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Abstract

Most problems from classical machine learning can be cast
as an optimization problem. We introduce GENO (GENeric
Optimization), a framework that lets the user specify a con-
strained or unconstrained optimization problem in an easy-
to-read modeling language. GENO then generates a solver,
i.e., Python code, that can solve this class of optimization
problems. The generated solver is usually as fast as hand-
written, problem-specific, and well-engineered solvers. Often
the solvers generated by GENO are faster by a large margin
compared to recently developed solvers that are tailored to a
specific problem class.
An online interface to our framework can be found at
http://www.geno-project.org.

1 Introduction

Most problems from classical machine learning like support
vector machines, robust regression, elastic net regression,
sparse PCA, matrix or tensor factorization, etc. can be cast as
optimization problems. Each new machine learning problem
gives rise to a new optimization problem for which a new
problem-specific solver is being implemented manually. How-
ever, designing and implementing optimization algorithms is
still a time-consuming and error-prone task.

Here, we demonstrate GENO (GENeric Optimization),
an optimization framework that allows to state constrained
and unconstrained optimization problems in an easy-to-read
modeling language. From the problem formulation that the
user can specify an optimizer is automatically generated.

Contrary to common belief, we could show (Laue, Mitter-
reiter, and Giesen 2019) that the solvers generated by GENO
are (1) as efficient as well-engineered, specialized solvers
like LIBSVM, LIBLINEAR, or glmnet, (2) more efficient by
a decent margin than recent state-of-the-art, problem-specific
solvers that have been published at ICML and NeurIPS within
the last few years, and (3) orders of magnitude more efficient
than classical modeling language plus solver approaches like
CVXPY paired with solvers like Gurobi or Mosek.
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Related work. Classical machine learning is typically
served by toolboxes like scikit-learn (Pedregosa and oth-
ers 2011), Weka (Frank, Hall, and Witten 2016), and
MLlib (Meng and others 2016). These toolboxes mainly
serve as wrappers for a collection of well-engineered im-
plementations of standard solvers like LIBSVM or glmnet.
A disadvantage of the toolbox approach is a lacking of flex-
ibility. A slightly changed model, for instance by adding a
non-negativity constraint, might already be missing in the
framework.

Modeling languages provide more flexibility since they
allow to specify problems from large problem classes. Popu-
lar modeling languages for optimization are CVX (Grant
and Boyd 2008) for MATLAB and its Python extension
CVXPY (Diamond and Boyd 2016), and JuMP (Dunning,
Huchette, and Lubin 2017) which is bound to Julia. All these
languages take an instance of an optimization problem and
transform it into some standard form of a linear program
(LP), quadratic program (QP), second-order cone program
(SOCP), or semi-definite program (SDP). The transformed
problem is then addressed by solvers for the corresponding
standard form. However, the transformation into standard
form can be inefficient, because the formal representation
in standard form can grow substantially with the problem
size. This representational inefficiency directly translates into
computational inefficiency.

GENO differs from the standard modeling language plus
solver approach by a much tighter coupling of the language
and the solver. GENO does not transform problem instances
but whole problem classes, including constrained problems,
into a very general standard form. Since the standard form
is independent of any specific problem instance it does not
grow for larger instances. GENO does not require the user to
tune parameters and the generated code is highly efficient.

2 The GENO Pipeline

GENO features a modeling language and a solver that are
tightly coupled. The modeling language allows to specify
a whole class of optimization problems in terms of an ob-
jective function and constraints that are given as vectorized
linear algebra expressions. Neither the objective function nor
the constraints need to be differentiable. Non-differentiable
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Figure 1: A few optimization problems formulated in the GENO modeling language. The problem on the left is an unconstrained
optimization problem that computes the Rayleigh quotient, the problem in the middle is the non-negative least squares problem,
and the problem on the right shows an �1-norm minimization problem from compressed sensing over the unit simplex.

problems are transformed into constrained, differentiable
problems. A general purpose solver for constrained, differen-
tiable problems is then instantiated with the objective func-
tion, the constraint functions and their respective gradients.
The gradients are computed by the matrix and tensor calcu-
lus algorithm (Laue, Mitterreiter, and Giesen 2018) and its
extension (Laue, Mitterreiter, and Giesen 2020).

Generating a solver takes only a few milliseconds.
An interface to the GENO framework can be found at
http://www.geno-project.org.

Modeling Language

A GENO specification has four blocks, see Figure 1 for some
examples: (1) Declaration of the problem parameters that can
be of type Matrix, Vector, or Scalar, (2) declaration of one or
more optimization variables that also can be of type Matrix,
Vector, or Scalar, (3) specification of the objective function
in a MATLAB-like syntax, and finally (4) specification
of the constraints, also in a MATLAB-like syntax that
supports the following operators and functions: +, -,
*, /, .*, ./, ∧, .∧, log, exp, sin, cos,
tanh, abs, norm1, norm2, sum, tr, det,
inv. Matrices can be general dense matrices or sparse,
symmetric, or positive semidefinite.

Note that in contrast to instance-based modeling languages
like CVXPY no dimensions need to be specified. Also, the
specified problems do not need to be convex. In case the
problem is non-convex, a local optima will be returned.

Generic Optimizer

At its core, GENO’s generic optimizer is a solver for un-
constrained, smooth optimization problems. Thus, we imple-
mented the L-BFGS-B quasi-Newton algorithm that can also
handle box constraints on the variables. It scales very well
to problems involving millions of variables. This solver is
then extended to handle also non-smooth and constrained
problems using an Augmented Lagrangian approach.

While GENO relies only on this optimization algorithm
combination, it is surprising that the automatically generated
solvers are usually as fast as well-engineered, specialized
solvers, more efficient by a good margin than many recent
state-of-the-art, problem specific solvers, and orders of mag-

nitude faster than classical modeling language plus solver
approaches.

More technical details and experiments on a diverse set of
classical machine learning problems can be found in the full
paper (Laue, Mitterreiter, and Giesen 2019).
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