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Abstract

My thesis research incorporates high-level abstract behav-
ioral requirements, called ‘conceptual constraints’, into the
modeling processes of robot Learning from Demonstration
(LfD) techniques. My most recent work introduces an LfD al-
gorithm called Concept Constrained Learning from Demon-
stration. This algorithm encodes motion planning constraints
as temporal Boolean operators that enforce high-level con-
straints over portions of the robot’s motion plan during
learned skill execution. This results in more easily trained,
more robust, and safer learned skills. Future work will in-
corporate conceptual constraints into human-aware motion
planning algorithms. Additionally, my research will investi-
gate how these concept constrained algorithms and models
are best incorporated into effective interfaces for end-users.

Introduction Whether they are articulated arms in auto-
motive factories or Cartesian platforms of industrial drug
manufacturing, most robots exist in the realm of large-scale
industrial processes; those that are highly repetitive, precise,
and relatively unchanging (Bahrin et al. 2016). A blossom-
ing niche of robotics research called Human-Robot Interac-
tion focuses on robots designed or programmed to work with
human counterparts (Argall et al. 2009). Such robots have
the potential to expand the benefits enjoyed by large-scale
industrial automation to more dynamic small scale indus-
tries. However, human-robot collaboration presents a num-
ber of challenges not often present in industrial settings:
safety in shared workspaces, rapidly changing task require-
ments, decision-making, and, perhaps most challenging, ad-
hering to human expectations of behavior. Overcoming such
challenges will invite a new era of more capable, adaptable,
and collaborative robotics that revolutionize a wide range of
industries previously inaccessible to automation. Recent ad-
vances in AI and robotics have provided the necessary foun-
dations to effect transformative change. As such, my thesis
work focuses on providing human users the means to easily
train a collaborative robot to execute dynamic skills while
adhering to important behavioral restrictions.

Concept Constrained Learning from Demonstration
The first two years of my research have been motivated
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Figure 1: A user teaching a robot a task via kinesthetic learn-
ing.

by the idea that incorporating abstract behavioral restric-
tions into robotic learning methods might precipitate safety
awareness and increase the learning efficiency of the sys-
tem. My first paper, accepted to the 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, real-
izes this approach by introducing an algorithm called Con-
cept Constrained Learning from Demonstration (CC-LfD)
(Mueller, Venicx, and Hayes 2018). The core of CC-LfD
draws from an area of robotics research known as Learning
from Demonstration (LfD), comprising a set of techniques
enabling non-expert users with no programming knowledge
to teach a robot how to perform a task. Traditionally, these
techniques utilize teleoperation, kinesthetic learning, or im-
itation learning, methods of demonstration that record low-
level data such as end-effector position and robot configura-
tion (Goodrich, Schultz, and others 2008).

Low-level data has limited information bandwidth for
capturing important factors and abstract concepts essential
to successful skill learning and execution (Chernova and
Thomaz 2012). CC-LfD introduces ‘conceptual constraints’
to represent abstract restrictions on the behavior of the robot
(e.g. keeping a pitcher upright until over a cup). These
constraints are encoded as Boolean operators that evaluate
whether a given low-level environment state satisfies the
high-level abstract idea it represents. The motive is to aug-
ment low-level robot state data with high-level abstract in-
formation such that the learned model much more closely
resembles the ground truth representation of a task or skill.

CC-LfD enables users to dictate when and where con-
ceptual constraints must hold true during the demonstra-
tion of a task. These constraints are incorporated into a
technique called Keyframe LfD (Akgun et al. 2012) where
the data points of temporally aligned demonstration trajec-
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tories are clustered into sequential groups across demon-
strations. Through statistical modeling of the clusters into
keyframes, these clusters can be used to generate waypoints
that the robot follows sequentially to perform a skill. In CC-
LfD, waypoints generated from the keyframe models pass
through a rejection sampling filter where each point is eval-
uated with the constraints’ Boolean operators assigned to
the given keyframe. This ensures the robot moves through
a sequence of constraint-compliant waypoints. As a conse-
quence, we were able to show that robotic learning systems
employing CC-LfD require far fewer demonstrations than
standard Keyframe LfD to produce robust learned skills.

I am currently working on extending CC-LfD toward Au-
tonomous Concept Constrained LfD (ACC-LfD), automat-
ing the currently entirely human-driven selection and an-
notation of constraints while retaining the benefits of CC-
LfD. This work serves to substantially reduce the burden that
constraint assignment places on the user during demonstra-
tion. Inspired by the Transition State Clustering (TSC) algo-
rithm (Krishnan et al. 2018), ACC-LfD uses a combination
of Variational Gaussian Mixture Models (VGMM) to clus-
ter keyframes and constraint-specific heuristics to parame-
terize conceptual constraints. Similar to the TSC algorithm,
a VGMM clusters keyframes based on common information
contained within the demonstration data. Using a concep-
tual constraint that restricts the orientation of a cup as an
example, a VGMM might generate two clusters represen-
tative of a pouring task: an upright orientation cluster and
a pouring orientation cluster. Heuristics for this orientation
constraint could be the ‘average’ orientation and angle of
deviation from that average, calculated using the data points
within each cluster. This average and the angle of deviation
would thus populate the constraint’s parameters to evaluate
keyframe sample points for the orientation constraint.

Constrained Compliant Robot Motion Planning Both
CC-LfD and ACC-LfD suffer from a common issue in that
they do not consider conceptual constraints when relying on
offline motion planning algorithms to traverse between way-
points. This forces both algorithms to require more tightly
spaced keyframing than necessary in order to avoid con-
straint violation during intermediate poses. To address this
problem, I will be focusing on incorporating conceptual con-
straints into existing online and offline motion planning al-
gorithms (to be submitted to AAAI 2021). A key challenge
of this work is that constrained planning often must occur in
a higher-dimensional space than conventional fast configu-
ration space planning allows. Thus, each abstract constraint
must either have a geometric representation in this space,
or must utilize a cost function that evaluates the generated
local plans for constraint compliance. Local plans are the
small incremental movements of joints that the robot con-
ducts during the execution of a chosen automated motion
plan. Similarly, this cost function could be used to scale the
first and second order vector fields generated over the state
space employed by Dynamic Motion Primitive algorithms,
such as the end-effector space (Ijspeert et al. 2013).

Natural Language and Augmented Reality Interfaces
While concept constrained algorithms and motion planning

might provide effective means to inject abstract information
into LfD methods, the process of injection must be con-
sidered. Designing more sophisticated interfaces that pro-
vide adaptable and efficient means of communicating con-
straints constitutes the final research effort of my degree
(2021 – 2022 timeframe) and the final piece and capabil-
ity required for my PhD work’s proposed LfD system. Nat-
ural language interfaces can provide an intuitive and high-
information bandwidth mechanism for users to dictate con-
ceptual constraints. At present, CC-LfD uses a very simplis-
tic natural language interface, consisting mainly of keyword
recognition or one word commands. A major challenge in-
hibiting the use of more sophisticated language interfaces
is the ambiguity naturally present in all languages. When
a user says, “keep a safe distance from any electronics in
the environment.”, the robotic system must parameterize the
‘safe distance’ constraint and rely on object classification to
identify where the electronics are in the workspace.

One solution could be to present the user with an under-
standable visualization of the encoded constraints to provide
assurance that the learning system correctly encoded com-
municated constraints. My research will investigate meth-
ods to visualize constraints via augmented reality that are
intuitive to the user as a supplement to the natural language
interface. This interface will also enable a user to edit the pa-
rameterization of the encoded constraints. For example, the
user might edit what is considered an allowed orientation for
a cup carrying task. These interfaces will be evaluated for ef-
ficacy with human-subjects studies that explore both the ob-
jective performance increases in robotic skill execution and
the subjective burden placed upon human users.
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