
Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Relaxed BDDs: An Admissible Heuristic for
Delete-Free Planning Based on a Discrete Relaxation

Margarita P. Castro,1 Chiara Piacentini,1 Andre A. Cire,2 J. Christopher Beck1

1Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada, ON M5S 3G8,
2Department of Management, University of Toronto Scarborough, Toronto, Canada, ON M1C 1A4

mpcastro@mie.utoronto.ca, chiarap@mie.utoronto.ca, acire@utsc.utoronto.ca, jcb@mie.utoronto.ca

Abstract
We investigate the use of relaxed binary decision dia-
grams (BDDs) as an alternative to linear programming (LP)
for computing an admissible heuristic for the cost-optimal
delete-free planning (DFP) problem. Our main contributions
are the introduction of a novel BDD encoding, a construc-
tion algorithm for the sequential relaxation of a DFP task
and a study of the effectiveness of relaxed BDD heuristics,
both from a theoretical and practical perspective. We further
show that relaxed BDDs can be used beyond heuristic com-
putation to extract delete-free plans, find action landmarks,
and identify redundant actions. Our empirical analysis shows
that while BDD-based heuristics trail the state of the art, even
small relaxed BDDs are competitive with the LP heuristic for
the DFP task.

1 Introduction
Cost-optimal delete-free planning (DFP) is a variant of clas-
sical planning that omits the delete effects of actions. While
NP-hard (Bylander 1994), DFP has been extensively inves-
tigated by the planning community as the basis for efficient
methodologies to address classical planning problems (Betz
and Helmert 2009; Helmert and Domshlak 2009).

Previous work has shown that admissible heuristics for
classic planning can be represented as a linear programming
(LP) model and used to obtain state-of-the-art performance
(Pommerening et al. 2014). In this work, we explore the ef-
fectiveness of relaxed binary decision diagrams (BDDs) as
an alternative to LPs for computing admissible heuristics for
DFP tasks. A relaxed BDD is a graphical structure that en-
codes a superset of the solutions of a discrete problem. They
have recently formed the core of state-of-the-art method-
ologies in a variety of combinatorial optimization problems
(Bergman et al. 2016).

Contributions. We present a novel BDD representation
that encodes a sequential relaxation of a DFP task, inves-
tigating its structural properties and presenting a numerical
comparison to the DFP LP relaxation (Imai and Fukunaga
2014). Specifically, we propose a BDD construction that
guarantees the admissibility and consistency of our heuris-
tic and explore theoretical properties of the resulting relaxed

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

BDD with respect to the maximum size needed to represent
only valid plans. Furthermore, we show how to leverage the
graphical structure to identify landmarks and redundant ac-
tions, and also to extract delete-free plans.

We include an extensive empirical analysis that highlights
the advantages and disadvantages of using an heuristic based
on our relaxed BDD as opposed to the LP relaxation. We
show that our heuristic has competitive performance solving
DFP tasks. Namely, while still not the state of the art, our ap-
proach outperforms the LP relaxation in nine delete-free IPC
domains and the mixed-integer programming model (Imai
and Fukunaga 2014; 2015) in one.

2 Background

This work considers cost-optimal DFP using the STRIPS
formalism restricted to tasks with no negative preconditions
and no conditional effects.

A DFP task is given by a tuple Π = 〈P, sI ,G,A〉whereP
corresponds to the set of propositions, sI is the initial state,
G ⊆ P is the set of goal propositions, and A is the set of
actions. We define a state s by its set of true propositions,
i.e., we say that p ∈ s if p is true in s.

An action a ∈ A is a tuple 〈pre(a),add(a),c(a)〉,
where pre(a) ⊆ P is the set of preconditions, add(a) ⊆ P
is the set of additive effects, and c(a) ≥ 0 corresponds to
the action cost. We assume, without loss of generality, that
add(a)∩pre(a) = ∅ for all a ∈ A. We say that an action a
is applicable to a state s if its preconditions are true in s, i.e.,
pre(a) ⊆ s. Given a state s and an applicable action a, the
successor state s′ is given by s′ = succ(a, s) = s∪add(a).
In general, we say that a sequence of actions (a1, , an)
is applicable to a state s if a1 is applicable in s and each ai
is applicable in succ((a1, . . . , ai−1), s).

Given a DFP task Π, we define a plan π = (a1, ..., an) as a
sequence of applicable actions from the initial state sI such
that sG = succ(π, sI) satisfies all goal propositions, i.e.,
G ⊆ sG. The cost of a plan is given by c(π) :=

∑
a∈π c(a).

In particular, a cost-optimal plan π∗ for Π is a plan with
minimal cost, i.e, c(π∗) ≤ c(π) for all plans π ∈ Π.

We say that p ∈ P is a propositional landmark if p ∈
succ(π, sI) for all plans π ∈ Π. Similarly, a ∈ A is an
action landmark if a ∈ π for all π ∈ Π.

77

2.1 Sequential Relaxation
The sequential relaxation of a DFP task, also known as a
temporal relaxation, ignores the order in which the actions
are applied (Imai and Fukunaga 2014).
Definition 2.1. Given a DFP task Π, a valid sequence-
relaxed plan for Π, sr-plan, is a set of actions πsr =
{a1, . . . , an} such that (i) for every a ∈ πsr, each
p ∈ pre(a) is true in sI or is added by some action a′ ∈ πsr
and (ii) each goal p ∈ G is true in sI or is added by some
action a ∈ πsr.

The cost of an sr-plan is given by c(πsr) =∑
a∈πsr

c(a). The sequential relaxation task asks for a min-
imum cost sr-plan. As every plan for Π is an sr-plan, it
follows that any cost-optimal plan π∗ has a cost greater or
equal to any cost-optimal sr-plan π∗sr, i.e., c(π∗sr) ≤ c(π∗).
Similarly to DFP, finding an sr-plan can be shown to be NP-
hard by a reduction from set covering (Bylander 1994).

2.2 Related Work
Cost-optimal DFP is a well-studied problem in the plan-
ning community and has inspired several state-of-the-art
heuristics (Betz and Helmert 2009). In particular, Bonet and
Helmert (2010) show that a DFP can be reformulated as a
hitting set problem with exponentially many subsets, each
encoding a separate disjunctive landmark. This result has
been extended to derive the necessary (Bonet and Castillo
2011) and the set-inclusion minimal (Haslum et al. 2012)
set of disjunctive landmarks required to solve a DFP task.
Moreover, Pommerening and Helmert (2012) build on the
hitting set representation to design an incremental disjunc-
tive landmark heuristic for DFP.

Alternatively, Imai and Fukunaga (2014) presented a
mixed-integer linear programming formulation for the DFP
with polynomially many constraints. This formulation is
currently regarded as the state-of-the-art solution approach
for DFP tasks. Moreover, its LP relaxation, when coupled
with additional operator counting constraints (Pommeren-
ing et al. 2014), defines an admissible heuristic for classical
planning problems that achieves competitive performance
with respect to the state of the art (Imai and Fukunaga 2015).

Recent work has also shown an interest on decision dia-
grams (Bryant 1986) for planning tasks. Castro et al. (2018)
use relaxed multi-valued decision diagrams to create a re-
laxed representation of the state-transition graph for clas-
sical planning. The approach relates to several well-known
techniques, such as critical-path heuristics and abstractions.
The authors report preliminary results that indicate the po-
tential of the technique when it is used to extract valid plans.

The technique proposed in this paper is related to the work
by Corrêa, Pommerening, and Francès (2018), who apply
relaxed BDDs to approximate the state space of a DFP task.
Our methodology, however, differs in three main ways. First,
we focus on modeling the sequential relaxation using re-
laxed BDDs, while the previous work approximates the full
DFP task. Second, we assign only one action per decision
layer to reveal certain desired structure, while the previous
representation allows multiple actions to be encoded in each
layer. Lastly, Corrêa, Pommerening, and Francès (2018) use

a top-down BDD construction, while we propose an itera-
tive splitting procedure. While, the top-down construction is
usually faster, the iterative splitting leverages the encoded
information to create a stronger relaxation.

3 A BDD Encoding for the Sequential
Relaxation

Our BDD representation exploits the fact that an action
needs to be applied at most once in any DFP task (and, thus,
in its sequential relaxation). We can therefore view the se-
quential relaxation task as a binary optimization problem
that asks for a minimum-cost action set satisfying Definition
2.1, where each variable indicates whether or not an action
is included in the set. The BDD representation, in turn, is an
encoding of the set of solutions of such problem, i.e., it is a
graphical structure such that a path in the graph represents
an action set that is an sr-plan.

Formally, the BDDB = (N , E) is a layered acyclic graph,
where N is the set of nodes and E the set of directed edges.
The set of nodes is partitioned into m+ 1 layers (m = |A|),
N = (N1, . . . ,Nm+1). The first and last node layer have
a single node, known as the root, N1 = {r}, and terminal
node, Nm+1 = {t}, respectively. Similarly, the set of edges
E is partitioned into m layers, E = (E1, . . . , Em), such that
each edge e = (u, v) ∈ Ei (i ∈ {1, . . . ,m}) originates from
a node u ∈ Ni and points to a node v ∈ Ni+1.

With each layer Ei we associate an action θ(Ei) ∈ A. Ev-
ery edge e ∈ Ei has (i) a label v(e) ∈ {0, 1} that represents
if the action θ(Ei) associated with its layer is selected to be
included in an sr-plan, and (ii) a cost ω(e) derived from in-
cluding (if v(e) = 1) or excluding (if v(e) = 0) the action to
the sr-plan, i.e., ω(e) := v(e) · c(θ(e)). A node u ∈ N has
at most two edges emanating from it, each with a distinct
label. Thus, an r− t path ρ := (e1, ..., em) ∈ B has exactly
one edge from each layer, and the labels associated with its
edges correspond to the actions that will be included in and
excluded from the sr-plan.

We force B to encode only sr-plans by keeping track of
the set of propositions that are achieved and required in each
path. Given an r − t path ρ ∈ B, the set of propositions
achieved and required by ρ is given, respectively, by:

α↓(ρ) := sI ∪
⋃

e∈ρ:v(e)=1

add(θ(e)),

η↓(ρ) :=
⋃

e∈ρ:v(e)=1

pre(θ(e)).

A BDD B encodes only sr-plans if each r−t path ρ ∈ B
satisfies the conditions in Definition 2.1, i.e., G ⊆ α↓(ρ) and
η↓(ρ) ⊆ α↓(ρ). We say that a BDD is exact if every path
in B is an sr-plan and there is one path for each possible
sr-plan in a DFP task Π. A shortest path in an exact BDD
corresponds to a minimum-cost sr-plan.
Example 3.1. Consider the following problem Π of the
visit-all domain:P = {i1, v1, i2, v2, i3, v3}, where ik and vk
represent that the agent is currently at and has visited room
k, respectively;A = {a1,2, a2,1, a2,3, a3,2}, where ak,r rep-
resents the movement from room k to r with pre(ak,r) =

78

Room 1 Room 2 Room 3
y

�

sI = {v1, i1}

Room 1 Room 2 Room 3

� � �

G = {v1, v2, v3}

(a) DFP task

r

u1 u2

u3 u4 u5

u6 u7 u8

t

a1,2:

a3,2:

a2,3:

a2,1:

(b) Exact BDD

Figure 1: Example of a DFP task.

{ik} and add(ak,r) = {ir, vr}. The initial and goal states
are depicted in Figure 1a.

Figure 1b illustrates an exact BDD B for Π. The dashed
edges represent zero-edges (v(e) = 0) and the solid edges
one-edges (v(e) = 1). On the left are the actions associated
with each layer. Notice that all paths ρ ∈ B correspond to
sr-plans and there is exactly one path for each sr-plan.

The size of an exact BDD (i.e., the number of nodes)
grows exponentially with the size of the planning task Π
(i.e., the number of actions and propositions). We overcome
this problem by constructing a relaxed BDD: a limited size
BDD that over-approximates the set of sr-plans. In partic-
ular, we show in Theorem 6.1 that the shortest path of a re-
laxed BDD is an admissible heuristic for Π.

4 Relaxed BDD Construction Algorithm
Given a task Π, a relaxed BDD B = (N , E) is a limited-
size BDD that over-approximates the set of sr-plans for Π,
i.e., there exists an r − t path ρ ∈ B for each sr-plan, but
some paths are invalid sr-plans. We define the width of B as
the maximum number of nodes in each layer, i.e., w(B) :=
max{|Ni| : i = 1, ...,m+ 1}. We will limit the size of B by
bounding its width, w(B) ≤ W , withW ≥ 1.

Algorithm 1 presents our relaxed BDD construction
scheme. The algorithm starts by constructing a width-one
BDD (W = 1). The INITIALWIDTHONEBDD procedure
receives a sequence of pair-wise distinct action labels Λ =
(λ1, ..., λm) and assigns each action to a layer such that
aλi = θ(Ei), for all i ∈ {1, ...,m}. It then constructs a
width-one BDD by creating one node u ∈ Ni in each node
layer i ∈ {1, ...,m+1} and two edges e, e′ ∈ Ei in each edge
layer i ∈ {1, ...,m}with different labels (i.e., v(e) 6= v(e′)).

The construction procedure increases the size of the BDD
and removes invalid sr-plans until the BDD cannot be
further updated. The TOPDOWNPROCEDURE iterates over
each node layer starting from N1. It updates the informa-
tion stored in every node u ∈ N considering all partial
r − u paths (UPDATENODESTOPDOWN), eliminates edges
that are associated to invalid sr-plans (FILTEREDGES), and
splits every node u until the maximum width is reached
(SPLITNODES). In contrast, the BOTTOMUPPROCEDURE

Algorithm 1 Relaxed BDD Construction
1: procedure CONSTRUCTBDD(Π,W , Λ)
2: B := INITIALWIDTHONEBDD(Λ)
3: STOP := FALSE
4: while !STOP do
5: STOP := TRUE
6: TOPDOWNPROCEDURE(B,W , Π, STOP)
7: BOTTOMUPPROCEDURE(B,W , Π, STOP)
8: hB := GETSHORTESTPATH(B)
9: return hB

10: procedure TOPDOWNPROCEDURE(B,W , Π, STOP)
11: for 1 ≤ i ≤ m do
12: UPDATENODESTOPDOWN(Ni)
13: FILTEREDGES(Ei, STOP)
14: SPLITNODES(Ni,W , STOP)

15: procedure BOTTOMUPPROCEDURE(B, Π,W , STOP)
16: i := |A|+ 1
17: while i ≥ 0 do
18: UPDATENODESBOTTOMUP(Ni)
19: FILTEREDGES(Ei−1, STOP)
20: i := i− 1

iterates over each layer starting with Nm+1. It updates
the information stored in every node u ∈ N consider-
ing all partial u − t paths (UPDATENODESBOTTOMUP)
and removes edges that are associated to invalid sr-plans
(FILTEREDGES).
Example 4.1. Consider our running example. Figure 2 illus-
trates some of the steps of Algorithm 1. Figure 2a depicts the
width-one BDD created by the INITIALWIDTHONEBDD
procedure. Figure 2b illustrates the SPLITNODES procedure
over N2 and the FILTEREDGES procedure for E2 by a gray
edge (eliminated by Rule 2, Section 4.2). Lastly, Figure 2c
shows the relaxed BDD obtained at the end of the construc-
tion procedure.

r

u1

u2

u3

t

a1,2:

a3,2:

a2,3:

a2,1:

(a) Width-one BDD

r

u1 u2

u3

u4

t

(b) One-split

r

u1 u2

u3 u4

u5

t

(c) Resulting BDD

Figure 2: BDD construction withW = 2.

4.1 Relaxed Node Representation
With the purpose of identifying invalid sr-plans and decid-
ing how to split a node, in each node u ∈ N we store infor-
mation about the achieved and required propositions by all

79

paths passing through u. The information is aggregated both
for the r− u and the u− t partial paths.

Consider δin(u) and δout(u) as the set of incoming and
outgoing edges of a node u ∈ N , respectively. For each
edge e = (u, v) ∈ E , σ(e) = u and τ(e) = v represent its
source and target node, respectively. Also, consider that all
zero-edges (v(e) = 0) have add(θ(e)) = pre(θ(e)) = ∅.

For the top-down information, each u ∈ N stores the
propositions that are achieved by all r−u paths, α↓A(u), and
the propositions achieved by at least one r− u path, α↓S(u).
Starting with node r, the UPDATENODESTOPDOWN proce-
dure updates these sets for each node in B. The procedure
assigns α↓A(r) := α↓S(r) := sI and updates each u ∈ N as

α↓A(u) :=
⋂

e∈δin(u)

(
α↓A(σ(e)) ∪ add(θ(e))

)
,

α↓S(u) :=
⋃

e∈δin(u)

(
α↓S(σ(e)) ∪ add(θ(e))

)
.

Similarly, each node u ∈ N stores the set of propositions
that are required by all and at least one r − u paths, η↓A(u)

and η↓S(u), respectively. At the root node η↓A(r) := η↓S(r) :=
G, and for any other node u ∈ N we have that

η↓A(u) :=
⋂

e∈δin(u)

(
η↓A(σ(e)) ∪ pre(θ(e))

)
,

η↓S(u) :=
⋃

e∈δin(u)

(
η↓S(σ(e)) ∪ pre(θ(e))

)
.

For the bottom-up information of a node u ∈ N , sets
α↑A(u) and η↑A(u) correspond to the propositions achieved
and required by all u − t paths, respectively. Similarly, sets
α↑S(u) and η↑S(u) represent the propositions achieved and
required by at least one u − t path, respectively. Starting at
t with α↑A(t) := α↑S(t) := η↑A(t) := η↑S(t) := ∅, the UP-
DATENODESBOTTOMUP procedure updates these sets as

α↑A(u) :=
⋂

e∈δout(u)

(
α↑A(τ(e)) ∪ add(θ(e))

)
,

α↑S(u) :=
⋃

e∈δout(u)

(
α↑S(τ(e)) ∪ add(θ(e))

)
,

η↑A(u) :=
⋂

e∈δout(u)

(
η↑A(τ(e)) ∪ pre(θ(e))

)
,

η↑S(u) :=
⋃

e∈δout(u)

(
η↑S(τ(e)) ∪ pre(θ(e))

)
.

In addition, each u ∈ N maintains the cost of the shortest
r−u and u−t path, ω↓(u) and ω↑(u), respectively. Starting
with ω↓(r) := ω↑(t) := 0, the cost of u ∈ N is given by

ω↓(u) := min
e∈δin(u)

{
ω↓(σ(e)) + ω(e)

}
,

ω↑(u) := min
e∈δout(u)

{
ω↑(τ(e)) + ω(e)

}
.

The shortest-path information is used both for the BDD
heuristic computation (Section 6) and to identify and elimi-
nate sub-optimal sr-plans (Section 4.2).

Example 4.2. Consider node u3 in Figure 2c for our running
example. For the top-down information we have α↓A(u3) =

α↓S(u3) = {i1, i2, v1, v2}, η↓A(u3) = {v1, v2, v3, i3} and
η↓S(u3) = η↓A(u3) ∪ {i1}. For the bottom up we have
α↑A(u3) = α↑S(u3) = {i3, v3} and η↑A(u3) = η↑S(u3) =
{i2}.

4.2 Filtering Rules
The FILTEREDGES procedure removes paths in B that form
invalid sr-plans. To do so, we develop a set of rules to iden-
tify if at least one path passing through an edge corresponds
to a sr-plan. If an edge e ∈ E violates a rule, then all paths
passing through e are invalid sr-plans, and edge e can be
removed.

Consider an edge e = (u, v) ∈ E with θ(e) = a. As we
will show in Proposition 4.1, the following two rules are
necessary conditions for any sr-plan path.

Rule 1. Assume v(e) = 1. Every precondition of a has to be
added by some action in at least one path passing through e.

pre(a) ⊆ α↓S(u) ∪ α↑S(v).

Rule 2. Each proposition required by all paths traversing e
needs to be added by at least one action in some path.

η↓A(u) ∪ η↑A(v) ⊆ α↓S(u) ∪ α↑S(v), if v(e) = 0,

η↓A(u) ∪ η↑A(v) ⊆ α↓S(u) ∪ add(a) ∪ α↑S(v), if v(e) = 1.

Proposition 4.1. Consider a relaxed BDD B = (N , E).
Rules 1 and 2 are necessary conditions for any r − t path
ρ ∈ B to be an sr-plan.

Proof. Consider an sr-plan path ρ = (e1, . . . , em) ∈ B
and edge e = (u, v) ∈ ρ. From Section 3, we know
that

⋃
e′∈ρ\{e} add(θ(e′)) ⊆ α↓S(u) ∪ α↑S(v), and η↓A(u) ∪

η↑A(v) ⊆
⋃
e′∈ρ\{e} pre(θ(e′)) ∪ G. Since pre(a) ∩

add(a) = ∅ for all a ∈ A, Rules 1 and 2 are satisfied by
any e ∈ ρ.

Since we are interested in minimum-cost plans, we de-
velop two additional filtering rules to identify suboptimal
plans. Consider an edge e = (u, v) ∈ E with θ(e) = a.

Rule 3. Assume v(e) = 1. Action a adds at least one
p /∈ sI that is required by some path traversing e.

(add(a) \ sI) ∩
(
η↓S(u) ∪ η↑S(v)

)
6= ∅.

Rule 4. Consider a plan π′ ∈ Π. The minimum-cost path
traversing e has a cost less than or equal to c(π′).

ω↓(u) + ω(e) + ω↑(v) ≤ c(π′).

Notice that all cost-optimal plans satisfy these rules. Rule
3 avoids unnecessary actions and Rule 4 removes sr-plans
with higher cost than the best plan found so far.

The FILTEREDGES procedure (Algorithm 2) iterates over
all edges in a layer (line 2). It removes all edges that violate
any of our four filtering rules (lines 3-4). The procedure also
updates variable STOP if an edge was removed (line 4), i.e.,
the BDD has changed.

80

Algorithm 2 Filtering Edges Procedure
1: procedure FILTEREDGES(Ei, STOP)
2: for e ∈ Ei do
3: if e violates any of Rule 1 to Rule 4 then
4: Eliminate e, STOP := FALSE

4.3 The Splitting Nodes Procedure
The SPLITNODES procedure aims to split nodes such that,
if W = ∞, it guarantees that the resulting BDD is exact
(i.e., all paths are sr-plans). Our approach takes advantage
of DFP characteristics to create relaxed BDDs with robust
worst cases on the maximum width needed per layer.

We start by defining the exact information of a node. Con-
sider a node u ∈ N and a proposition p. We say that p is α-
exact in u if all r−u paths add p or none do, i.e., p ∈ α↓A(u)

or p /∈ α↓S(u), respectively. Similarly, we say that p is η-
exact in u if either all r − u paths require p or none do,
p ∈ η↓A(u) or p /∈ η↓S(u), respectively.

Algorithm 3 illustrates the SPLITNODES procedure. The
algorithm receives a node layer and the width limit,W . The
procedure iterates over a priority queue of propositions Q =
P¬sI and splits nodes such that for each p ∈ Q, all nodes
are α-exact and η-exact or the width limit is reached.

Algorithm 4 shows how to split any node u ∈ N such
that for each p ∈ P , p is α-exact or η-exact in u, respec-
tively. The procedure iterates over the incoming edges of u
and redirects the edges to a new node u′ accordingly.

Proposition 4.2. Consider a BDD B = (N , E) such that for
each p ∈ P and node u ∈ N , p is α-exact in u and p is
η-exact in u when p /∈ α↓A(u). Then, Rule 1 and Rule 2 are
sufficient to remove all invalid sr-plan paths in B.

Proof. Consider a path ρ ∈ B and p ∈ P such that either
there exists an action a ∈ ρ with p ∈ pre(a) or p ∈ G but
for all a′ ∈ ρ, p /∈ add(a′). Take the last edge e ∈ ρ, i.e.,
σ(e) = u ∈ Nm and τ(e) = t. Since ρ is an invalid sr-
plan, p /∈ α↓A(u) and p ∈ η↓A(u) ∪ pre(θ(e)). Moreover,
p /∈ α↓S(u) since p is α-exact in u. Since α↑S(t) = ∅ (Sec-

Algorithm 3 Split Nodes Procedures
1: procedure SPLITNODES(Ni,W , STOP)
2: Q = P¬sI , priority queue of propositions
3: while Q.notEmpty() and |Ni| <W do
4: p = Q.pop()
5: if i > γ(p) + 1 then continue
6: for u ∈ Ni do
7: if p ∈ α↓S(u), p /∈ α↓A(u) then
8: SPLITNODEACHIEVED(u, p)
9: STOP := FALSE

10: if |Ni| =W then return
11: for u ∈ Ni do
12: if p ∈ η↓S(u), p /∈ η↓A(u), p /∈ α↓A(u) then
13: SPLITNODENEEDED(u, p)
14: STOP := FALSE
15: if |Ni| =W then return

tion 4.1), either Rule 1 or Rule 2 will eliminate edge e and,
therefore, remove ρ from B.

Proposition 4.2 implies that for each proposition p ∈ P
we need at most three nodes in each layer Ni, i.e., a node
u ∈ Ni where p ∈ α↓A(u), a node u′ ∈ Ni where p /∈
α↓A(u′) and p ∈ η↓A(u′), and a node u′′ ∈ Ni where p /∈
α↓A(u′′) and p /∈ η↓A(u′′). Since for all p ∈ sI and u ∈ N ,
p ∈ α↓A(u) (Section 4.1), there is no need to split nodes with
respect to propositions in the initial state. Similarly, for all
p ∈ G and u ∈ N , p ∈ η↓A(u) (Section 4.1), so each goal
proposition needs at most two nodes in each layer. Then,
the maximum width needed to construct an exact BDD is
O(3|P¬sI ,¬G | · 2|G¬sI

|), where G¬sI = G \ sI (i.e., all goals
omitted in the initial state) and P¬sI ,¬G = (P \G) \ sI (i.e.,
all non-goal proposition omitted in the initial state).

Algorithm 4 Split Single Node Procedure
1: procedure SPLITNODEACHIEVED(u, p)
2: Create a new node u′ and updateNi = Ni ∪ {u′},
3: for e ∈ δin(u) do
4: if p ∈ α↓A(σ(e)) or p ∈ add(θ(e)) then
5: Redirect edge e: e /∈ δin(u), e ∈ δin(u′)

6: Duplicate edges from u to u′ if δin(u′) 6= ∅

7: procedure SPLITNODENEEDED(u, p)
8: Create a new node u′ and updateNi = Ni ∪ {u′},
9: for e ∈ δin(u) do

10: if p ∈ η↓A(σ(e)) or p ∈ pre(θ(e)) then
11: Redirect edge e: e /∈ δin(u), e ∈ δin(u′)

12: Duplicate edges from u to u′ if δin(u′) 6= ∅

Even though the proposed splitting approach is valid, we
prove that it is possible to create an exact BDD where not all
nodes are α-exact or η-exact. Given a BDD B and a propo-
sition p ∈ P , we define the last layer of p, γ(p), as the
maximum layer index at which an action either adds or re-
quires p, i.e., for i = γ(p), p ∈ add(θ(Ei)) ∪ pre(θ(Ei))
and for all j > γ(p), p /∈ add(θ(Ej)) ∪ pre(θ(Ej)).
Proposition 4.3. Consider B = (N , E) such that for each
p ∈ P and node u ∈ Ni, with i ≤ γ(p) + 1 , p is α-exact in
u and p is η-exact in u when p /∈ α↓A(u). Then, Rule 1 and
2 are sufficient to remove all invalid sr-plan paths in B.

Proof. Consider a path ρ ∈ B with a proposition p such that
p ∈ G or for some action a ∈ ρ, p ∈ pre(a) but p is not
added by any action in ρ. Now take edge e = (u, v) ∈ ρ
in the last layer of p, i.e., u ∈ Nγ(p) and v ∈ Nγ(p)+1.
By the definition of last layer p /∈ α↑S(v) and p /∈ η↑S(v).
By hypothesis over ρ, p /∈ α↓A(u) (and, p /∈ α↓S(u)) and
p ∈ η↓A(u) ∪ pre(θ(e)). Then, either Rule 1 or Rule 2 will
remove edge e and, hence, the invalid sr-plan path ρ.

Notice that Algorithm 3 uses Proposition 4.3 to avoid
splitting nodes with respect to p ∈ Q when the current
layer is greater than γ(p) (line 5), and avoids splitting nodes
u ∈ N if p ∈ α↓A(u) (line 12).

81

5 On Width Bounds and Action Ordering
Given the BDD construction procedure in Section 4, we
present an upper bound for the maximum width needed in
each layer of an exact BDD. We show how these bounds de-
pend on the action-layer assignment and develop a simple
heuristic procedure to create good action-layer orderings.

For a given p ∈ P¬sI , consider the first layer where p is
either added or required, i.e., φ(p) = i if p ∈ add(θ(Ei)) ∪
pre(θ(Ei)) and for all j < φ(p), p /∈ add(θ(Ej)) ∪
pre(θ(Ej)). Now consider ψ(i) as the set of propositions
that need to be considered for splitting in layer Ni, i.e.,
ψ(i) = {p ∈ P¬sI : φ(p) < i ≤ γ(p)}. In particular,
consider ψG(i) = ψ(i) ∩ G as the set of goal propositions
that need splitting in layer Ni, and ψP(i) = ψ(i) \ G as the
set of non-goal proposition that need splitting in layer Ni.
Corollary 5.1. Consider a DFP task Π and an exact
BDD B constructed using Algorithm 1. The maximum
width of layer Ni is O(2|ψG(i)| · 3|ψP(i)|). Then, an up-
per bound on the maximum width for B is given by
O(maxi∈{1,...,m}{2|ψG(i)| · 3|ψP(i)|}).

Proof. This follows directly from Proposition 4.3.

Notice that ψ(i) depends on the action ordering Λ used
to assign actions to layers (Algorithm 1, line 2). In par-
ticular, we would like to minimize the number of propo-
sitions that need to be split in every layer, i.e., find a Λ
such that maxi∈{1,...,m}{2|ψG(i)| · 3|ψP(i)|} is minimized.
This NP-hard problem has been studied for knapsack con-
straints (Behle 2008) and for the set covering and indepen-
dent set problems (Bergman, van Hoeve, and Hooker 2011;
Bergman et al. 2012).

Action Ordering. We develop a simple action ordering
heuristic that takes advantage of the following proposition.

Proposition 5.1. Consider a DFP task Π and a relaxed BDD
B constructed using Algorithm 1 with action ordering Λ. As-
sume that for a given p ∈ P¬sI ,¬G all actions that add p are
ordered before all actions that require p in Λ. Then, it is suf-
ficient to haveW = 2 to guarantee that all paths ρ ∈ B that
require p have an action that adds p.

Proof. Since all actions that add p are ordered first, we need
two nodes in a layer to ensure that p is α-exact in each node.
Consider the first edge layer Ei such that a = θ(Ei) requires
p. Take a node u ∈ Nj (j > i). If p ∈ α↓A(u), u does not
need to be η-exact (Proposition 4.3). If p /∈ α↓A(u), Rule 1
and 2 eliminate edges that require p, so no split is needed.

Our action ordering Λ starts by creating a priority queue
of propositions Q = P¬sI . This priority queue, also used in
Algorithm 3, is such that all goals and propositional land-
marks are ordered first. All other propositions are sorted in
decreasing order according to the number of actions that re-
quire them. Then, the action ordering is as follows: for each
proposition p ∈ Q we insert actions a ∈ A \ Λ that add p
into Λ and then actions a ∈ A \ Λ that require p.

6 Relaxed BDD Heuristic
Given a DFP task Π and a state s, we can construct a relaxed
BDD B for s using Algorithm 1 and updating the initial state
sI := s. Then, the relaxed BDD heuristic hB(s) corresponds
to the shortest path in B, i.e., hB(s) := ω↓(t).
Theorem 6.1. Consider a delete-free task Π, a state s and a
relaxed BDD B for s withW ≥ 1 constructed using Algo-
rithm 1. Then, hB(s) is admissible.

Proof. Propositions 4.1 guarantees that no sr-plan is elim-
inated, while Rule 3 and 4 guarantee the presence of at least
one cost-optimal plan. Then, hB(s) ≤ c(π∗sr) ≤ h+(s),
where π+

sr is the cost-optimal sr-plan from s and h+ the
perfect delete-free heuristic.

In our implementation, we construct a relaxed BDD B for
sI and update B during search. Given a state s and the se-
quence of actions to achieve s from sI , πsI ,s = (a1, .., ak),
we update B by removing all edges e ∈ E with θ(e) ∈ πsI ,s
and v(e) = 0. We then iteratively apply the top-down and
bottom-up procedures over B (lines 4 to 8, Algorithm 1) and
compute the heuristic as:

hB(s) := ω↓(t)− c(πsI ,s). (1)

Notice that hB is still admissible (Theorem 6.1) and, in
this case, consistent (Theorem 6.2). However, the consis-
tency of hB depends on the BDD construction procedure and
whether the action and proposition ordering changes.
Theorem 6.2. Consider a delete-free task Π, a state s and a
relaxed BDD B withW ≥ 1 constructed using Algorithm 1.
Then, hB(s) given by (1) is consistent.

Proof. Consider a state s, an applicable action a and its suc-
cessor state s′ = succ(s, a). Given the relaxed BDD BsI
for sI , let Bs and Bs′ be the updated BDDs for state s and
s′, respectively. Since each BDD is updated from BsI with-
out changing the action and proposition order, every path
ρ ∈ Bs′ is also in Bs. Then, we have ω↓(ts) ≤ ω↓(ts′).

We know that hB(s) = ω↓(ts) − c(πsI ,s) and hB(s′) =
ω↓(ts′)−c(πsI ,s) +c(a). Then, hB(s)−c(a)− hB(s′) =
ω↓(ts)− ω↓(ts′) ≤ 0, and so hB(s) ≤ c(a) + hB(s′).

7 Exploiting the Relaxed BDD Structure
Given a relaxed BDD B for a DFP task Π, we explain how to
identify redundant and landmark actions. Consider an edge
layer Ei (i ∈ {1, ...,m}) such that all edges e ∈ Ei have
label v(e) = 0. Then, no minimum-cost plan uses action
a = θ(Ei), so a is a redundant action that can be removed
fromA. Similarly, consider an edge layer Ei (i ∈ {1, ...,m})
such that all edges e ∈ Ei have label v(e) = 1. Then, all
minimum-cost plans have action a = θ(Ei), i.e., a is an ac-
tion landmark for any cost-optimal plan.

BDD for Plan Extraction. Algorithm 5 shows how we
can use relaxed BDDs to extract plans for a DFP task Π.
Given a state s and its relaxed BDD Bs, the procedure starts
with an empty plan π (line 2) and adds actions to π until all
goals are satisfied. In each iteration, the procedure updates

82

Bs by keeping only the paths that have all the actions in π
(line 4). Then, the procedure looks for all applicable actions
in state s that add at least one new proposition, stores them
on a list L (line 5), and uses Bs to select the most promis-
ing action (line 6). Specifically, given a list of actions L, we
greedily look for the action that has a path in Bs with the
minimum cost, i.e., a∗ = argmina∈L{min{ω↓(u) + ω(e) +

ω↑(v) : e = (u, v) ∈ E , θ(e) = a, v(e) = 1}}. Lastly, we
insert a∗ to π and update state s (line 7).

Algorithm 5 Plan Extraction Procedure
1: procedure PLANEXTRACTION(Bs, s)
2: π := ∅
3: while G 6⊆ s do
4: UPDATEPATHSBDD(π, Bs)
5: L := FINDAPPLICABLEACTIONS(s)
6: a∗ := SELECTACTIONBDD(L, Bs)
7: π.insert(a∗), s := s ∪ add(a∗)

8: return π

8 Empirical Analysis
We present an empirical analysis of the relaxed BDD heuris-
tic with the main objective to compare how the BDD-based
heuristic compares to the LP relaxation for a DFP task. We
also show the strength of BDDs in action pruning.

8.1 Implementation Details
We implement a branch-and-bound best-first-search algo-
rithm (Land and Doig 1960). Similar to Pommerening and
Helmert (2012), our search algorithm branches over each ac-
tion, i.e., either the action is considered in the cost-optimal
plan or not. However, we use a best-first instead of a depth-
first strategy. We also avoid branching on zero-cost actions
as their inclusion does not affect a plan cost. Notice that we
can update our BDD using these two branching decisions by
removing all edges e ∈ Ei (θ(Ei) = a) with v(e) = 0 and
v(e) = 1, respectively.

Our search procedure starts at sI and branches according
to its applicable actions. In particular, for a state s in the
search and an applicable action a, we create two successors,
one where a is applied and one where a is never applied.
Hence, all states in the search are reachable states in Π.

For the branch-and-bound, the global lower bound LB is
given by the cost to reach the last state expanded plus its
heuristic value. We use Algorithm 5 to extract plans in every
state of the search and we use the minimum-cost plan seen
so far as our global upper bound UB. The search ends when
either LB = UB or the next state to expand is a goal state.

We also implement a subset of the improvements and pre-
processing techniques used by Imai and Fukunaga (2014;
2015). In particular, we use the AND-OR graph landmark
extraction (Keyder, Richter, and Helmert 2010) and rel-
evance and dominance analysis to eliminate actions and
propositions. We treat propositional landmarks as goal
propositions during the BDD construction procedure.

We implement the mixed-integer linear programming
(MIP) model for DFP (Imai and Fukunaga 2014; 2015) and

its LP relaxation, and compare both against a BDD-based
heuristic with W ∈ {2, 4, 8}. The BDD and LP are used
as heuristics within our search algorithm, while the MIP is
solved once to produce the cost-optimal delete-free plan.

We test all approaches over domains from the last three
IPC competitions (Table 1). We restrict ourselves to domains
with no negative preconditions and no conditional effects.1
Our experiments consider a 30 minute time limit and a 2GB
memory limit. We use Gurobi 8.0 to solve the LP and MIP
models. Everything is coded in C++.

To make the comparison as fair as possible, we calculate
an initial upper bound using the FF heuristic (Hoffmann and
Nebel 2001) and implement a plan extraction procedure for
the LP approach. Whenever the LP returns an integer solu-
tion, we check if it is a plan. If so, we update the global upper
bound if the cost is lower than the current incumbent.

8.2 Relaxed BDD Heuristic Quality
We start our analysis by measuring the heuristic quality of
the BDD relaxation in comparison to the LP relaxation. For
each instance where the optimal solution h+ is known, we
compute the optimality gap at the initial state as gap =
(h+−h(sI))/h

+. Table 1 shows the average optimality gap
for each domain and technique.

Table 1: Heuristic Quality at sI .

Average Optimality Gap

domain LP B2 B4 B8
barman-opt11 0.73 0.76 0.76 0.76
barman-opt14 0.13 0.24 0.24 0.19
childsnack-opt14 0.22 0.33 0.30 0.26
elevators-opt11 0.48 0.61 0.61 0.61
floortile-opt11 0.05 0.27 0.27 0.27
floortile-opt14 0.07 0.29 0.29 0.29
ged-opt14 0.88 1.00 1.00 1.00
nomystery-opt11 0.00 0.02 0.02 0.01
openstacks-opt11 0.00 1.00 1.00 1.00
parking-opt11 0.13 0.18 0.18 0.18
parking-opt14 0.11 0.15 0.15 0.15
pegsol-opt11 0.43 0.99 0.99 0.95
scanalyzer-opt11 0.04 0.04 0.04 0.04
sokoban-opt11 0.05 0.21 0.19 0.18
transport-opt11 0.94 0.99 0.99 0.99
transport-opt14 0.81 0.97 0.97 0.97
visitall-opt11 0.03 0.06 0.05 0.05
visitall-opt14 0.02 0.04 0.04 0.04
woodworking-opt11 0.12 0.24 0.20 0.17

We can see that our small-width BDD relaxations have a
gap close to LP heuristic in most domains, even when the LP
encodes the sequence component of a DFP task. The com-
petitive BDD gap is mostly due to our construction algo-
rithm and action ordering. In fact, the BDD computes close-
to-optimal heuristics in no-mystery, scanalyzer and visit-all.

1No domains from IPC2018 satisfies these requirements.

83

Table 2: Average performance over IPC delete-free planning domains.

Coverage Average Time (sec) Average States Evaluated

domain # MIP LP B2 B4 B8 MIP LP B2 B4 B8 LP B2 B4 B8

barman-opt11 20 8 0 0 0 0 - - - - - - - - -
barman-opt14 14 14 9 14 14 14 1.1 988.9 4.6 9.5 15.5 29,351.8 17,669.3 16,742.9 14,745.1
childsnack-opt14 20 20 6 18 18 20 0.5 293.1 6.7 2.8 2.9 12,019.7 21,310.0 9,371.0 9,102.8
elevators-opt11 20 18 17 20 20 19 425.7 240.5 27.3 50.1 100.4 116,954.5 70,181.6 68,650.4 67,184.5
floortile-opt11 20 20 14 4 4 4 0.4 19.7 86.7 87.1 86.6 6,666.5 173,597.0 116,613.3 67,609.5
floortile-opt14 20 20 16 1 1 1 0.3 12.7 89.5 128.2 179.1 3,738.0 210,121.0 178,847.0 126,276.0
ged-opt14 20 20 20 20 20 20 391.1 39.5 1.4 2.1 3.7 25,773.8 2,110.9 2,110.9 2,110.9
nomystery-opt11 20 20 18 16 18 18 49.8 39.2 0.8 0.9 1.0 104.4 1.0 1.0 1.0
openstacks-opt11 20 20 20 20 20 20 0.9 0.8 0.1 0.1 0.1 1.0 2.0 2.0 2.0
parking-opt11 20 18 5 6 4 3 9.2 245.4 19.3 31.9 51.0 409.0 566.0 566.0 566.7
parking-opt14 20 20 7 9 9 9 22.9 550.8 44.5 74.7 119.4 539.0 752.4 752.6 755.4
pegsol-opt11 20 16 20 19 19 18 193.5 21.9 35.3 45.9 66.4 23,539.4 94,754.9 92,869.6 89,887.7
scanalyzer-opt11 20 6 5 7 7 6 38.0 185.9 28.4 49.3 96.4 28,069.2 37,136.6 36,877.2 37,130.4
sokoban-opt11 20 20 20 18 18 19 142.4 6.7 17.5 9.2 7.2 1,056.9 20,372.4 6,527.0 2,932.3
transport-opt11 20 0 0 1 1 1 - - - - - - - - -
transport-opt14 20 3 0 1 1 1 - - - - - - - - -
visitall-opt11 20 20 16 16 16 16 0.4 0.8 0.5 0.7 1.0 244.8 2,350.3 2,011.3 1,290.2
visitall-opt14 20 20 17 17 17 16 6.7 1.0 0.5 0.3 0.2 30.6 1,878.4 713.7 189.6
woodworking-opt11 20 20 14 14 18 17 1.0 125.2 55.8 2.9 4.4 2,098.3 168,813.7 5,876.3 5,283.5

Total/Average 374 303 224 221 225 222 80.2 173.3 26.2 31.0 46.0 15,662.3 51,351.1 33,658.2 26,566.7

In these domains, the proposition landmarks play a key role
in the heuristic quality and the relaxed BDDs eliminate most
paths that do not achieve these propositions.

In contrast, the LP relaxation has a significantly smaller
gap in floortiles, openstack, pegsol and sokoban. In floor-
tiles, propositional landmarks are not crucial to compute ac-
curate heuristics. The other domains have a large number of
zero-cost actions that add propositional landmarks, which
explains the poor BDD heuristic quality.

8.3 Overall Performance Comparison
Table 2 presents the overall performance for the BDD and
LP based heuristics. We also include the MIP model as
the state-of-the-art approach for the DFP. The first set of
columns, Coverage, shows the number of instances solved,
where column ‘#’ indicates the total number of instances
per domain. The second and third set of columns, Average
Time and Average States Evaluated, respectively, present the
corresponding average performance for the instances that all
techniques solved.

Despite the fact that the LP relaxation usually computes
a stronger heuristic in sI (Table 1), the BDD heuristic has
equal or better coverage in 15 of 19 domains while the LP
has equal or better coverage in 9. In nomystery, barman-
opt14 and woodworking the BDDs extract optimal plans
early during search and need to explore fewer states to prove
optimality. In elevators, scanalyzer and transport the BDD
heuristic quality significantly improves when it is close to a
goal state while the LP model struggles to improve the upper
bound in these domains. In contrast, the BDD has weak per-
formance in the two floortile domains and sokoban, which is
mostly due to its poor heuristic quality.

Our results demonstrate that our three BDD heuristics
perform differently. A larger width translates into a stronger
heuristics and, consequently, fewer states evaluated. This is
particularly true for childsnack, sokoban and woodworking,
where B4 and B8 expand significantly fewer states and have
higher coverage than B2. However, a larger width results in
a more computationally expensive heuristic, which explains

the higher coverage of B4 in comparison to B8 in most do-
mains. We observed a similar performance decay when ex-
perimenting with bigger widths (i.e.,W ∈ {16, 32, 64}).

Lastly, we highlight the performance difference between
the MIP model and its LP relaxation embedded in our search
algorithm. As both approaches use the same heuristic (i.e.,
the LP relaxation), the difference is likely due to the sophis-
ticated branch-bound-and-cut search in Gurobi, which in-
clude primal heuristics and cutting planes. A different search
strategy may also improve BDD performance.

8.4 Relaxed BDDs as a Preprocessing Tool
Table 3 shows the average percentage of redundant actions
that a relaxed BDD identifies after eliminating actions using

Table 3: Redundant actions found by BDDs.

Average % of redundant actions

domain B2 B4 B8
barman-opt11 1.2% 1.2% 1.2%
barman-opt14 1.0% 1.0% 1.0%
childsnack-opt14 0.0% 0.0% 0.0%
elevators-opt11 0.3% 0.3% 0.4%
floortile-opt11 0.0% 0.0% 0.0%
floortile-opt14 0.0% 0.0% 0.0%
ged-opt14 6.2% 6.2% 6.2%
nomystery-opt11 21.6% 22.4% 22.9%
openstacks-opt11 0.0% 0.0% 0.0%
parking-opt11 0.8% 0.8% 0.8%
parking-opt14 0.8% 0.8% 0.8%
pegsol-opt11 0.0% 0.0% 0.0%
scanalyzer-opt11 0.0% 0.0% 0.0%
sokoban-opt11 8.8% 8.7% 8.7%
transport-opt11 0.0% 0.0% 0.0%
transport-opt14 0.0% 0.0% 0.0%
visitall-opt11 5.3% 5.3% 5.3%
visitall-opt14 0.4% 0.4% 0.4%
woodworking-opt11 0.0% 0.0% 0.0%

84

traditional techniques (see Section 8.1). We can see that the
average percentage is high in some domains, especially in
ged, nomystery and sokoban with 6% to 22%.

With respect to action landmarks, the BDD uncovers the
same number of action landmarks as the AND-OR graph
algorithm (Keyder, Richter, and Helmert 2010).

9 Conclusions
This work presents a new admissible heuristic for delete-
free planning tasks based on relaxed binary decision dia-
grams (BDDs). Our experimental results show that relaxed
BDDs have competitive performance compared to an LP-
based heuristic, especially in domains where propositional
landmarks play an important role. We show that relaxed
BDDs can be used beyond heuristic computation. In partic-
ular, they enable the extraction of high-quality delete-free
plans and the identification of redundant actions.

Acknowledgements
We would like to thank the anonymous reviewers whose
valuable feedback helped improve the final paper. The au-
thors gratefully acknowledge funding from the Natural Sci-
ences and Engineering Research Council of Canada (Dis-
covery Grant) and CONICYT (Becas Chile).

References
Behle, M. 2008. On threshold BDDs and the optimal vari-
able ordering problem. Journal of Combinatorial Optimiza-
tion 16(2):107–118.
Bergman, D.; Cire, A. A.; van Hoeve, W.-J.; and Hooker,
J. N. 2012. Variable ordering for the application of BDDs to
the maximum independent set problem. In CPAIOR, 34–49.
Springer.
Bergman, D.; Cire, A. A.; van Hoeve, W.-J.; and Hooker,
J. N. 2016. Discrete optimization with decision diagrams.
INFORMS Journal on Computing 28(1):47–66.
Bergman, D.; van Hoeve, W.-J.; and Hooker, J. N. 2011.
Manipulating mdd relaxations for combinatorial optimiza-
tion. In International Conference on AI and OR Techniques
in Constriant Programming for Combinatorial Optimization
Problems, 20–35. Springer.
Betz, C., and Helmert, M. 2009. Planning with h+ in the-
ory and practice. In Annual Conference on Artificial Intelli-
gence, 9–16. Springer.
Bonet, B., and Castillo, J. 2011. A complete algorithm for
generating landmarks. In ICAPS, 315–318.
Bonet, B., and Helmert, M. 2010. Strengthening landmark
heuristics via hitting sets. In ECAI, volume 215, 329–334.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. Computers, IEEE Transactions on
100(8):677–691.
Bylander, T. 1994. The computational complexity of propo-
sitional strips planning. Artificial Intelligence 69(1-2):165–
204.

Castro, M. P.; Piacentini, C.; Cire, A. A.; and Beck, J. C.
2018. Relaxed decision diagrams for cost-optimal classical
planning. In Workshop HSDIP, ICAPS, 50–58.
Corrêa, A. B.; Pommerening, F.; and Francès, G. 2018. Re-
laxed decision diagrams for delete-free planning. Workshop
on Constraints and AI Planning, CP.
Haslum, P.; Slaney, J. K.; Thiébaux, S.; et al. 2012. Minimal
landmarks for optimal delete-free planning. In ICAPS, 353–
357.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
ICAPS, 162–169.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Imai, T., and Fukunaga, A. 2014. A practical, integer-
linear programming model for the delete-relaxation in cost-
optimal planning. In ECAI, 459–464.
Imai, T., and Fukunaga, A. 2015. On a practical, integer-
linear programming model for delete-free tasks and its use
as a heuristic for cost-optimal planning. Journal of Artificial
Intelligence Research 54:631–677.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
complete landmarks for and/or graphs. In ECAI, 335–340.
Land, A. H., and Doig, A. G. 1960. An automatic method
of solving discrete programming problems. Econometrica:
Journal of the Econometric Society 497–520.
Pommerening, F., and Helmert, M. 2012. Optimal planning
for delete-free tasks with incremental LM-cut. In ICAPS,
363–367.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B.
2014. LP-based heuristics for cost-optimal planning. In
ICAPS, 226–234.

85

