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Abstract

With the rising number and complexity of cancer therapies,
it is increasingly difficult for clinicians to identity an opti-
mal combination of treatments for a patient. Our research
aims to provide a decision support tool to optimize and sup-
plant cancer treatment decisions. Leveraging machine learn-
ing, causal inference, and decision analysis, we will utilize
electronic medical records to develop dynamic cancer treat-
ment strategies that advice clinicians and patients based on
patient characteristics, medical history, and etc. The research
hopes to bridge the understanding between causal inference
and decision analysis and ultimately develops an artificial in-
telligence tool that improves clinical outcomes over current
practices.

Summary

My research applies ML to develop a tool for clinicians
to optimize cancer treatment decisions. In the past decade,
there has been a reversal of 146 standard medical practices
(Prasad et al. 2013), and many questions remain about the
best treatment strategies. This is especially true for cancer
treatments; with the rising number and complexity of cancer
therapies, clinicians find it increasingly difficult to identify
the best combination of treatments and when to switch
treatments. Thus, there is an urgent need for better longitu-
dinal strategies that manage treatment combination and tim-
ing while considering patient characteristics, medical his-
tory, and personal preferences. Ideally, an optimal treatment
strategy will prolong life, decrease hospitalization, and im-
prove patient quality of life.

For my Ph.D. research, I will leverage machine learning
(ML) to develop a decision support tool for dynamic can-
cer treatment strategies that will advise clinicians and
patients based on patient characteristics, medical his-
tory, response to therapy, and side effects. Specifically,
I will begin by focusing on initial treatment planning for
localized prostate, esophageal, and oropharynx cancer. The
research is highly interdisciplinary, combining causal infer-
ence, decision analysis, and machine learning for medical
application and advancement. Causal inference measures the
effect of a treatment on an outcome. Decision analysis tools
provide the framework that allows an optimal decision un-
der uncertainty. With ML, the two fields can be combined to
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help clinicians choose optimal treatments. Finally, the tem-
poral nature of medical data makes it is an ideal subject for
research on longitudinal methods for causal inference.

Aims and Contribution

Using the rich and growing information available in elec-
tronic medical records (EMR), I aim to develop a tool that
can 1) build a longitudinal causal inference model for the
effect of a therapy on patient outcomes, 2) design a can-
cer treatment strategy that can adapt to changing circum-
stances in a patient’s disease progression, and 3) help plan
systemic (e.g., chemotherapy, immunotherapy), radiation,
and surgery treatments for various types of cancer. This re-
search thus has the potential to help clinicians better ap-
ply ML tools and provide decision support systems that im-
prove patient outcomes. The use of high-dimensional EMR
data offers a key advantage over past studies, which used
population-based databases that lack detailed information
about many important confounders, i.e., variables that affect
both treatment and outcomes (Williams et al. 2017). Further-
more, my research will help build generalizable knowledge
on performing causal inference from observational data, de-
velop methods for identifying personalized treatment strat-
egy based on an individual’s EMR data, and ultimately help
improve clinical outcomes over current practices.

Research Plan

I will use the Stanford Cancer Institute Research Database
(SCIRDB), a rich set of data that integrates resources from
EPIC, STARR, databases in surgical pathology and radiation
oncology, and the Stanford Cancer Registry. It contains data
on over 100,000 patients collected since 2008 and provides
rich clinical information from oncology, inpatient stays, ra-
diology, nursing, and labwork. Internal Review Board ap-
proval has already been acquired for the research.

Step 1: Creating computer-understandable format of
clinical data A challenge with EMR data is that much of
it is unstructured (i.e., in the form of clinical notes). To cre-
ate computable representations of this data, I will build on
the work in Banerjee et al. (2018), which developed a hy-
brid pipeline that combines semantic data mining with neu-
ral embedding to extract a vector-based dataset from the
multiple types of free-text clinical notes. I will combine
the learned vector-based datasets in Banerjee et al. (2018)
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with the structured EMR data to create a comprehensive
dataset with patient characteristics (e.g., age, gender), medi-
cal history, tumor characteristics, hospitalization history, and
treatment history. I am currently developing the natural lan-
guage processing (NLP) language model for extracting the
necessary information from the free-text clinical notes. The
groundwork of this research is submitted as a student ab-
stract for the AAAI-20 Conference and I expect to have
completed this portion by AAAI-20 Conference.

Step 2: Decision-making tool I will build on the exist-
ing methods in Chen et al. (2017) and Schulam and Saria
(2017). Chen et al. (2017) adapted a Markov Decision Pro-
cess (MDP) into a sequential decision-making tool for ther-
apy choice in a class of metastatic breast cancer patients.
This model maintained a running belief about the effective-
ness of each therapy treatment as observations were made
and used it to make therapy recommendations. Schulam and
Saria (2017) introduced the Counterfactual Gaussian Pro-
cess (CGP), an algorithm based on the potential-outcome
model (Rubin 1974), Gaussian processes (Rasmussen 2003),
and marked point processes (Daley and Vere-Jones 2007),
and designed to support decision-making in the longitudinal
setting. When applied to individualized treatment planning,
this algorithm showed promising results.

I will use Schulam and Saria (2017)'s CGP model in place
of Chen et al. (2017) 's MDP model. Because the CGP builds
a causal inference model for longitudinal data and predicts
the future progression from sequences of observations and
treatments at irregular time intervals, it is ideal for this re-
search. Based on the framework in Chen et al. (2017), I will
design a strategy tailored to a patient or class of patients that
answers 1) what the most effective current therapy is, and 2)
when clinicians should switch to another therapy.

For the potential-outcomes framework (Rubin 1974), the
treatments are the various types of existing cancer treatments
(i.e., systemic, radiation, and surgery). The outcome will be
the life expectancy and quality of life. I will parametrize the
CGP inputs with domain knowledge from clinical trials or
expert judgment from clinicians. I will also perform sensi-
tivity analysis on various parameters – e.g., chemotherapy
toxicity – to identify when the causal assumptions conflict
with the dataset, thereby making these methods more ac-
ceptable in practice. Patient preferences can also play a ma-
jor role in treatment decisions and I will explore how they
can be incorporated into the model as additional parameters.

An important part of the research will be identifying the
most significant potential confounders and finding ways to
control for them. As variables, confounders can obscure the
real effect of the treatment. In the longitudinal setting, we
have the additional problem that both the type and timing
of treatments may depend on the outcome. Although the
CGP explicitly addresses the confounding problem, it still
requires that relevant confounders be observed. By AAAI-
20 Conference, I expect to be in the process of develop-
ing the causal inference models and have developed some
method for identifying confounding from the EMR dataset.

Step 3: Validate causal inference model against random-
ized studies As described in Schulam and Saria (2017),

the validity of the causal inference models cannot be quanti-
tatively evaluated without prospective experimental data. In
addition to measuring fit on observational data, I will com-
pare the treatment recommendations against the final results
from comprehensive randomized clinical trials. Specifically,
I will validate the causal inference model by examining how
well it can reproduce the results from these established clini-
cal studies for prostate (Hamdy et al. 2016), esophageal (van
Hagen et al. 2012), and oropharynx cancer (Nichols et al.
2019). I will then benchmark the performance of the CGP
model against the MDP model in Chen et al. (2017) and
compare the quality of the decisions recommended by the
two approaches.
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