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Abstract

With the proliferation of blockchain projects and applica-
tions, cryptocurrency exchanges, which provides exchange
services among different types of cryptocurrencies, become
pivotal platforms that allow customers to trade digital as-
sets on different blockchains. Because of the anonymity and
trustlessness nature of cryptocurrency, one major challenge of
crypto-exchanges is asset safety, and all-time amount hacked
from crypto-exchanges until 2018 is over $1.5 billion even
with carefully maintained secure trading systems. The most
critical vulnerability of crypto-exchanges is from the so-
called hot wallet, which is used to store a certain portion of
the total asset online of an exchange and programmatically
sign transactions when a withdraw happens. It is important to
develop network security mechanisms. However, the fact is
that there is no guarantee that the system can defend all at-
tacks. Thus, accurately controlling the available assets in the
hot wallets becomes the key to minimize the risk of running
an exchange. In this paper, we propose SHORELINE, a deep
learning-based threshold estimation framework that estimates
the optimal threshold of hot wallets from historical wallet ac-
tivities and dynamic trading networks.

Introduction

A cryptocurrency transaction is a message propagated in
the blockchain network signed by the private key of the
sender. When a private key is compromised or stolen, all
the funds controlled by the key will be lost. One recent ap-
proach aims at solving the problem from the statistical per-
spective. In (Jain, Felten, and Goldfeder 2018), the authors
proposed a threshold control mechanism on the hot wallet
to reduce the number of refilling from the cold wallet to
the hot wallet, avoiding exposure expectation of cold wal-
let private keys during transfer, where the cold wallet stores
the most of assets offline. Also, the refilling from the of-
fline cold wallet to the online hot wallet is time-consuming.
However, it neglects the operational differences among ex-
changes. The proposed SHORELINE provides a data-driven
approach to enable exchange-specific thresholding, by con-
sidering historical trading and withdraw/deposit activities in
an exchange. There are two major components included as
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Figure 1: The overview of the proposed SHORELINE frame-
work.

shown in the Figure 1: a) Dynamic Networks Embedding. In
this component, we embed each cryptocurrency into a low-
dimensional vector space. b) Optimal Threshold Estimation.
To estimate the threshold, we combine multiple data modal-
ities from exchanges, such as the historical trading obser-
vations, withdraw and deposit history, currency embedding
features. The goal is to predict the threshold of optimal re-
serves to reduce costly refilling operations and satisfy the
online withdraw demand.

Approach

A trading network Gt at time t is constructed by all trad-
ing pairs with their associated trading amount as weights.
The temporal network can be considered as the collection
of snapshots at different time. The weight is assigned as the
trading amount of currency of each trading pair. In order to
extract the dynamic pattern from temporal trading networks,
we design a contextual embedding network based on node
sequences from temporal random walks. For temporal ran-
dom walks, we create directed temporal edges from histori-
cal nodes to their future states between adjacent snapshots.
The weight of the edge from node nt to nt+1 is proportional
to the weight summation of edges with nt as one endpoint,
where the proportion is a tunable parameter. After temporal
integration by introducing temporal edges, we can adopt ran-
dom walk strategies for static graphs (Mahdavi, Khoshraftar,
and An 2018) as temporal random walks. Next, we design
a deep neural network based on Bidirectional LSTM mod-
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Dataset IA-Rds Fb-Frm Fb-Msg
dyn2v 0.832 0.744 0.663

DynEmb 0.762 0.775 0.764
GRUEmb 0.819 0.820 0.733

LSTM 0.904 0.893 0.787
LSTM TW 0.908 0.926 0.828

Table 1: AUC scores of link prediction task. The best perfor-
mance is highlighted.

eling the probability of one sequence from both sides of a
node jointly in a classification manner (Devlin et al. 2019).
One node might have different embedding features in differ-
ent contexts, so we take the mean as the final representation.

Then, we design a deep LSTM network to estimate opti-
mal reserves threshold combining trading histories and and
embedding features. The output of the estimation frame-
work is the thresholds of the hot wallet. We define the
loss function of threshold estimation at a specific time of
one sample as: L =

∑
i ReLU(nwi − μ̂i)

2 + αμ̂2
i , where

nwi = ReLU(wi − di), wi and di are withdraw and deposit
amounts of currency i. The first component means that the
efficiency cost emerges if the net withdraw amount is higher
than the estimated threshold μ̂i, because we should refill the
hot wallet to satisfy the withdraw demand. The second com-
ponent represents the security concern that all currencies re-
tain online are risky to be stolen. The coefficient α is set to
balance the loss from both situations.

Evaluation of Networks Embedding

We start from comparing the dynamic embedding architec-
ture with other baselines by three datasets: IA-Rds (Michal-
ski, Palus, and Kazienko 2011), Fb-Frm (Opsahl 2011), and
Fb-Msg (Opsahl and Panzarasa 2009).
Comparison Models: (1) dynn2v (Mahdavi, Khoshraftar,
and An 2018). (2) DynGEM (Goyal et al. 2018). (3)
GRUEmb (Li et al. 2018). (4) LSTM is the simplified ver-
sion of our proposed embedding method without temporal
random walks. (5) LSTM TW is our proposed contextual
embedding model.

Following (Mahdavi, Khoshraftar, and An 2018), we
apply the link prediction task for evaluation. The AUC
scores of all testing snapshots are shown in Table 1. The
proposed contextual embedding architectures LSTM can
achieve better performance than baselines, which supports
the efficiency of our proposed contextual embedding. The
LSTM TW outperforms LSTM, achieving the best perfor-
mance, which proves that sampled sequences from the pro-
posed temporal random walk contain wealthy temporal in-
formation. Thus, we further apply it in embedding crypto-
currencies in temporal trading networks.

Evaluation of Shoreline

We use trades of historical six days to predict the thresh-
old of the next day. The evaluation metrics is defined as,
1
n

∑n
i=0

∑c
j=0 ReLU(nwij − μ̂ij) + αμ̂ij , where n is the

sample size, c is the currency number, different α denotes
different levels of concerns for hot wallet security.

Model α = 10 α = 5 α = 3 α = 0.1 α = 0.01
OTE-trade 0.361 0.245 0.175 0.050 0.020
OTE-hist 0.420 0.333 0.243 0.053 0.017
OTE-emb 0.356 0.278 0.197 0.051 0.019

SHORELINE 0.240 0.177 0.143 0.050 0.015

Table 2: The table shows the loss metrics based on different
α. The best results are highlighted.

Comparison Models: (1) OTE-hist. The input is only his-
torical net withdraws with one layer of LSTM. (2) OTE-
trade. The input is raw historical trading records of all trad-
ing pairs with one layer of LSTM. (3) OTE-emb. Based on
OTE-hist, the other LSTM layer is applied to handle the tem-
poral vectors of digital currencies’ embedding. (4) SHORE-
LINE. The final optimal reserves threshold estimation frame-
work combines all the above features and architectures. Dif-
ferent features are fused by a dense layer.

The testing results are listed in Table 2. The SHORELINE
can achieve the best testing performance under different se-
curity concerns α. The performance of OTE-trade is only
slightly better than the historical mean, although the tem-
poral trading networks for embedding are also derived from
the trading history. It further support the effectiveness of our
proposed embedding method.
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