decision-
maker chooses J-stage increments in study horizons, as
operators Lπ are now J-stage contractions. This is a cru-
cial property leveraged by our algorithm; it ensures that the
space of possible initial values decreases with each iteration,
and the algorithm converges monotonically.
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The Algorithm
Summarizing the aforementioned results, we present Algo-
rithm 1. It is guaranteed to terminate in a finite number of
steps if the optimal policy is unique. Moreover, when bet-
ter value bounding functions are known, they can be used
instead of ±Lw to provide smaller salvage subspaces Zt,
resulting in faster convergence.

Algorithm 1: Solution horizon discovery
Data: an NS-MDP with a bounding function w.
Result: an optimal initial action a∗0 and a solution

horizon T .
1 Let u+ ← Lw and u− ← −Lw;
2 for N ← 1, 2, . . . do
3 T ← N · J − 1;
4 solve (P2) with any salvage vector z ∈ ZT+1;
5 solve (P3) with Zt given by (12);
6 if (P3) is infeasible or n0 = 0 then
7 a∗0 ← π∗0,z,T (s0);
8 T ∗ ← T ;
9 break

10 for n← 1, . . . J − 1 do
11 T ← T ∗ − n;
12 solve (P3) with Zt given by (12);
13 if (P3) is feasible and n0 < 0 then
14 return a∗0, T + 1;
15 break

The algorithm searches for a solution horizon by doing J-
stage increments in study horizons. For each of these hori-
zons it checks if all of the feasible truncations agree in the
initial optimal decision. Once a solution horizon has been
identified, the algorithm returns back in time, up to the previ-
ous considered study horizon. It does so in order to identify
possible shorter solution horizons.

5 Experimental Results
To demonstrate the performance of our stopping rule, we im-
plemented Algorithm 1 for the following problem, known
as an equipment replacement problem (Bean, Hopp, and
Duenyas 1992).

Consider a piece of equipment subject to deterioration.
The state space S = {1, . . . , S} represents the state of its
decay, with 1 being “new”. At each time step, the decision-
maker chooses between two actions: “replace” (action 1) and
“keep” (action 2).

Transition probabilities of the problem are given by

pt(s
′|s, 1) =

{
1, s′ = 1,

0, otherwise;

pt(s
′|s, 2) =


1− ψ, s′ = s < S,

ψ, s′ = s+ 1, s′ < S,

1, s′ = s = S,

0, otherwise,

r

ρ

Nρ

− 1
2
Nρ

T
t

rt(1, 2)
rt(2, 2)
rt(3, 2)

. . .

rt(S − 1, 1)
rt(S, 1)

. . .
ρ− ρ/m

− 1
2
ρ

− 1
2
ρ+ ρ/m

Figure 1: Rewards in the equipment replacement problem

where ψ is the deterioration probability. If the equipment is
replaced, the state always changes to 1 (i.e., “new”). Other-
wise, it either deteriorates to the next state (if there is one)
with probability ψ, or remains the same state with probabil-
ity 1− ψ.

In the first experiment we used the following rewards:

rt(s, 1) = ρ ·
(
−0.5Nmin{t/T,1} + (S − s)/m

)
;

rt(s, 2) = ρ ·
(
Nmin{t/T,1} − (s− 1)/m

)
.

Figure 1 outlines the general reward structure. When the
equipment is kept, it generates revenue which depends on
the state of deterioration and grows over time. If the equip-
ment is new, the initial revenue r0(1, 2) is equal to ρ and it
grows exponentially (e.g., due to inflation). For each stage
of deterioration the revenue decreases by ρ/m. When the
equipment is replaced, it generates no revenue, and a re-
placement cost needs to be paid. The costs behave similarly
to revenues, and the worse is the state of the equipment, the
larger are the costs. We limit the data at time step T , when it
becomes equal to N · ρ to add uniform bounds.

Function wt = ρ · Nmin{t/T,1} satisfies Assumption 1
with κ = N1/T . Assuming T > − logγ N , λ = γκ and
J = 1, so functions ±Lwt can be used as bounds for the
state values. These are loose bounds, as they don’t use any
additional information. The following functions can be used
as tighter bounding functions:

u+t =

∞∑
τ=0

γτ max
s,a

rt+τ (s, a) =

∞∑
τ=0

γτrt+τ (1, 2),

u−t =

∞∑
τ=0

γτ min
s,a

rt+τ (s, a) = −
1

2
u+t .

These tighter bounds are easy to compute and result in
smaller search spaces Zt, making the problem easier to
solve. In practice, for a truly non-stationary problem such
closed-form bounds will not be available, therefore they can
be seen as a bound of what can be achieved without exploit-
ing any additional information on the exact reward structure.

Stationarity of the rewards after the capping horizon T al-
lowed us to find the exact solution of the problem. We started
at time horizon T and solved the problem using value iter-
ation, then used dynamic programming to obtain the initial
optimal decision.

We compared our stopping rule for both choices of the
bounding functions to Hopp’s rule. Both methods were im-
plemented in Python 3.6.4; numpy package was used to
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work with vector data, and the linear programs were solved
using Gurobi 8.0.1. The tests were performed on a computer
with a 3.1 GHz Intel Core i5 two-core CPU and 8 GB of
memory (MacBook Pro, 13-inch, 2017).

We ran the experiments for different combinations of pa-
rameters. For all of them, both stopping rules identified the
optimal initial action correctly but discovered different solu-
tion horizons. In almost all of the experiments, our stopping
rule was able to find a significantly shorter solution horizon.
The following default values were used in all of the experi-
ments, unless stated otherwise:

S = 10, N = 10, T = 103, m = 45,

γ = 0.95, ψ = 0.4, ρ = 1, s0 = 1.

Figure 2 shows how the solution horizons and run-times
scale with respect to the number of states S. Both algo-
rithms need to look further into the future as the problem size
grows, however, our stopping rule identifies significantly
shorter solution horizons. Shorter horizons mean that less
mixed-integer programs need to be solved, which substan-
tially reduces the run-time.

Figure 3 presents the effect of the model uncertainty ψ
on the algorithm. The largest difference in performance is
exhibited when ψ = 0.5, that is, when the system’s entropy
is the largest.
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Figure 4: Performance with respect to spectral radius σ

In the second experiment, we set S = 5 and used the
same transition matrices but different rewards. We randomly
generated initial rewards ra,0 from the following sets

r1,0 ∈ [−0.5N, 0)S , r2,0 ∈ [0, N)S .

Subsequent rewards were given by ra,t+1 = Φara,t =
Φt
ara,0, where Φa are tri-diagonal matrices with non-zero

elements drawn from uniform distribution on [−1, 1), and
then scaled so that spectral radii σa of Φa were less than
one. The latter condition was added to ensure that the prob-
lem has a bounding function w. These spectral radii are sim-
ilar to discounting factors for matrices, because they indicate
the rate of growth of matrix power series; therefore for prob-
lems with σ = max{σ1, σ2} ≥ 1 the values vt may not be
well-defined.

The rewards of this problem are bounded by the function

wt(s) = N ·max
{
‖Φt

1‖, ‖Φt
2‖
}

with the following coefficients:

J = min
j∈N0

{
j : ‖γjΦj

1‖ < 1 ∧ ‖γjΦj
2‖ < 1

}
,

κ = max
{
‖Φ1‖, ‖Φ2‖

}
, λ = max

{
‖γJΦJ

1 ‖, ‖γJΦJ
2 ‖
}
.

Existence of J is guaranteed by the following property of
spectral radii: σa = limt→∞ ‖Φt

a‖1/t. As a result, for any
σ < 1 the norm ‖Φt

a‖ becomes less than one eventually.
When γκ < 1, the problem can be transformed into a

bounded problem by using (9). In this case we are able to
solve the problem using Hopp’s stopping rule as well.

In this experiment the data was truly non-stationary, and
it was impossible to compute value functions exactly. When
Hopp’s method was able to solve the problem, we knew that
the action it identified was indeed optimal and used it as a
benchmark for our method.

The results are presented in Figure 4. In all of the exper-
iments our method was able to identify the optimal initial
action. In these cases our method always returned the same
horizon as Hopp’s. This can be explained by the fact that
the methods are similar: after the transformation is applied
to the problem the salvage spaces Zt become identical at all
time steps, just like in Hopp’s case.

Nevertheless, our method runs faster, as, on the one hand,
it does not require the data transformation, and on the other
hand, it uses large steps J when searching for the solution
horizon, reducing the number of iterations by a factor of J .
Moreover, it is applicable to a wider range of problems: for
example, Hopp’s stopping rule cannot be used in problems
with a large spectral radius, as illustrated by Figure 4.
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6 Conclusions
This paper presented a stopping rule for discovery of solu-
tion horizons in non-stationary Markov decision processes.
The rule is applicable to problems with unbounded rewards
and does not require any additional assumptions on the re-
ward structure, such as convexity of rewards, making it ap-
plicable to a broad class of problems. An experimental study
showed that our stopping rule was able to find better solu-
tion horizons more quickly even when the rewards can be
uniformly bounded.

Future research directions include a formal proof of the al-
gorithm’s monotone convergence, and an extension to prob-
lems with countably-infinite base state spaces, as the prob-
lem is already countably-infinite in the time domain. Addi-
tionally, the rate of convergence might be improved by con-
sidering span-based bounds in combination with supremum-
norm ones.
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