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Abstract

Planning with global state constraints is an extension of clas-
sical planning in which some properties of each state are de-
rived via a set of equations, rules or constraints. This exten-
sion enables more elegant modelling of networked physical
systems such as power grids. So far, research in this setting
focused on domains where action costs are constant, rather
than a function of a state in which the action is applied. This
limitation prevents us from accurately specifying the objec-
tive in some real-world domains, leading to generation of sub-
optimal plans. For example, when reconfiguring a power net-
work, we often need to temporarily leave some users without
electricity for a certain amount of time, and in such circum-
stances it is desirable to reduce the unsupplied load over the
total time span. This preference can be expressed using state-
dependent action costs. We extend planning with global state
constraints to include state-dependent action costs, adapt ab-
straction heuristics to this setting, and show improved perfor-
mance on a set of problems.

Motivation
In classical planning, state variables are assigned values in
the initial state and remain unchanged until explicitly mod-
ified by action effects. However, it is sometimes more nat-
ural to model some properties of states as derived, in each
state, via a set of rules that we call state constraints. These
can take a variety of forms, for example, logical axioms
(Thiébaux, Hoffmann, and Nebel 2005) or numeric equa-
tions and inequalities (Ivankovic et al. 2014; Haslum et al.
2018). The latter is suited for domains that involve intercon-
nected physical systems, such as power grids, transport sys-
tems or water networks. In such domains a single discrete
action can change the state of the network globally in a way
that depends on the entire current configuration (e.g., open-
ing/closing a switch may change power flow in all lines).

Most work on optimal planning has focused on the case
of constant action costs, but recently, there has been inter-
est in allowing for action costs to be a function of the state
in which they are applied (Geißer, Keller, and Mattmüller
2015; 2016). This is called state-dependent action costs
(SDAC). This work, so far, has dealt with classical planning
without state constraints.
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Introducing SDAC to planning with state constraints en-
ables us to more accurately represent certain objectives in
some real-world domains. An example which we will use in
this paper is power network reconfiguration. This problem
requires finding a sequence of switching actions to change
the network configuration into one where the maximum pos-
sible load is supplied. We may need to temporarily leave
portions of the network without power and it is preferable
that this unsupplied load is minimized at every time step
(Thiébaux et al. 2013). This can be expressed by assigning
a cost to each switching action equal to this value. The cost
of the entire plan is the sum of the unsupplied loads over
all steps. In this example, action costs are determined by the
current network topology, and therefore could be formulated
with conditional effects in a classical formalism (albeit ex-
ponentially many). This is, however, not always the case: An
example is if we want to minimise line losses, which are a
function of the power flow. The power flow is constrained,
but not uniquely determined, by the network topology.

In this paper we build on our previous framework for plan-
ning with numeric state constraints (Haslum et al. 2018), to
which we add the capability to express state-dependent ac-
tion costs. We also adapt the pattern database heuristic to
this setting. We apply our approach to SDAC versions of
the power network reconfiguration and the hydraulic blocks
world domains.

Related Work
State constraints were used in early work on planning to con-
cisely represent actions, but have mostly been absent in more
recent research, with a few exceptions. PDDL2.2 included
derived predicates and axioms (Thiébaux, Hoffmann, and
Nebel 2005), which enable encoding of Boolean constraints,
but, unfortunately, was supported only by a few planners.
Some domain-specific planners were created to deal with
physically interconnected domains, where a single (local)
action affects the state of the entire network. Examples in-
clude the works of Aylett et al. (1998) on planning chemical
plant managment, and Piacentini et al. (2013), who address
voltage balancing in a power network. Vallati et al. (2016)
use a planner to manage traffic flow in an urban environ-
ment, by giving it control of traffic lights.

Formulating problems with state-dependent action costs
in unrestricted numeric PDDL (Fox and Long 2003) is
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straightforward, since the problem metric can be any flu-
ent expression and actions can have arbitrarily complex
and conditional effects on numeric fluents. However, deriv-
ing informative heuristics for such general metrics is dif-
ficult, and has received relatively little attention. Recently,
Geißer et al. (2015; 2016) adapted the additive heuristic
hadd (Bonet, Loerincs, and Geffner 1997) (which is in-
admissible) as well as an admissible abstraction heuris-
tic to SDAC planning. Central to their approach is repre-
senting cost functions as edge-valued multi-valued decision
diagrams (EVMDDs) (Lai, Pedram, and Vrudhula 1996;
Ciardo and Siminiceanu 2002) and using them to compute
costs in relaxed and abstract states.

Planning Formalism
We briefly summarise the formalism for planning with state
constraints (Haslum et al. 2018). We then extend it with
state-dependent action costs.

State variables are divided into primary, VP , and sec-
ondary, VS , with VP ∩ VS = ∅. Primary variables function
the same way as in classical planning – their domains are
finite, their values are assigned by action effects and persist
unless reassigned. A state is a full valuation over primary
variables. Values of secondary variables (extended state) are
freely chosen, subject to state constraints. State constraints
involve both primary and secondary variables and are the
way in which the two interact. These can take a number of
different forms (e.g. axioms) but the type that we use here is
switched constraints.
Definition 1. Switched constraints are of the form ϕ → γ,
where ϕ is a conjunctive formula over primary variables,
and γ is a constraint over the secondary variables. In a state
in which ϕ is true, we say that the switched constraint is
active.
While the formalism is general, in the domains we use in this
paper the consequents (“γ-parts”) of switched constraints
are numeric equations and inequalities. Given a state s and
a set of constraints C, there is a subset of C that is active.
The set of all consequents of constraints in C active in s
is denoted active(C, s). There can be a unique assignment,
multiple possible assignments, or no assignment to the sec-
ondary variables that satisfies this set of constraints.

Switched constraints appear as secondary parts of parti-
tioned conditions (see below), and in a set of invariant con-
straints Cinv, which are a part of the problem description and
must be satisfied for a state to be valid – i.e. if active(Cinv, s)
is unsatisfiable, s is invalid and cannot be visited by a plan.
This means that to apply action a in state s, it is required that
(i) the precondition of a holds in s and (ii) the resulting state
is valid.
Definition 2. A partitioned condition is a pair 〈cP , cS〉,
where cP is a formula over primary variables and cS a set of
switched constraints. 〈cP , cS〉 holds in state s iff cP is true
in s and active(cS ∪ Cinv, s) is satisfiable.
Partitioned conditions can appear as action preconditions
and in the problem goal. In our two example domains, ac-
tions have no secondary preconditions, but the secondary
variables feature in the goal condition.

Definition 3. A planning problem P consists of: a set VP
of primary variables, with each variable v ∈ VP having a
finite domain D(v) of values; a set VS of secondary vari-
ables; a set Cinv of invariant switched constraints; an initial
state s0, assigning values to all variables in VP , such that
s0 is valid; a partitioned goal condition 〈GP , GS〉; and a
set A of actions. Each action a ∈ A is defined by: a parti-
tioned precondition pre(a) = 〈preP (a),preS(a)〉; an effect
eff(a), which is a set of assignments to primary variables;
and a cost function ca(se), where se is an extended state,
and which returns a real number.

An action sequence π = 〈a1, . . . , an〉 induces a correspond-
ing state sequence 〈s0, s1, . . . , sn〉, where each state si is
obtained by applying ai to the state si−1. π is a plan if each
state in the sequence is valid, each action ai is applicable in
si−1 and sn satisfies G.

While applicability of an action depends only on the state
(i.e. valuation over the primary variables), we the cost func-
tion may depend on both primary and secondary variables.
The values of the primary variables are fixed in the state,
but values of the secondary variables can be chosen freely
subject to the active constraints. It is reasonable to define
the cost of applying an action in a state as the minimum cost
over all extended states consistent with the active constraints
in preS(a) ∪ Cinv. That is, the cost is the solution to

min ca subject to active(preS(a) ∪ Cinv, s). (1)

The complexity of finding this value depends on the form of
the cost function1 and the constraints.

In the two example domains we use in this paper, ca is a
linear expression over secondary variables, and, moreover,
the secondary variables that appear in the cost function are
uniquely determined in every state, so calculating SDAC in
a given state simply consists of summing up the terms in ca.
This is not true in general, however: In the example of min-
imising line losses mentioned earlier, the cost may depend
also on the output of each generator (a secondary variable),
which is constrained but not determined by the primary state.
The power flow constraints are non-linear, making (1) a non-
linear problem. Solving the minimisation problem is also
relevant when computing heuristics, as we will see below,
because in a relaxed or abstract state the values of primary
variables are not fixed.

Domain Examples
We extend two domains with state constraints that we previ-
ously introduced (Ivankovic et al. 2014; Haslum et al. 2018)
by adding SDAC.
Power Supply Restoration (PSR): The problem consists
of reconfiguring a power network by opening and closing

1We previously defined conditional action cost as a list of pairs
(ϕ, c) where ϕ is a partitioned condition and ca is a positive con-
stant, and the cost of a in s is

∑
{ci | (ϕi, ci) ∈ cost(a), s(ϕi) =

true (Ivankovic et al. 2014). This means that the values of sec-
ondary variables must be chosen such that the fewest conditions
ϕi weighted by their corresponding costs ci are satisfied, which is
an NP-hard problem (Ivankovic 2018).
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switches to restore power to as many consumers as possi-
ble after an outage. State constraints, in the form of non-
linear equations, are used to compute the power flow and
ensure that no safety constraints are violated. In our previ-
ous formulation of this domain, the objective was only to
mimise plan length. Here, we make the cost of every action
ca =

∑
i p̄i(1− fi), where p̄i is the (constant) load at bus i

and fi a secondary variable that is 1 if bus i is fed and 0 if
it is not. In other words, the action’s cost equals the sum of
unsupplied loads.

In our previous version, the goal is to supply a specified
set of buses, which is precomputed from a feasible network
configuration that supplies a maximum amount of load. We
refer to this variant as the fixed supply goal. However, we
can leave the problem of finding the configuration that max-
imizes the supplied load, as well as the switching plan to
reach it, to the planner. We introduce a goal primary vari-
able whose initial value is false, and an end action which
changes it to true and after which no other action can be
applied. The cost of the end action is the sum of unsupplied
loads in the end state multiplied by a large constant. We refer
to this variant as the maximum supply goal.
Hydraulic Blocks World (HBW): This domain is an ex-
tension of Blocks World (Winograd 1972) where each block
has a weight, and each tower sits on a piston in a cylinder
rising from a reservoir of hydraulic fluid. The level of fluid
in each of the cylinders (and thus the height of the piston)
is determined by the distribution of weights over all pistons
and is not allowed outside specified limits. In our SDAC ver-
sion, the cost of picking up or putting down a block equals
the height of the tower involved.

Adapting Heuristics
An abstraction maps states of a planning problem into a
smaller state space, such that optimal plan cost in the ab-
stract state space is a lower bound on plan cost in the original
state space. Hence, this value can be used as an admissible
heuristic cost estimate in search algorithms like A*. A pro-
jection is an abstraction in which all but a designated sub-
set of variables, called the pattern, are ignored. These vari-
ables are removed from action preconditions and effects, the
initial state and the goal. The resulting heuristic is called a
pattern database or PDB (Culberson and Schaeffer 1998;
Edelkamp 2001).

In PDBs for planning with state constraints, variables in
the pattern are primary variables. Adapting the abstraction
heuristic to this setting, there are two key questions: (i) how
to determine which switched constraints are active in an
abstract state, and, consequently, the truth value of a par-
titioned condition; and (ii) how to compute abstract state-
dependent action costs. We look at this in the following way
(Haslum et al. 2018): Given a pattern A, every abstract state
sA represents a set of states, namely those that can be ob-
tained by assigning each variable not in the pattern one of the
values from its domain: states(sA) = {{x1 = v1, . . . , xn =
vn} | vi = sA(xi) if xi ∈ A; else vi ∈ D(xi)}.

Like individual primary variables, a formula φ over the
primary variables assumes a set of values sA(φ) in an ab-
stract state: sA(ϕ) = {s(ϕ) | s ∈ states(sA)}. There-

fore true ∈ sA(φ) iff there exists at least one state in the
sA where φ is true (and analogously for false). We con-
sider a switched constraint with a trigger φ to be active in
an abstract state sA iff false 6∈ sA(φ). In other words, the
constraint active only if the trigger holds in all states that
map to sA. It follows that the set of active constraints in sA,
activeA(C, sA), is the intersection of active(C, si) for all
si ∈ states(sA).

Definition 4. A partitioned condition 〈cP , cS〉 holds in an
abstract state sA iff (i) true ∈ sA(cp) and (ii) activeA(cS ∪
Cinv, s

A) is satisfiable.

Evaluating the state-dependent cost of an action in an ab-
stract state is straightforward – the objective function re-
mains the same expression over secondary variables as in
the concrete problem, but the constraint set reflects the fact
that we are in an abstract state. The problem becomes:

min ca subject to activeA(preS(a) ∪ Cinv, s
A) (2)

The resulting abstraction heuristic is admissible provided
that the constraint solver is sound in the sense that it will
only declare a constraint set unsatisfiable if it has no so-
lution, and that the cost minimisation problem in Eq. 2 is
solved optimally or lower-bounded. To see this, note that
activeA(C, sA) ⊆ active(C, s) for any set of switched con-
straints C and s ∈ states(sA). Thus, a path through valid
states in the concrete space is mapped to a path through valid
abstract states, with each action on the path having equal or
lower cost.

In our example domains, the values of variables in the
cost function are fully determined in the concrete problem.
In the PSR domain, the “fed”-status of each bus is fi ∈ [0, 1]
and constraints ensure that there is exactly one assignment
given the state of the switches. In an abstraction, however,
some of those constraints may be inactive, making some of
the “fed” variables under-constrained. Hence, loads may be
partially fed and we need to solve the minimisation prob-
lem (2). The PSR domain has non-linear constraints, so Eq.
(2) becomes a non-linear programming problem. We solve it
using the same solver, based on the SmartGrid Toolbox, that
we used to determine satisfiability of the active constraints
in the unit-cost setting. We did not observe any noticeable
increase in runtime from solving the minimisation problem
instead of only satisfiability.

To build PDBs we follow the same method as in previ-
ous work (Ivankovic and Haslum 2015; Haslum et al. 2018),
building the reachable abstract space, which includes deter-
mining the cost of each action in each reachable abstract
state, and then computing optimal plan costs over this graph.
Once the PDBs are built, state evaluation is done by table
lookup, same as in the classical setting.

Experiments
We present: (i) a comparison between blind search and
search with the (above described) abstraction heuristic; (ii)
a comparison between the state-dependent cost of shortest
plans and the SDAC-optimal plan; and (iii) a comparison of
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Figure 1: Cumulative distributions of runtime (top row) and number of nodes expanded (bottom row). The four figures on
the left compare blind search and search with a PDB heuristic. HBW is in the left column, while PSR is in the middle (both
instances with fixed supply and instances with maximum supply goal). The column on the right compares the performance of
PDB on PSR problems with fixed supply and maximum supply goals.

the hardness of PSR problems with fixed supply and maxi-
mum supply goals. All experiments used the A* search al-
gorithm and an 1800 second time limit per problem.

The abstraction heuristic reduces both search time and the
number of states expanded, compared to blind search (see
Figure 1). HBW: We used a set of 80 problems, 11 having
no solution (which is shown within a second by either con-
figuration). With the PDB heuristic, the planner solved 68
of the remaining problems within the time limit, while blind
search solved one less. (One instance was not solved by ei-
ther configuration.) On average, blind search expands 1.63
times more nodes and takes 1.60 times longer. PSR: We
used a set of 21 problems, each run with the fixed supply
and maximum supply goal formulation, for a total of 42 in-
stances. The planner with the PDB heuristic solves 38 prob-
lems within the time limit, while blind search solves 32. Av-
eraged over problems solved by both, blind search expands
2.34 times as many nodes and takes 2.88 times longer.

Our previous planner (Ivankovic et al. 2014; Haslum et
al. 2018) was able to generate shortest plans to a feasible
configuration that supplies a fixed set of buses, ignoring the
amount of load supplied at each time step. In our problem set

(21 problems, same as above), blind search finds the shortest
plan for 19 instances within the time limit. For each of those
problems we compared SDAC costs (i.e. sum of the unsup-
plied loads at each time step) of shortest plans with the cost
of the SDAC-optimal solutions. We found that for problems
requiring more complex plans (more than 4 actions long),
the shortest plan does not have the optimal cost when con-
sidering the total load supplied over time objective. In those
instances (9 out of 19 problems), the shortest plans are on av-
erage 14% more expensive than optimal. The SDAC-aware
planner on average takes 25% more time and expands 29%
less nodes (when both the SDAC-aware and shortest-length
planner use blind search).

As expected, problems with the maximum supply goal are
harder. In our problem set, blind search solves 19 problems
with fixed supply goal, and 13 with the maximum supply
goal. Search with the PDB heuristic solves 20 fixed supply
goal problems and 18 maximum supply goal problems. On
average, solving for the maximum supply goal takes 4.04
times longer and results in 2.82 more nodes expanded with
blind search, and 3.87 times longer and 2.93 times more
nodes expanded with the PDB heuristic.
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and Nau, D. S. 2014. Optimal planning with global nu-
merical state constraints. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning
and Scheduling, ICAPS 2014, Portsmouth, New Hampshire,
USA, June 21-26, 2014.
Ivankovic, F. 2018. Optimal Planning with State Con-
straints. Ph.D. Dissertation, ANU College of Engineering
and Computer Science, The Australian National University.
Lai, Y.; Pedram, M.; and Vrudhula, S. B. K. 1996. Formal
verification using edge-valued binary decision diagrams.
IEEE Trans. Computers 45(2):247–255.
Piacentini, C.; Alimisis, V.; Fox, M.; and Long, D. 2013.
Combining a temporal planner with an external solver for
the power balancing problem in an electricity network. In
Proc. 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS).
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