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Abstract 

Over a century separates initial lead service lateral installations 
from the federal regulation of lead in drinking water. As such, 
municipalities often do not have adequate information describ-
ing installations of lead plumbing. Municipalities thus face 
challenges such as reducing exposure to lead in drinking water, 
spreading scarce resources for gathering information, adopting 
short-term protection measures (e.g., providing filters), and 
developing longer-term prevention strategies (e.g., replacing 
lead laterals). Given the spatial and temporal patterns to prop-
erties, machine learning is seen as a useful tool to reduce un-
certainty in decision making by authorities when addressing 
lead in water. The Pittsburgh Water and Sewer Authority 
(PWSA) is currently addressing these challenges in Pittsburgh 
and this paper describes the development and application of a 
model predicting high tap water concentrations (> 15 ppb) for 
PWSA customers. The model was developed using spatial 
cross validation to support PWSA’s interest in applying predic-
tions in areas without training data. The model’s AUROC is 
71.6% and primarily relies on publicly available property tax 
assessment data and indicators of lateral material collected by 
PWSA as they meet regulatory requirements.  

Introduction   

Exposure to lead can cause serious health effects, particu-

larly in children. Lead in paint, soil, and water are the pri-

mary sources of exposure risks (Gould 2009). 

By 1900, lead was a predominant material used for resi-

dential water laterals in U.S. cities owing to its ease of in-

stallation and resistance to corrosion. The water later–or 

water service pipe–connects a building’s interior plumbing 

to the main water system. As awareness of lead’s negative 

public health effects grew, installations of lead laterals 

were eventually phased out. In 1986, federal regulations 

were revised to ban the use of lead plumbing (US EPA 

2013) 

However, many homes are still served by lead water lat-

erals, which are the primary source of lead in drinking wa-

                                                 
Copyright © 2020, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved. 
 

ter in the U.S. As a result, federal guidelines require public 

water municipalities to monitor for lead concentration in 

their customers’ taps. When lead tap water concentrations 

are elevated and subsequent treatment changes cannot con-

trol lead levels, municipalities are mandated to replace lead 

laterals until consecutive samples fall below federally ac-

cepted levels (US EPA 2015) 

Municipalities can struggle to initiative effective re-

placement strategies due to missing information describing 

initial lead lateral installations and subsequent replace-

ments. In the short-run, municipalities often provide cus-

tomers with point-of-use protection (bottled water, water 

filters) and initiate lateral material inventory efforts, such 

as excavating laterals or inspecting them through curb box-

es (Enking 2019; Ingber 2019) 

Recent events in Pittsburgh, PA, demonstrate these chal-

lenges. The Pittsburgh Water and Sewer Authority 

(PWSA) provides drinking water to nearly all of the City 

of Pittsburgh, including approximately 70,000 residential 

customers. In 2016, tap water samples collected by the 

PWSA exceeded federal and state action levels for lead. 

PWSA thus entered a replacement mandate in June 2016 

and is still operating under this mandate. In addition to re-

placements, PWSA recently implemented the use of ortho-

phosphate as a corrosion control, and currently provides 

free water filters to affected residents (Shoemaker 2018) 

and has started building an inventory of water lateral mate-

rials through digitizing historical records, inspecting curb 

boxes, and excavations.   

The inventory of service line materials is critical in 

providing a cost-effective replacement program. Excavat-

ing a service line and determining that the materials are not 

lead (or galvanized iron which is treated the same as lead 

at PWSA) is costly and diverts resources from the im-

portant work of actually replacing lead service lines. 

Therefore, having an accurate inventory is an important 

first-step in any lead service line replacement program. 

New approaches are needed to accurately predict the loca-

tions and numbers of lead service lines in a community.  
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Public concern and understanding about lead in drinking 

water grew from the Flint, MI, water crisis, which started 

in 2014. In coordination with state agencies, local munici-

pal water providers in Flint switched water supplies from a 

corrosion-controlled source to a non-corrosion controlled 

source without making appropriate treatment changes 

(Olson et al. 2017). Since corrosion control limits the 

leaching of lead from lead laterals, these changes caused 

tap water levels to spike.  

The historical nature of lead lateral installations, ex-

pected property development patterns, and influence of so-

cioeconomics on replacements suggest that predictions of 

lead exposure may be feasible with appropriate training da-

ta. 

After Flint’s water crisis, a team of researchers from the 

university of Michigan addressed the problem of predicting 

houses with elevated lead level in their drinking water sup-

ply (Abernethy et al. 2016; Chojnacki et al. 2017). Using a 

wide range of data sources as their model features, they 

employed different classifiers for the prediction. In their 

work, they used traditional K-fold cross validation to esti-

mate the performance of their models in face of real-world 

test set. Despite providing valuable predictions, we pre-

sume that their reported performances could be overesti-

mated for samples located outside of areas for which train-

ing data were available. Essentially, spatial data require 

particular methods for cross validation to avoid non-

independence associated with spatial proximity of the 

samples. Models that are solely relying on conventional 

cross validation may select less than ideal hyperparameters 

and underperform when predicting in areas unrepresenta-

tive of the training data. 

 In this work, we develop and apply models that predict 

houses with tap water concentration of lead that exceed 15 

parts per billion (ppb), which is the federal action level for 

lead. To achieve highly accurate prediction, we meticu-

lously interpolated missing data, balanced the data set, and 

pruned weak predictors. We also utilize spatial cross vali-

dation to find ideal hyperparameters as well as a more reli-

able technique to estimate the performance of our model. 

Eventually, we provide a ranking list of the most important 

features contributed in prediction of the response variable. 

These models can be useful in balancing resources allo-

cated for collecting better information on lateral material, 

and replacing lead laterals. 

Data Sources and Limitations 

Historical or observed lateral material, lateral installation 

and inspection dates, customer-provided tap water concen-

trations, and administrative customer data were provided 

by PWSA
1
. These data were merged with property assess-

ment data–which describes household, use, and lot charac-

teristics—collected by Allegheny County, PA. 

Lateral Installation History  

The other source of data is digitized historical data describ-

ing service laterals. This includes location of available da-

ta, description of laterals by their diameter, inspection re-

sults (date and materials), installed material and date, and a 

notes field. However, as these data has not perfectly main-

tained, many records are missing and there are inaccura-

cies. 

Curb Box Inspection  

In order of increasing expected accuracy, indicators of lat-

eral material include historical records, curb box inspec-

tions (CBI), and materials recorded when laterals are re-

placed.  Historical data reflect material indicators on paper 

maps prepared when laterals were first installed. CBI, 

which we refer to as “camera inspections” herein, reflects 

judgments made from photographs taken of laterals 

through curb boxes, which contain the main shut-off valve 

located near the street curb. Cross-referencing the materials 

indicated from CBI’s and excavations, PWSA found a 97% 

true positive rate and 72% true negative rate.   

The CBI program was conducted at about 17,500 loca-

tions in 2017 and 2018, with results frequently released to 

the public via an online lead service line map. The CBI da-

ta include binary indicators of lead or non-lead. The histor-

ical and excavation data specify the non-lead material (e.g., 

copper). We mapped the material indicators to binary val-

ues of 1 or 0 corresponding to “lead” or “non-lead” values. 

However, despite being a valuable source of information, a 

considerable portion of CBI data source is incomplete. In 

most cases, CBI inspectors could not locate the curb box, 

the curb box was located in an area that could not be ac-

cessed, or the service line material could not be identified 

during inspection. As a result, the total number of curb 

boxes inspected with detected line material is only 5,600 

out of about 70,000 PWSA’s customers. 

Water Quality Test 

Public water municipalities are required to collect tap wa-

ter lead concentrations in compliance with federal regula-

tions. Like many water municipalities, PWSA provides 

free certified lead testing for any customers electing to 

provide a sample, leading to significantly more samples 

than required for compliance. The raw dataset includes 
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7,409 samples covering 5,634 homes. For homes with mul-

tiple samples, we used the maximum value.  

Property Assessment 

Allegheny county property assessments include 86 fields 

describing information used for the purposes of taxing real 

estimation. Example data includes property use (e.g., sin-

gle family residential), age, floor space (for residential 

properties only), assessed value, building quality, architec-

ture style, and lot size. 

After merging this dataset with the customers dataset, 

the portion of the missing values of property assessment 

fields ranges between less than 1% to about 7%.  

Sample Preparation 

In this section, we present a detailed description of the 

steps we took to prepare a complete and relatively bal-

anced dataset containing the most predictive features.  

Handling Imbalanced Labels 

One of the issues of our dataset is the imbalanced ratio of 

samples representing both classes which reduce stability 

and performance of a classifier. To be exact, the portion of 

water samples with the lead level below the federal action 

level of 15 ppb is 91.38%, while only 8.62% of samples 

show values of 15 ppb and above. In such an imbalanced 

sampling, a classifier is inclined to represent the majority 

class (below 15 ppb). To address this issue, we employed 

the SMOTE technique as a state-of-the-art approach to arti-

ficially increase the number of samples representing the 

minority classes (Chawla et al. 2002). This technique arti-

ficially generates samples of the minority class in the prox-

imity of the existing feature space so that the ratio of ma-

jority and minority classes becomes less imbalanced. Note 

that to keep the evaluation set in accordance to real-world 

test set, we only synthetically balance the training set. 

Handling Missing Values 

Like many real-world problems a substantial portion of our 

data have missing values. With incomplete dataset the usa-

bility of predictive model would be very limited to those 

customers that have non-missing values for all the selected 

features. This means that without imputing the missing 

values, our model is only applicable to less than 8% of the 

customers. 

Table 1 indicates a positive spatial autocorrelation in the 

spatial structure of the CBI data as measured by Moran’s I 

statistics with queen contiguity-based spatial weights 

(Moran 1950). Based upon these results, we used the In-

verse Distance Weighting (IDW) interpolation method to 

spatially estimate the missing values from the known ones 

(Myers 1994). We specifically interpolated the missing 

values of two important features: CBI (both public and pri-

vate as independent observations) and the year the property 

was built. There are other features with less than 2% miss-

ing values. We replaced these with the mode or the median 

of the corresponding non-missing values. 

 

Table 1: Moran’s I calculated by Monte Carlo simulations over a 

thousand permutations for three independent variables 

Feature Moran’s I  P-value 

CBI (public side) 0.124 < 0.001 

CBI (private side) 0.122 < 0.001 

Origin year of the construction 0.667 < 0.001 

 

Figure 1 shows the estimation of the missing values of 

CBI data for the public lateral, where values closer to 0 or 

1 indicate higher or lower probability, respectively, of lead 

in the material of the public side of the service line. 

 

 

 

Figure 1: Example results of interpolating missing curb box in-

spections using the IDW technique with a power of 2. Training 

data are on the left and interpolations are on the right. Results are 

for the public portion of water laterals. Darker and lighter color 

indicates a higher or lower probability of lead, respectively.  

Feature Selection 

Starting with more than 150 features, we used Recursive 

Feature Elimination (RFE) (Guyon et al. 2002) as an effec-

tive feature selection technique, where at each step recur-

sively remove features with the weakest predictive power, 

until no feature is left. The importance of the predictors is 

calculated at each iteration so that eventually, RFE selects 

and returns a subset of features with the highest predictive 

power. 

In our work, we paired RFE with random forest (Tin 

Kam Ho 1995) to reduce our feature space from more than 

150 to 16 features by pruning the weakest predictors.  
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Prediction 

We developed a set of predictive models to classify 

PWSA’s customers based on the observed lead level in 

their drinking water. The ultimate goal was to train effec-

tive classifiers to predict houses having drinking water lev-

els equal or above the federal action level of 15 ppb. Ob-

servations were labeled as either equal or greater than 15 

ppb (positive class) or less than 15 ppb (negative class). 

Our training sample consisted of 429 positive and 4,552 

negative samples for training the models to predict tap wa-

ter levels for more than 60,000 customers. 

Spatial Cross Validation 

To evaluate model performance, we used the well-known 

statistical resampling procedure known as K-fold cross val-

idation. In this procedure, the training set is split randomly 

into K subsets (i.e., folds) in such a way that a fold is put 

aside for the validation set and the model is learned using 

the remaining K-1 folds. The process is repeated K times 

so that every fold is used once as the validation set. 

 

 

 

Figure 2: The difference between non-spatial (top) and spatial 

(down) cross validations. Points with the same color is to be con-

sidered as the validation fold for each iteration of the validation. 

While cross validation works well for non-spatial data, it 

is shown that it leads to overestimation of the performance 

of the predictive model and inappropriate model selection 

for spatial data (Roberts et al. 2017; Brenning 2012). In 

traditional cross validation, due to the randomness of the 

partitioning procedure, it is highly likely that spatially 

close samples be divided into test and train subsets. Since 

spatially proximate observations are nearer each other, we 

can infer that in contrast to the primary objective of out-of-

sample validation, the test and training samples are not sta-

tistically independent (Miller 2004) 

To produce more robust and realistic estimation of the 

predictive performance of the models, we employed spatial 

cross validation. In spatial cross validation, samples are 

partitioned based on their geographical coordinates so that 

the dependency of samples become minimum.  

We used K-means clustering to split the training set into 

K clusters and similar to K-fold cross validation, at each it-

eration one cluster was used for validation and the rest for 

training the predictive model. In Figure 2 both spatial and 

non-spatial cross validations are illustrated. 

Predictive Models 

To compare and select the best model with the highest pre-

dictive power, we deployed a set of state-of-the-art classi-

fiers. Our goal was to explore a wide range of classifiers to 

identify the finest classifier with the highest predictive 

power for the problem. 

For each observation, we reduced the set of features to 

14 as it is described in feature selection section. All the de-

ployed models, except the logistic regression, require turn-

ing hyperparameters. The best hyperparameters for each 

model were chosen by the highest AUROC (area under the 

receiver operating characteristics) score that we obtained 

via grid search. The AUROC was measured through vali-

dating each model by the spatial cross validation explained 

in the previous section.  Table 2 shows a summary of the 

best settings for each model. 

 

Table 2: Deployed classifiers with the best hyperparameters tuned 

via grid search. 

Classifier Hyperparameters 

Artificial Neural Net-

work 

#Hidden Layer=1, #Neurons= 7 

K-Nearest Neighborhood K=187 

GBM Depth = 8, #Trees=17, Shrinkage = 

0.1 

SVM Radial Kernel, Sigma=0.005, C=0.25 

Random Forrest #Randomly Selected Predictors=11 

Logistic Regression - 

Results 

In this section, we present the performance of the deployed 

models. We tested and evaluated the models by both non-
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spatial K-fold cross validation and K-means spatial valida-

tion and set the parameter K for both validations as 10. Ta-

ble 3 shows the AUROC acquired for both validations. 

As it can be seen in Table 3, among the classifiers we 

deployed, GBM (Friedman 2001) outperforms the other 

models with the AUROC of 0.716 for spatial validation 

and 0.744 for non-spatial validation.  

Table 3: AUROCs for the deployed classifiers for both spatial and 

non-spatial cross validations. 

Classifier Spatial CV Non-spatial CV 

Logistic Regression 0.648 0.679 

K-Nearest Neighbor-

hood 

0.652 0.687 

Artificial Neural Net-

work 

0.651 0.711 

SVM 0.667 0.730 

Random Forests 0.714 0.733 

GBM 0.716 0.744 

 

It is worth mentioning tha the performances of all classi-

fiers are lower when we evaluate them via spatial cross 

validation. This is due the fact that in spatial cross valida-

tion, a test set is far from, and thus independent of, the 

training set. For some classifiers like SVM and artificial 

neural networks the differences between AUROC of the 

two validation techniques are relatively higher than the 

other ones. 

Predictors Importance 

Figure 3 shows the top 10 features that the best model (i.e., 

GBM) identified as the most effective factors for the clas-

sification. These features and their corresponding im-

portance scores are measured based on the procedure de-

scribed in (Breiman 2001). 

  

 

Figure 3: Top predictive features and their corresponding im-

portance 

As it can be seen in Figure 3, despite being outdated and 

unreliable, historical data of the material used in the pub-

lic/private side of the service line are among the top im-

portant predictors for our model. In addition, camera in-

spections have a significant role in providing high accurate 

predictions as well. The other category of important pre-

dictors are the geographical features. The geographical co-

ordinates and the neighborhoods of the places the samples 

were taken from show essential effects on the predictions. 

This illustrates how the high level of lead in drinking water 

could be concentrated in specific urban areas. In addition, 

property features, such as year the building was built and 

the architecture style of the building, are deemed im-

portant.  

 

 

Figure 4: Distribution of the building year of the constructions 

over time for samples above and below 15 (ppb) lead level in tap 

water 

In Figure 4, the distributions of the year that buildings 

were originally constructed with both positive and negative 

classes are illustrated. Similar to the findings of 

(Abernethy et al. 2016) we observe a strong relationship 

between high level of lead in tap water and the buildings 

built between 1910 to 1930. This could be due to the fact 

that these old lead lines laid in these places started to be 

corroded and as a result, high lead tap water concentration 

were observed in samples collected from these places. 

Conclusion 

To identify houses with tap water concentration of lead 

that exceed 15 (ppb), we deployed a set of classifiers 

trained on features collected from information that is either 

publicly available or collected in response to meeting regu-
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latory requirements for lead in drinking water. We applied 

a series of data processing techniques to provide a more re-

liable and useful form of data for our predictive models. 

For evaluating our models, we used spatial cross validation 

as a reliable technique to estimate the performance of our 

model for data points located outside of the vicinity of the 

training samples. 

We provide a list of features that are strong predictors of 

our best classifier. We found that geographical location, 

building characteristics, and indicators of lateral materials 

are among the top features.  

As more and more lead service lines are detected and re-

placed by PWSA, we get a better access to a reliable 

source of information of the materials used in the service 

lines. For the next step, we plan to develop and deploy 

predictive models to exploit this valuable data source to 

identify houses with lead service lines to reduce the num-

ber of wrong excavations.  
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