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Abstract 
One of the hallmarks of the human intelligence is the ability 
to learn continuously, accumulate the knowledge learned in 
the past and use the knowledge to help learn more and learn 
better. It is hard to imagine a truly intelligent system with-
out this capability. This type of learning differs significantly 
than the classic machine learning (ML) paradigm of isolated 
single-task learning. Although there is already research on 
learning a sequence of tasks incrementally under the names 
of lifelong learning or continual learning, they still follow 
the traditional two-phase separate training and testing para-
digm in learning each task. The tasks are also given by the 
user. This paper adds on-the-job learning to the mix to em-
phasize the need to learn during application (thus online) af-
ter the model has been deployed, which traditional ML can-
not do. It aims to leverage the learned knowledge to discov-
er new tasks, interact with humans and the environment, 
make inferences, and incrementally learn the new tasks on 
the fly during applications in a self-supervised and interac-
tive manner. This is analogous to human on-the-job learning 
after formal training. We use chatbots and self-driving cars 
as examples to discuss the need, some initial work, and key 
challenges and opportunities in building this capability.  

 Introduction   
The classic machine learning (ML) paradigm works by 
running an ML algorithm on a given training dataset to 
learn a model. The model is then deployed and used in an 
application. This paradigm has at least two major issues.  
1. The learning process does not retain and use the previ-

ously learned knowledge. This paradigm is called iso-
lated single-task learning (Chen and Liu, 2016). We 
humans never learn in isolation or from scratch. We 
learn continually, retain the learned knowledge, and use 
it to help future learning. Over time we become more 
and more knowledgeable and better and better at learn-
ing. Without accumulating the past knowledge and lev-
eraging it in new task learning, an ML algorithm needs 
a huge amount of labeled data. We humans can learn 
very well with only a few examples. Labeling of data is 
often done manually, which is very time-consuming. As 
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the world is too complex with too many tasks, which 
also change constantly, it is impossible to label a large 
amount of data constantly for every possible task. 

2. There is no learning after the model is deployed in an 
application. Human learning is different as we continue 
to learn on the job after formal training. Studies have 
shown that about 70% of human knowledge is learned 
while working on a task or on the job. Only about 10% 
is learned through formal training and the rest 20% is 
learned through imitation of others. An AI system 
should also learn on the job during model applications.  

Lifelong (or continual) learning (LL) attempted to imitate 
the human continuous learning process by learning a se-
quence of tasks incrementally, accumulate the learned 
knowledge, and adapt/use it to help future learning (Chen 
and Liu, 2016). However, the current LL methods still 
work in an offline mode and cannot do on-the-job learning 
after model deployment. Their tasks and training data are 
also provided by human users. This paper focuses on on-
the-job learning, which may be regarded as online LL.  
Definition: On-the-job learning studies (1) how to contin-

uously discover new tasks by the agent itself, (2) gather 
training data also through the agent’s own active effort, 
and (3) incrementally learn the new tasks during model 
application without interrupting the application.  

Some works has been done on (1) and (3) under open-
world learning and continual learning, respectively. How-
ever, little work has been done on (2). We propose interac-
tive self-supervision (ISS) for labeled training data gather-
ing via the agent’s own inference, imitation, and natural 
interactions with humans and the environment. We should 
note that ISS is not a kind of unsupervised methods.  
 We use chatbots and self-driving cars as examples to 
discuss the necessity for on-the-job learning, some initial 
work, and major challenges. These systems all have to face 
the real world that is full of unknowns and they have to 
learn on the job (during actual conversation or driving) in 
order to function well because it is impossible to know 
what a person may say or what a car may see on the road in 
order to train the systems completely offline or beforehand.  
 It is hard to imagine a truly intelligent system without 
the lifelong learning and on-the-job learning capabilities.  
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Lifelong Learning and Continual Learning 
This section introduces lifelong learning and continual 
learning (Chen and Liu, 2018). They basically mean the 
same thing, but the past research under the two names fo-
cuses on different aspects of the same problem.  

Lifelong Learning (LL)  
LL is defined in (Chen and Liu, 2016) as follows (based on 
(Thrun and Mitchell, 1995; Thrun, 1996; Silver, Yang, and 
Li, 2013; Ruvolo and Eaton, 2013; Chan and Liu, 2014):  
Definition: At any time point, the learner has learned a 
sequence of N tasks, T1, T2, …, TN. When faced with the 
(N+1)th task TN+1, the learner can leverage the knowledge 
in the knowledge base (KB) to help learn TN+1. KB main-
tains and accumulates the knowledge learned from the pre-
vious N tasks. After the completion of learning TN+1, KB is 
updated with the knowledge gained from learning TN+1.  
 We see that the goal of LL is to leverage the knowledge 
learned in the past to learn the new task TN+1 better.  

Continual Learning (CL) 
The term continual learning (CL) is more commonly used 
than LL in the deep learning community. The focus of CL 
is to solve catastrophic forgetting (CF) (Li and Hoiem, 
2016; Seff et al., 2017; Shin et al., 2017; Kirkpatrick et al., 
2017; Rebuffi et al., 2017; Lee et al., 2017; He and Jaeger, 
2018; Yoon et al., 2018; Masse et al., 2018; Schwarz et al., 
2018; Hu et al., 2019). CF means that when a neural net-
work (NN) learns a sequence of tasks, the learning of each 
new task is likely to change the weights learned for previ-
ous tasks, which degrades the model accuracy for the pre-
vious tasks (McCloskey and Cohen, 1989). Human brains 
have the remarkable capability of learning a large number 
of tasks incrementally with little interference among them.  
 There are two main CL settings:  
Class continual learning (CCL): In CCL, each task con-

sists of one or more classes to be learned together but 
only one model is learned to classify all classes so far. In 
testing, a test instance from any class may be presented 
to the model for it to classify with no task information.  

Task continual learning (TCL). In TCL, each task is a 
separate classification problem (e.g., one classifying dif-
ferent breeds of dogs and one classifying different types 
of birds). TCL builds a set of classification models (one 
per task) in one neural network. In testing, the system 
knows which task each test instance belongs to and uses 
only the model for the task to classify the test instance.   

Deal with Forgetting and Improve Learning 
Ideally, we would like LL or CL to achieve both objectives 
i.e., (1) learning the new task better (2) without forgetting 
the past models. Clearly, not all problems can achieve 
both. It is not obvious that different tasks or classes can 
help each other for CCL (except feature sharing). For TCL, 

if the tasks are entirely different, it is hard to improve the 
new task learning either. For example, one task is to classi-
fy whether one has a heart disease or not and another is to 
classify whether a loan application should be approved. 
Since the two tasks have little similarity, they have little 
knowledge sharing, and thus cannot help each other much. 
In these cases, CF is the only problem to solve.  
 However, for TCL, if the tasks are similar or share many 
aspects, then it is possible to achieve both objectives. Sen-
timent classification (SC) (Liu, 2012) is a good example 
because different tasks in SC have a lot of knowledge shar-
ing, e.g., sentiment words/phrases (e.g., good, great, bad, 
and terrible) are similar across tasks. Each SC task is a 
separate classification problem that classifies whether a 
product review expresses a positive or negative sentiment. 
Lv et al. (2019) proposed a method, called SRK, which 
deals with CF and also improves the accuracy of the new 
task learning significantly. Additional experimental results 
show that the accuracy of the models of previous tasks also 
improves by 3% on average. But for some tasks, the results 
are also worse off significantly, which indicate some for-
getting. It is interesting to deal with CF for these tasks. 

On-the-Job Learning 
Existing LL/CL techniques still mainly take the traditional 
batch or offline training and testing approach. They per-
form no learning after the learned model is deployed in its 
intended application, i.e., no learning while working on a 
task or on the job. As we discussed in the introduction sec-
tion, we humans learn much of our knowledge on the job.  
 Note that there is a related ML paradigm called online 
learning, where the training examples arrive in a sequential 
order and when a new labeled example arrives, the existing 
model is quickly updated to produce the best model so far. 
On-the-job learning includes online learning but focuses on 
the more challenging task of continuous learning in the 
open environment where there are unseen objects or unex-
pected scenarios. Spotting and learning them on the fly is 
the core (including how to obtain class labels of the data). 
   Classic ML makes the closed world assumption.  
Closed world assumption: The classes seen in testing or 

application must have been seen in training.  
This means that in applications, the system cannot see any-
thing new. This is not always true because in many appli-
cations, by nature the system will almost certainly encoun-
ter instances of unseen classes or unexpected situations that 
it has not been trained for. For example, during driving, a 
self-driving car is very likely to see new objects or unex-
pected scenarios (or corner cases). A chatbot will certainly 
encounter a user intent that it has never learned or an utter-
ance that it cannot understand. In such cases, the system 
works in an open world environment in contrast to the 
closed world environment where the traditional ML oper-
ates. In the open world, the system has to learn on the job.  
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Proposed New Lifelong Learning Architecture  
As on-the-job learning is, by nature, a continuous learning 
process, we incorporate it into the lifelong learning defini-
tion and architecture in (Chen and Liu, 2016; 2018). The 
new architecture is given in Figure 1. The orange colored 
links reflect the on-the-job learning. We can see that during 
model application, the system can discover new tasks to be 
learned, new training data for learning, and new knowledge 
(auxiliary knowledge) to be added to the KB that may be 
leveraged in future learning or to improve the current mod-
el (Shu et al., 2017b). Note that dealing with CF is not re-
flected in the architecture as it stays in the algorithm of the 
Learner. Note also we do not present a new definition of 
lifelong learning as it is fairly easy to see from Figure 1.  

Main Steps of On-the-Job Learning  
We now discuss on-the-job learning in detail. We use su-
pervised learning as an example to illustrate the essential 
steps. Later, we will discuss two use cases: learning during 
a dialogue or conversation and during driving of a self-
driving car, where we will also see other forms of learning.  
1. Detect instances of unseen classes: On-the-job learn-

ing starts with the system detecting instances of unseen 
(in training) classes, i.e., unexpected things, which form 
a new task to be learned incrementally. Formally, the 
problem is stated as follows (Chen and Liu, 2018):  
  At any point in time, the learner has built a multi-class 
classifier FN based on past N classes of data D1, D2, …, 
DN with their corresponding class labels l1, l2, …, lN. FN 
can classify each test/application instance to either one 
of the N known classes or reject it and put it a set R.  

Several researchers have studied this problem, e.g., 
Scheirer et al. (2013), Bendale and Boult, 2015; Fei and 
Liu (2016), De Rosa et al (2016), and Xu et al. (2019).  

2. Identify unseen classes and gather training data: 
Once a set of instances R are found to be from some un-
seen classes, the system identifies the hidden (unseen) 
classes C and gather training data in order to incremen-
tally learn them. For example, a robot is built for greet-
ing hotel guests. At any time, it has learned to recognize 
all existing guests. When it sees an existing guest, it 
greets and chats with him/her like a friend. When a new 
guest arrives, it should detect that it has never seen 
him/her before. It can say hello, asks for his/her name, 
take some pictures (training data), and then learn to 
recognize the guest. Next time when it sees the person, 
it can address the person by his/her name and chat like 
an old friend. This sounds easy! However, in general, 
this step is challenging as it is an unsupervised learning 
problem. The system does not know the number of 
classes in C or which instance belongs to which class. 
The next subsection is dedicated to this problem. 

3. Incrementally learn the unseen classes: Assume that 
there are k new/unseen classes in C that have enough 
training data. The learner incrementally learns the k 
classes based on the gathered training data. That is, the 
existing model FN is updated to produce a new model 
FN+k. This is a class continual learning (CCL) problem.  

After learning in step 3, the system goes to step 1 and 
FN+k becomes FN. The process continues.  

If learning and prediction is not the end task, the system 
will use the newly learned knowledge to help perform the 
end task, e.g., to generate a response to the user in a dia-
logue, or to generate a control action to control the car.  
 Steps 1 and 3 have been studied in open-world learning 
(Shu et al., 2017a, 2018; Chen and Liu, 2018) and continu-
al learning (Chen and Liu, 2018; Parisi et al., 2018) re-
spectively. Step 2 needs significant research, which we 
discuss next and propose a new method to do it.  

Figure 1: Architecture of lifelong learning incorporating on-the-job learning (best viewed in color). 
Note: T1 … TN are the previously learned tasks, TN+1 is the current new task to be learned and DN+1 is its training data. The Learner learns by 
leveraging the relevant prior knowledge identifying by Task-based Knowledge Miner from the Knowledge Base (KB), which contains the 
retained knowledge in the past. The orange-colored lines indicate on-the-job learning.  
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Interactive Self-Supervision 
Step 2 is a key challenge for on-the-job learning, i.e., how 
to find the hidden classes and obtain labeled training data. 
This must be done through actions initiated by the system 
itself without interrupting the application, as an intelligent 
agent should not rely solely on the user-provided training 
data to learn passively offline forever. It must learn active-
ly on its own based on its prior knowledge by observing 
and interacting with the environment and humans to obtain 
explicit or implicit feedback to serve as supervision.  
 We propose an interactive self-supervision (ISS) frame-
work for obtaining supervisory information via interactions 
with humans and the environment. It has three main forms:  
 Trial-and-error: The system performs actions in the 

environment and observes the effects to gather training 
data. It is assumed the system knows right and wrong.  

 Asking the user: The system interacts with human users 
by asking them questions (see the two use cases below). 
Their answers can serve as the supervisory information.  

 Reasoning and imitation: The system uses its past 
knowledge and context to infer class labels through rea-
soning and imitation. For instance, in the guest greeting 
robot example, the robot should know that the pictures 
(training data) taken are all from that guest (class label). 
We will see how imitating others can help identify la-
bels in the self-driving example later. Zero-shot learn-
ing (Palatucci et al. 2009) is also applicable here. 

Note that asking human users is justified because it is evi-
dent that a large amount of our own knowledge is not 
learned by ourselves through our own observations or ex-
periences but passed to us through teaching or other means. 
For example, most of us did not personally group vehicles 
into categories (or clusters) and called them buses, cars and 
trucks. We were told of these classes and their names or 
class labels by others. In a similar way, an intelligent agent 
should interact with and learn from humans who already 
possess a lot of knowledge. However, the interactions must 
be done in a natural and seamless way with little burden on 
the humans, unlike large-scale manual data labeling.  

On-the-Job Learning during Conversations 
Chatbots are now used in many applications, but they still 
have major weaknesses. One is that they cannot learn new 
knowledge during conversations, i.e., their knowledge is 
fixed beforehand. This is different from human conversa-
tions. We learn a great deal in our conversations. We either 
learn directly from the utterances of others, or by asking 
others questions. In this way, our knowledge grows over 
time and we become better and better at conversing.  
 There are many opportunities to learn new knowledge 
during a conversation. Here are a few examples.  
Extract knowledge from user utterances.  For example, 

when a user says “I had a cheeseburger at McDonald’s,” 
the chatbot can extract this piece of knowledge and save 

it in its knowledge base if it is unknown. When someone 
else asks “Do you know whether McDonald’s sell 
cheeseburger?” The chatbot can easily answer yes.  

Ask when it does not understand something: Mazumder 
et al. (2019a) proposed a method to do this in the context 
of building natural language interfaces (NLI). One of 
the key issues is how to understand paraphrased natural 
language (NL) commands from users in order to map a 
user command to a system’s API call. Clearly, it is hard 
to exhaust all possible sentences that a user may utter for 
saying the same thing. The system must learn new para-
phrased commands on the job when the user is using the 
NLI. This paper proposed a method to learn them when 
it has difficult to understand a user command via an in-
teractive dialogue with the user. In this way, the system 
becomes more powerful. When the same or a similar NL 
command is given by this or another user, the system 
will have no problem to understand it.   

Ask and infer: New knowledge may be inferred from the 
knowledge embedded in user utterances and the existing 
knowledge in the system’s knowledge base.  

    For example, when someone asks us a question that 
we are unable to answer, we try to retrieve some relevant 
knowledge in our memory and reason over it before re-
sponding. We may also ask for some related information 
from the person whom we are conversing with. The ac-
quired knowledge in the answers is then used to help the 
current reasoning. Mazumder et al. (2018; 2019b) pro-
posed two methods to imitate this process when the user 
asks a yes-or-no question or a WH-question that the 
chatbot is unable answer. The system first formulates 
some questions to ask the user, whose answers are called 
supporting facts. Based on the supporting facts and the 
knowledge already in the chatbot’s knowledge base, the 
system tries to infer the answer. Both the user-provided 
supporting facts and the chatbot inferred knowledge can 
be added to the chatbot’s knowledge base to make the 
chatbot more knowledgeable and better able to answer 
user questions in the future.  

On-the-Job Learning during Self-Driving  
In its simplest form, self-driving involves perception, risk 
assessment, and response generation. Perception identifies 
what are on the road and in the surrounding area. Risk as-
sessment predicts the danger level of each object based on 
its location and behavior, and where the danger may be. 
Response generation uses the prediction results to generate 
actions to control the car. On-the-job learning is necessary 
because it is very hard to exhaust all objects and all corner 
cases in offline training using manually labeled data. 
 We first discuss on-the-job learning for perception and 
risk assessment and then give a personal experience and a 
case for learning preferences. It is extremely hard to train a 
perception system purely based on offline manually la-
beled data because the real-world environment is highly 
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complex and unexpected situations occur all the time. Thus 
the system should learn during driving (on the job).  
Identify unseen or unfamiliar objects (step 1). For ex-

ample, when the car sees a black patch on the road that it 
has never seen before, it must first recognize this is an 
unseen/unexpected object.  

Gather training data by taking pictures (step 2) of it for 
learning. Additionally, in order to predict whether it pre-
sents a danger for the car, the car needs to learn its be-
havior. But during driving, there is not enough time or 
data to learn the object behavior. The car should slow 
down and observe and possibly ask the human passenger 
for assistance. However, during driving, in many cases, 
one can imitate the behavior of the car before it, which 
indirectly provides some supervisory information. For 
example, if the other cars before it have driven through 
the patch with no issue, it can infer that the patch does 
not present a hazard (supervision). The car can just drive 
through it as well. In fact, the car can learn a great deal 
from the cars before it via imitation.  
 Note that in step 2, we also need to group unknown 
objects into classes. This can be difficult during driving 
as it may need to ask the human passenger. This is not an 
issue if the car is parked. It can ask for the names (class 
labels) of the objects by shown him/her the video. Note 
also even if the car is not driving, we still consider this 
on-the-job learning because the car has been sold and is 
out of the factory, and it is learning from its passengers, 
not through offline training initiated by its engineers.  

Learn to recognize the unseen objects (step 3) incremen-
tally based on the collected data (pictures). Learn to pre-
dict the risk of the objects using the data with the super-
visory information gained via imitation above. Then, in 
the future, even when there is no other car in front, the 
car can still drive through without hesitation.  

Based on the risk assessment, generate appropriate control 
actions, which is the end task. Following the example 
above, the car can just drive through normally.  
A real experience: I worked on self-driving cars before. 
Once we were testing a car on the road. It stopped sudden-
ly right in the middle of road and refused to move, but the 
road was wide open. We could not see anything that could 
be hazardous. After back to the lab, we watched the video, 
debugged the system, and found there was a small pebble 
on the road, which human eyes would not have noticed, but 
was caught by a sensor. If the system had a dialogue sys-
tem and the on-the-job learning capability, we could have 
told the car to go ahead, and our instruction will serve as a 
form of supervision for the car to learn (on the job) so that 
it will not have problem next time in a similar situation.  
Learning user preferences: A self-driving car manufac-
ture cannot produce a car that suits everyone’s preferences. 
For example, a safety conscious user may like the car to 
drive slowly. But we cannot ask the user to drive the car 
for a while to gather his/her driving habits and preferences 

and then learn from the data because the user may not 
know how to drive. Thus, the system has to learn from the 
feedback of the user in natural language. For example, 
when the car is driving very fast on a particular road, the 
user says “slow down.” Based on such feedback, the car 
should learn to drive to best suit the user’s preferences.  

Challenges and Opportunities 
In this section, we highlight some major challenges, which 
also present potential research opportunities. Their solu-
tions can have fundamental impact on on-the-job learning 
and LL/CL in particular, and on ML and AI in general. 
1. Learning based on a few examples. Using interactive 

self-supervision, the system is unlikely to collect a large 
number of training examples. Then few-shot learning 
(Lake et al. 2011) that can leverage previously learned 
knowledge will be critical.  

2. Interacting with the environment: To do so effectively, 
the system has to make decisions about what is right 
and what is wrong through reasoning based on its exist-
ing knowledge. This is a challenging task.   

3. Imitation: In the self-driving car example, we saw a 
case that the car imitates the cars in front it. However, it 
is challenging to decide what to and what not to imitate 
and how to imitate. Prior knowledge is again important. 

4. Disaster proof: In order to learn on the job, the initial 
deployed model must have the ability to avoid disasters. 
For example, a self-driving car cannot afford to do any 
trial-and-error during driving if there is no guarantee 
that an action will not cause a catastrophe.  

5. Natural language dialogue: To interact with humans, a 
good natural language interface is needed, which is 
hard to build. Mazumder et al. (2019b) proposed a new 
approach, which includes on-the job learning itself. 

6. Knowledge representation and reasoning: All the above 
activities and LL need to leverage the knowledge 
learned in the past. Knowledge representation and rea-
soning are critical. So far, little research has been done 
about them (especially reasoning) in the LL context.    

7. Correctness of knowledge: In order to use a piece of 
prior knowledge, the system must ensure the knowledge 
is correct. Incorrect knowledge is harmful. Some initial 
but limited work has been done in (Chen and Liu, 2014; 
Mitchell et al., 2015; Bou Ammar et al, 2015). 

8. Applicability of knowledge: A piece of knowledge may 
be correct and useful in some previous domains, but not 
applicable or harmful to the new domain. There is still 
no general method for dealing with this issue. Some 
heuristics have been tried (Chen, Ma and Liu, 2015).  

This list of challenges is by no means exhaustive. The cur-
rent techniques are still primitive. Much research is needed 
to make breakthroughs. Since learning on the job needs 
rich prior knowledge, the system should also learn from 
other sources offline, e.g., Web text (Mitchell et al., 2015).  
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