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Abstract

Drug approval is a long and expensive process, that can take
10-15 years and more than 2 billion dollars. Therefore alter-
native techniques, such as drug repositioning, to identify new
uses for approved drugs, has been gaining increasing atten-
tion. We examine the employment of different drug embed-
dings to predict successful drug repositioning. We study the
employment of drug molecular structure and show that us-
ing larger chemical construct, such as large functional chem-
ical groups, is much more effective than small sub-structures.
We then study embeddings that are based on textual medical
publications and compare them with the chemical-structure-
based embeddings. We eventually present a novel embedding
technique to combine the merit of the textual and chemical-
based approaches. We provide empirical results on a repo-
sitioning benchmark set. Additionally, we present an appli-
cation of such embedding as part of an ongoing reposition-
ing research conducted with a major health care supplier, and
identify a novel drug and indication. The pair has been veri-
fied on a corpus of 1.5 million patient EHR data.

1 Introduction

Drug development is a process that can last between 10 and
15 years, while only 0.1% of the drugs that enter pre-clinical
testing progress to human testing, and only 20% of these are
approved by the FDA (Suresh and Basu 2008). Given the
low probability of a drug to succeed and the long develop-
ment cycle of a new drug, repurposing of existing drugs to
treat diseases became ever more attractive. Drug repurpos-
ing, also know as repositioning, is the process of discover-
ing new indication for known drugs. Historically, the iden-
tification of such drugs was not systematic, but rather more
fortuitous. A famous example is the repurpsoing of Silde-
nafil, an antihypertensive drug, to treat erectile dysfunction.
In recent years, several computational approaches were de-
veloped for the task, including: (1) Electronic health records
(EHRs) based approaches (Nordon et al. 2019); (2) Identify-
ing genes associated with a disease; (3) Predicting binding
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site between a ligand (e.g., a drug) and a target protein us-
ing an optimization process of the chemical structure of the
drug to best fit the protein structure; (4) Signature matching
of a drug and a disease; In this work we focus on signature
matching for the task of drug repurposing.

Signature matching requires representing a drug and a dis-
ease. In recent years, we identified two lines of research: (1)
Chemical representations: computational approaches focus-
ing on the drugs’ chemical structures and their relationship
to the biological activity (Jaeger, Fulle, and Turk 2018); (2)
Natural language representations: literature-based-discovery
approaches that aim to represent the drugs from medical
publications (Yang et al. 2017; Weeber 2007); However, nei-
ther has been translated to a significant applicative success.
In this paper, we study the merit of each representation, and
present a novel approach for combining the two. We present
a joint embedding of text and chemical structure in a joint
representation space and show empirical gain for the task of
drug repurposing.

A chemical drug embedding is created relying on the
drug’s chemical structure. This structure is responsible for
its functionality and effect on the body. There are several
methods to represent a chemical compound: (1) A structural
formula: a graph-like representation of a molecule, which is
descriptive, but computationally expensive and is difficult to
process. (2) Chemical nomenclature: SMILES (Weininger
1988) and IUPAC names (Favre and Powell 2013) are sys-
tematic naming conventions for chemical compounds. They
are much easier to process by computational systems, al-
though lack a good representation of the 3D structure of
the molecule. In contrast to text-based embedding which is
limited to words that exist in training vocabulary, chemical-
based embedding can be used for novel molecules. This
property is useful for drug discovery research. We study
such representation for the task of drug repurposing and
show that choosing the correct chemical representation is
important. We show that using larger construct, such as large
functional groups (IUPAC), is much more effective than
small sub-structures (Jaeger, Fulle, and Turk 2018).

In recent years, several attempts were made to present
textual drug embedding. Most methods (Zhang et al. 2019;
Ngo et al. 2016) create the representation based on the tex-
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Figure 1: Paracetamol Molecule

tual context of the drug as mentioned in medical litera-
ture. Algorithms such as word2vec (Mikolov et al. 2013b;
De Vine et al. 2014), FastText (Bojanowski et al. 2017;
Zhang et al. 2019) and Elmo (Peters et al. 2018) were shown
to create useful representations in other domains. However,
they are missing important factors. For example, it is not
likely that the number of carbon atoms in a drug’s molecule
will be a differentiating factor between embeddings created
based on text from general biomedical papers since these
papers do not usually discuss such factors. Other chemical
properties such as weight, solubility, toxicity may be more
prominent but again, this is highly dependant both on the
corpus being used for training (general medicine, pharma-
cology, organic chemistry, etc.) and also on the size and ex-
tent of the corpus. Another limitation of such embeddings is
that they are limited to entities which appear in the training
corpus and it is hard to use them for novel drugs. FastText
mediates this problem somewhat by encoding sub-strings of
each word in the corpus, hence capturing similar words that
may have a very similar meaning. This is however a par-
tial solution to the case of drugs and other chemical struc-
tures as they may have very different starting representa-
tions. For example, Acetaminophen, Parachetamol, and N-
(4-hydroxyphenyl)ethanamide all refer to the same drug but
are very different textually.

We study the trade-offs between the textual and chemical
representations. We show that both are useful in predicting
drugs to be tested for repurposing (Section 6.1). This might
entail that there is a similar bias for selecting drug candi-
dates for repurposing by researchers based on literature they
read and chemical structures they study. We then present a
novel embedding methodology that captures both the text
context of the drugs and their chemical structure (Section
3.3). We leverage a corpus of 10562 drugs and indications
tested for repositioning, and show that for the task of suc-
cessfully reposition prediction, this hybrid approach yields
the highest performance (Section 6.2). We then present a
novel drug and indication our system identifies and verify
it on a corpus of 1.5 million patient EHR data (Section 7).

2 Related Work

The chemical structure of drugs has been the subject of
biomedical related research. Harel and Radinsky use gener-
ative models to discover novel drugs. The embeddings they
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use rely on chemical structure of known drugs (prototypes).
Similarly, MolGAN (De Cao and Kipf 2018) is a gener-
ative model for molecule generation. It can be used with
reinforcement learning to generate molecules with desired
properties. Coley et al. used a graph convolutional neural
network to predict products of organic reactions. We assess
the common molecular-level drug representations, and show
they perform poorly in the task of drug repositioning.

Literature based discovery (Swanson 1986) has been ap-
plied successfully to the fields of medicine and biomedicine.
Both using textual repositories (Swanson and Smalheiser
1999; Spangler et al. 2014; Sybrandt, Shtutman, and Safro
2017; Lally et al. 2017) and in combination with other data
(Choti, Chiu, and Sontag 2016; Nordon et al. 2019). The task
of biomedical word embedding has also been the subject of
diverse research, Choi, Chiu, and Sontag, show that biomed-
ical embeddings based on different sources can differ in their
representation of relations between concepts.

In this work, we apply both text and chemical representa-
tions for the task of predicting which drugs will be attempted
by researchers for repositioning and for the task of predict-
ing the repositioning result. We present a methodology for
combining both text and chemical representations and show
its merit for the latter task.

3 Embedding Algorithms

We review the different embedding methodologies, which
we test for the task of drug repositioning (Section 6).

3.1 Text-based Drug Embeddings

Text-based embedding algorithms create representation of
words based on the text and context in which they appear.
The Word2Vec algorithm (Mikolov et al. 2013a) creates em-
beddings for words in a given corpus using a model trained
to predict a word given the words around it (CBOW) or to
predict the words around a given word (skip-gram). The re-
sult is a representation that utilizes the word’s context and
has been shown to be very expressive. Generally speaking,
in this embedding, both drugs and indication are represented
by the words describing them in the text. We used a cor-
pus of sentences extracted from SemMedDB(Kilicoglu et
al. 2012), containing 5,814,504 sentences from PubMed ti-
tles and abstracts that have been preprocessed with Sem-
Rep(Rindflesch and Fiszman 2003). The preprocessing in-
cludes a named-entity recognition step in which UMLS enti-
ties in the sentence are identified and mapped to their UMLS
unique identifier (CUI). We chose to use this corpus due to
this important named entity recognition step which mitigates
much of the potential obscurity in the text.

3.2 Chemical-based Drug Embeddings

Chemical materials, including drugs can be described by
their chemical structure. In these embeddings, we describe
drugs based only on their molecular structure. We explore
two types of common chemical embeddings:

Mol2Vec Representation. Extended Connectivity Finger-
prints (ECFP) are topological sub-structures of molecules



that are used for measuring molecular similarity, character-
ising molecules etc. Consider a graph representation of a
molecule as presented in Figure 1. A finger print is created
starting from one vertex in the graph and traversing its sur-
roundings with radius r. Different radii and different start-
ing points may be used to create a set of fingerprints for a
molecule. In Figure 1b, a fingerprint of radius 1 from the
NH vertex is marked in bold.

Mol2vec (Jaeger, Fulle, and Turk 2018) transforms the
SMILES representation of a molecule into a ‘sentence’
constructed of Extended Connectivity Fingerprints (Rogers
and Hahn 2010). In our example, the SMILES represen-
tation of paracetamol is Oclccc(NC(C)=)ccl. This will be
transformed into: fingerprint(O,r=0) fingerprint(O,r=1) fin-
gerprint(c,r=0) fingerprint(c,r=1) fingerprint(c,r=0) finger-
print(c,r=1), etc. Each fingerprint is a “word” and they are
ordered according to the atoms in the SMILES represen-
tation. A word2vec model is then trained on the resulting
corpus to produce an embedding for each fingerprint. The
molecule’s embedding is an aggregate of the embeddings of
its fingerprints. Mol2Vec uses radii of 0, which is the ver-
tex itself, and 1. Our paracetamol molecule will therefore
be translated into a sentence of 22 words since there are 11
atoms in the molecule (excluding hydrogen) and we con-
struct two fingerprints for each (at radii O and 1).

IUPAC Representation. We suggest using an alternative
chemical representation based on IUPAC names. IUPAC
names are chemical nomenclature standardized by the In-
ternational Union of Pure and Applied Chemistry (IUPAC).
The molecule name is constructed by concatenating the
names of the functional groups in the molecule, their re-
spectful position, and spatial relations between atoms and
groups. For example: the IUPAC name of Paracetamol is
N-(4-hydroxyphenyl)ethanamide. It consists of three func-
tional groups: hydroxyl, phenyl and ethanamide.

Functional groups are substructures of molecules which
take part or affect the molecule’s interactions. They are
therefore more relevant to the material’s effect. A chemi-
cal structure may be “broken” into an array of the simplest
(primary) functional groups connected by linking atoms and
chains. However, it is much more useful for our task not to
use an assembly of the simplest functional groups but in-
stead a higher hierarchy of building units (secondary func-
tional groups). Using Paracetamol as an example, the hy-
droxyl and phenyl functions will be considered as a hydrox-
yphenyl unit. This representation uses larger constructs of
the molecule which have a functional significance. We sug-
gest a simple onehot encoding: each drug is represented by
a vector v of length [, where [ is the number of all ITUPAC-
derived functional groups in our data. We set v[i] = 1 if the
drug contains the functional group and O otherwise.

3.3 Hybrid Model: Text and Chemical-based
Drug Embeddings

The text representation carries some information about po-
tential side effects which are not always conveyed in the
chemical structure. On the other hand, the chemical struc-
ture holds deeper information about the molecule. We there-
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Table 1: Text Corpus Example

[ Processing | Sentence |

Original sentence
word2vec corpus
TUPAC word2vec corpus

Aspirin treats pain
C0004057 treats C0030193
Acetoxybenzoic acid treats C0030193

W(t-1)

W(t+1)

uted

W(t+2)

(a) Drug translation (b) word2vec  skip-gram

model (Mikolov et al. 2013b)

Figure 2: ITUPAC-based Word2vec Illustration

fore present a hybrid model that combines the added in-
formation from the molecular structure with the expressive
power of the drugs context. We refer to this method as IU-
PAC word2vec.

We enable this by inserting key structural components
of the chemical representation into the text. We learn the
representation of the chemical substructures given the tex-
tual context along with learning the representation of the
words in the text given those substructures. The final chem-
ical structure of the drug is then constructed by combining
the representations of its chemical components (using mean
aggregation). Specifically, we converted each drug CUI to
the functional groups derived from its IUPAC name, there-
fore the [IUPAC based vocabulary contains mainly functional
groups and UMLS CUIs (for indications). Table 1 presents
and example of the texts used for training the text-based rep-
resentation (Section 3.1), and the transformed texts used for
training the ITUPAC word2vec representation.

Figure 2 illustrates this process (using the skip-gram
method). The sentence “Aspirin treats pain” is translated into
the sentence “Acetoxybenzoic acid treats pain”, which is
then used in the prediction model. The words “Acetoxyben-
zoic”, “treats”, and “pain” are predicted based on the input
word “acid”.

Formally, let D = {d € C|d is a drug} be a list of drugs,
and W = {w € Clw ¢ D} be words in a vocabulary,
and FG = {fg € IUPAC(d),Yd € D} be the set of
functional chemical groups. For a given corpus C' we define:
A = WUPFG. The objective of the skip-gram model for our
new corpus containing chemical structures is therefore given
in Equation 1 by:

T
1
T Z Z log p(atjlat),Va € A

t=1 —c<j<c,j#0

(D



The softmax function is defined as:
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where v, and v/, are the input and output vectors represent-
ing a and A is the number and functional groups derived
from drug names in the vocabulary. As in (Mikolov et al.
2013b), negative sampling is used for complexity efficiency,
and defined by the following objective:
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4 Dataset

RepoDB (Brown and Patel 2017) is a dataset developed as
a benchmark for computational repurposing tasks. Based
on ClinicalTrials.gov and DrugCentral', it contains pairs of
drugs and indications. For each pair a status is provided: ap-
proved, terminated, withdrawn, or suspended. We differen-
tiate between the status approved and the other three status
which we collectively treat as unapproved. RepoDB con-
tains 10562 such pairs, out of which 6677 are approved. In-
dications are identified using the UMLS CUIs and drugs us-
ing their DrugCentral id. We further map drug id to UMLS
CUI and translate the drug to its [UPAC name. We retrieved
the UMLS CUI for each drug in RepoDB using UMLS
REST Api 2. We retrieved the IUPAC name for each CUI
using the NCI/CADD Chemical Identifier Resolver 3.

Date of status is not contained in the dataset. For our tasks,
we add date of status by using the first date the two terms
were mentioned together in a paper abstract on PubMed.

The data set contains 2074 unique indications with vary-
ing frequencies. The indications differ between status: there
are 1229 unique indications with status approved, 1014 in-
dications that are not approved, and only 169 unique indica-
tions that appear with both status approved or not approved
in the data set. For drugs we see a similar dispersion. Out of
1572 unique drugs there are 1519 approved and 463 not ap-
proved. Only 410 unique drugs appear in the dataset with
both status approved and not approved. In order to miti-
gate this bias, we limit the dataset to indications for which
there are examples both in the approved and the unapproved
groups. The resulting data set consists of 1290 pairs. We
label each approved drug-indication pair as true and pairs
with any other status (terminated, withdrawn or suspended)
as false.

3)

5 Empirical Evaluation

Our evaluation consists of two parts. First we create the four
embedding models discussed in Section 3. Then, we use the
RepoDB dataset to train simple models for two tasks: (1)
Predict the results of a drug (re)purposing task; (2) Predict
whether a drug (re)purposing task will be explored.

"http://drugcentral.org/
2https://documentation.uts.nlm.nih.gov/rest/home.html
*https://cactus.nci.nih.gov/chemical/structure
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We use the same dataset to train and test our models. Mi-
nor differences between model datasets may accrue due to
local missing information. For example: if a SMILES repre-
sentation is missing or faulted, mol2vec embedding for that
drug will be missing and the specific data point will be dis-
carded.

5.1 Task 1: Predicting Drug Repurpose Study

Drug approval is a long and expensive process. The decision
to initiate it is not taken lightly, considering various tech-
nical, scientific and financial aspects. Both the drugs being
examined and the indications for which they are tested may
be influenced by limitations of technology, recent discover-
ies, funding and facilities, and possibly even research trends.
We therefore choose our first prediction task to be predict-
ing whether a drug-indication pair will appear in RepoDB,
regardless of the outcome. For this task, true pairs are pairs
that appear in the RepoDB data set and false pairs are pairs
which do not appear in it. We create false pairs by sampling
from the drugs and indications in RepoDB, thus imitating
their distribution in the real data. We experimented on sev-
eral embedding sizes (on a external validation set), and as
the dataset is small, the best performing word2vec embed-
dings was set to length 20. Similarly, for the IUPAC one hot
embedding we set the dimensions of the onehot vector to
100 using PCA. For both, we train a simple neural network
with one hidden layer. We train our networks on 80% of the
data and test on 20%.

5.2 Task 2: Predicting Drug Repurpose Success

We train a simple neural network to classify between ap-
proved and unapproved pairs. As a training set, we used the
data approved up to a cutoff year, and the test set is the
data after that cutoff year. We tested three possible values
for cutoff year: 2014,2000, and 1990. Naturally, the size of
the training set increases with the years and the size of the
test set decreases. The sizes of the training set ranges from
700 pairs in 2014 to 300 pairs in 1990 while the test set
sizes ranges from 16 in 2014 to 350 in 1990. We use the
same simple networks as described in Section 5.1

6 Results
6.1 Task 1: Predicting Drug Repurpose Study

Table 2 presents the average ROC AUC for 10 experiments.
Overall, the onehot IUPAC and text word2vec embeddings
give significantly better results than the two versions of
IUPAC-based words2vec and mol2vec embeddings. We as-
sume the significant difference (40) between the results in
line 1 and 4 stems from the difference in drug embedding (as
both have identical embeddings for indications), supporting
our hypothesis that larger functional groups as expressed in
IUPAC names are more effective than molecular fingerprints
for our task. In fact, our results show that text word2vec em-
bedding of drugs is superior to mol2vec (1.90). Onehot IU-
PAC is superior to both versions of [UPAC-based word2vec
(3.120), suggesting that for this task, a hybrid representation
for drugs is sub-optimal.



Table 2: Drug Study Prediction (AUC)

Embedding ROC AUC | std
1 | onehot IUPAC 0.75 +0.01
2 | word2vec 0.70 +0.03
3 | TUPAC word2vec | 0.65 +0.03
4 | mol2vec 0.62 +0.03

Table 3: Drug Reurposing Prediction (AUC)

[ Cutyear | TUPAC one hot | w2v [ TUPAC w2v | m2v |

2014 0.73 +£0.04 0.74+0.05 | 0.84+£0.03 | 0.76 = 0.05
2000 0.70 +0.01 0.63+0.01 | 0.72+0.02 | 0.6 +0.01
1990 0.64 £ 0.01 0.52 £0.01 | 0.740.02 0.6 +0.01

6.2 Task 2: Predicting Drug Repurpose Success)

Table 3 summarizes the results. As mentioned in Section 5.2,
cutting the data at year 2014 produces the largest training
set but a very small test set (16 to 29 examples). Cutting the
data at year 1990 produces a training set and test set that are
roughly the same size. We therefore focus on the experiment
where the data is cut at year 2000, in this case the test set size
is roughly 20% of the size of the training set.

We observe that IUPAC-based embeddings (onehot or
word2vec) are superior. Mol2vec embeddings achieved
comparable results to text-word2vec embeddings, although
their drug embeddings are based on completely different
datasets — text for word2vec and molecular fingerprints for
mol2vec. A possible explanation for this result is that the
classification model relies on the indication information for
these cases. The hybrid IUPAC-based word2vec reaches the
highest performance. We suggest that the superior perfor-
mance is due to its more expressive representation of drugs.
This allows the prediction model to use drug embeddings
along side indication embeddings for its predictions. It is
generally believed that text-based embedding of concepts is
useful due to the fact that it utilizes the context of each word.
In this example, we see that this might not be the best solu-
tion. The embedding based of pure chemical structure rep-
resented as IUPAC is superior.

7 Application: The Case of Doxazosine

One of the interesting applicative aspects of our finding is
the ability to embed novel molecules using their [UPAC rep-
resentation and use this embedding in machine learning task.
We wish to test this and identify a new indication for a drug.

We received access electronic health records (EHR) col-
lected for over 10 years from patients of a prominent health
care provider in Israel. The data contains prescription pur-
chases, diagnosis, demographic data, measurements and lab
test results for more than 1.5M patients over these years.
We select the Diabetes indication, as it has enough patient
records and the disease improvement can be measured based
on EHR data (such as blood tests). We apply our algorithms
on pairs of drugs and the diabetes indication.

We wish to test whether patients taking the drugs ranked
high by our system, indeed got better — i.e., their diabetes
Hemoglobin A1C (HbAlc) values improved. In an attempt
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to eliminate as much patient variability among drug choices,
we used propensity score matching (Rosenbaum and Rubin
1983) to examine whether a specific drug treatment achieved
independently higher success rates. We used the following
patient characteristics for the matching: DM-2 drug treat-
ment, weight, age, BMI and smoking status. Re-sampling
was allowed in the matching process. Patients with HgAlc
levels higher than 6.5 were classified as successful treat-
ment. In this section, we present a qualitative example for
one such drug, which was explored by our partners in the
medical center and verified.

Alpha 1 blockers are currently used for treatment of
benign prostatic hyperplasia and were found to be corre-
lated with improvement in type 2 diabetes (p < 0.01 in
groups of over 200 patients). Doxazosine is an alpha 1
blocker. It does not appear in the repoDB dataset. Hence,
for the scope of our experiment it is considered a novel
drug. The TUPAC name of the drug is: (RS)-2-[4-(2,3-
Dihydro-1,4-benzodioxine-2-carbonyl)piperazin-1-yl |-
6,7-dimethoxyquinazolin-4-amine. We create a onehot
IUPAdoxazosineC embedding for doxazosine using the
functional groups from its name: Dihydro, benzodioxine,
carbonyl, piperazin, yl, dimethoxyquinazolin, amine.

Comparing a sub-group of patients from the above that
was additionally treated with alphal blockers (for benign
prostate hyperplasia) with a matched group of patients that
did not receive alpha blockers showed highly significant suc-
cess rates for the treated group: 61% success rate for treated
group and 53% success for untreated group. A chi-squared
test with p-value 0.0004 and test statistic of 16.7. The groups
were matched using propensity score matching. The treated
group contained 1356 patients and the untreated group con-
tains 1221 patients.

We look at the result of the classifier for predicting drug
repurpose success for the pair doxazosine- non-insulin de-
pendant diabetes and get a positive score (0.85). That is, our
model predicts with high confidence that doxazosine will be
successfully repurposed for treatment of non-insulin depen-
dant diabetes. Interestingly, the result for predicting drug re-
purpose study for the same pair is rather low (0.27) indicat-
ing that the study of this drug for the treatment of non-insulin
dependant diabetes is less likely to be conducted.

8 Conclusion

In this paper, we compared drug embeddings based on text,
chemical structure and a combination of both in regards to
two drug (re)positioning tasks. We show that embeddings
based on chemical representations are as good as and some-
times better than text based embeddings. We further show
that choosing the right chemical representation is crucial
as using large functional group is superior to small, non-
functional structures such as extended connectivity finger-
prints. We show that the novel approach presented in this pa-
per for combining textual and chemical representation is sig-
nificantly better in the predicting repurpose success. Finally,
we present a qualitative example of an immediate applica-
tion of these results as the ability to embed novel molecules
using their I[UPAC representation and use this embedding
in machine learning tasks. We plan to further combine this



embedding into the EHR based repurposing framework ex-
amining more repurposing candidates.
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