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Abstract

Existing saliency detection techniques are sensitive to image
quality and perform poorly on degraded images. In this pa-
per, we systematically analyze the current status of the re-
search on detecting salient objects from degraded images and
then propose a new multi-type self-attention network, namely
MSANet, for degraded saliency detection. The main contri-
butions include: 1) Applying attention transfer learning to
promote semantic detail perception and internal feature min-
ing of the target network on degraded images; 2) Developing
a multi-type self-attention mechanism to achieve the weight
recalculation of multi-scale features. By computing global
and local attention scores, we obtain the weighted features
of different scales, effectively suppress the interference of
noise and redundant information, and achieve a more com-
plete boundary extraction. The proposed MSANet converts
low-quality inputs to high-quality saliency maps directly in
an end-to-end fashion. Experiments on seven widely-used
datasets show that our approach produces good performance
on both clear and degraded images.

Introduction

Salient object detection (SOD) aims to distinguish the visu-
ally distinctive regions or objects and then segment the fore-
ground targets out from the background. It plays an impor-
tant role in content-based image/video understanding, such
as visual tracking (Avytekin, Cricri, and Aksu 2018), and
person re-ID (Zhao, Oyang, and Wang 2016).

Early SOD researches capture local details and global
context based on hand-crafted features, e.g., color, texture,
luminance (Harel, Koch, and Perona 2007). However, due
to the lack of guidance at the semantic level, the devel-
oped methods perform poorly in many complex scenarios.
Recently, thanks to the capability of extracting both low-
level details and high-level semantic information simultane-
ously, convolutional neural networks (CNNs) have become
the main force of SOD. However, many existing CNN-based
SOD methods mainly focus on single image, and most of
them are “picky-eaters”, which only accept clean and high-
quality images. Nevertheless, due to the complexity of the
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Figure 1: An illustration of salient object detection on de-
graded images. As the resolution decreases, AFNet (Feng,
Lu, and Ding 2019) gradually loses the subject, while our
MSANet can still pinpoint salient objects. 1/r means to re-
duce the length and width by a factor of 7.

natural environment and the diversity of acquisition meth-
ods, we may get many degraded images with lower quality in
practice. Typical image degradations include e.g. low reso-
lution, blur, noise, and atomization etc. On degraded images,
the robustness of the SOD methods is inevitably influenced
by losing information both inside and along the boundary of
the objects of interest.

Similar to the discussion in (Guo et al. 2019), to address
such a problem, a straightforward approach is to use the de-
graded image, denoted as x4, as adversarial examples, to-
gether with the clear image, denoted as x,,, to form the train-
ing dataset. However, obvious gaps exist between z, and
4 in terms of semantics and details and simple adversarial
training cannot effectively improve the performance (see the
performance of adv-Amulet in the later experiments). An-
other idea is to enhance the robustness by improving the
quality of 4. However, given the diversity of degradation
types and the randomicity of the degradation levels, general
image restoration algorithms cannot handle all the situations
well, not to mention that pre-processing of image restora-
tion can be very time-consuming and storage demanding.
Furthermore, such a pre-processing may not be combined to
the end-to-end CNN training and this is usually not desirable
in SOD by forwarding the errors between network modules.

In this paper, we propose a new MSANet for degraded
salient object detection by incorporating multi-type self-



attentions, e.g, both global and local ones, which directly
outputs the salient object segment from the degraded im-
ages in an end-to-end manner (Some visualization results are
shown in figure.1). In particular, we introduce the “teacher-
student” network to extract better features from degraded
images. Under the guidance of the teacher network, our stu-
dent net can implicitly capture the hidden mode of x4 and
extract more fully degraded features, thereby improving the
accuracy of latter saliency inference. To sum up, the main
contributions of this paper are:

e Systematically analyzing the current status of SOD on
degraded images and developing a new MSANet, which
greatly improves the SOD performance on degraded im-

ages without increasing the time cost.

Proposing a multi-type self-attention network to select
features from both global and local perspectives, thus to
effectively suppress distracters while enhancing positive
items.

Proposing an attention transfer learning network to im-
prove degraded SOD by narrowing the semantic gap be-
tween the target network and the source network.

Related work
Skip Connection Structure

Skip connection constructs a top-down path to transmit
high-level semantic knowledge to shallower layers for en-
riched feature maps construction. For example, Zhang et
al. (2017a) recursively embedded edge-ware low-level fea-
ture maps and the low-resolution predictions to promote
boundary inference and semantic enhancement. Zhang et
al. (2017b) fused high-level features to lower layers for ac-
quiring adequate content information. For integration, they
used a reformulated dropout to construct an uncertain en-
semble of internal feature units. Zhang et al. (2018) designed
symmetrical fully convolutional neural networks (FCNs)
to learn complementary saliency features. For acceleration,
Wu, Su, and Huang (2019) proposed a cascaded partial
decoder framework, which discarded larger resolution fea-
tures of shallower layers and directly utilized the generated
saliency map to refine the features of backbone network.
However, such skip connection also passed through clut-
tered and noisy information. To solve this problem, some
works introduced attention mechanism and recurrent struc-
ture. For example, Liu, Han, and Yang (2018) proposed a
pixel-wise attention network. They generated attention maps
for each pixel and selectively aggregated the contextual in-
formation to construct the attended contextual features. Liu
et al. (2019) built two pooling-based modules, one mod-
ule provided different layers the location information of
potential salient objects, while the other merged features.
Zhuge, Zeng, and Lu (2019) transformed prior information
into an embedding space to select attentive features and to
filter out outliers. Feng, Lu, and Ding (2019) proposed a
boundary-enhanced loss for learning exquisite object bound-
aries. Deng et al. (2018) proposed a recurrent residual re-
finement network equipped with residual refinement blocks
to detect salient regions. Wang et al. (2018b) constructed a
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global recurrent localization network and a local boundary
refinement network. The former exploited contextual infor-
mation of the weight map to avoid redundancy, while the
latter learned the contextual message for each spatial posi-
tion to recover object boundaries. Our approach also takes
feature selection issues into account. The difference is that
we are targeting degraded images. To this end, we first con-
sider the completeness of features. And then, we propose a
multi-type self-attention network to filter information from
multiple perspectives.

Multi-Task Structure

Several studies employed multi-task strategies for rich su-
pervision. e.g., Wang et al. (2018a) employed both saliency
and segmentation labels for model training. Li et al. (2018)
leveraged the contextual information provided by a well-
trained contour extraction network to obtain fine boundary.
Li et al. (2017) also trained using both contour and saliency
labels. Qin et al. (2019) proposed a hybrid loss to learn from
ground truth information in pixel-, patch- and map- levels.
Moreover, Zhang et al. (2019) leveraged caption as auxil-
iary semantic knowledge to learn discriminative semantic
features for salient objects. Different from the above mod-
els, MSANet refines the salient object boundary from the
perspective of feature selection, and does not use any auxil-
iary supervision information.

Furthermore, all the models mentioned above are sensi-
tive to image quality — they are vulnerable to degraded im-
ages. On the contrary, our MSANet learns more fully de-
graded features through attention transfer training so that it
can adapt to various degraded situations and get more accu-
rate degraded saliency maps.

MSANet

We choose VGGNetl6 as the backbone network and discard
the last pooling layer and dense layers to maintain the spatial
structure. As shown in figure.2, the core ideas of MSANet
are: 1) attention translation and 2) feature selection.

For the former, we propose an attention transfer network
(ATN) for guidance learning, which helps to percept the
structural details and semantic content of degraded inputs.
For the latter, we design a multi-type self-attention network
(MSA), which implements pixel-level selection of features
from multiple perspectives, so as to strengthen positive items
while suppressing disturbances.

Attention Transfer Network (ATN)

When the input data is mixed with noise information (de-
graded), its distribution changes greatly compared with the
clear one. The offset of data distribution will invalidate the
feature extraction ability of the general network and cause
the final detection to fail. Considering that the degraded im-
age x4 and the clear image x, largely share the same struc-
tural information, we design this attention transfer mod-
ule(ATN) based on the “teacher-student” network to migrate
the knowledge of the teacher network.

As shown in figure.3, ATN has a twin structure, which
uses wy(.) pre-trained on z, as the “teacher” net to guide the



Teacher net B‘ukBune

() peconv+ada

RLS AttenConvGRU (ACG)

Conv2D
<1x1,128>

[ ATNI ]1—» Conv BS]—

4==) Supervision

— Feature flow

Conv2D
<1x1,128>

[

Conv2D)
<1x1,128>

[ ATN3 ]——"’» Conv Bs]—

Spatial Attention (SA)

Conv2D
<1x1,128>

[ o
(o ]._v.[ct,nfvm ]
[ —
[ *I

L t
[ ATN4 ]nﬂ» COnVBz]"

GAP, '

GPA

>
Q
Q
<&
)

Saliency map

Figure 2: The overall architecture of our MSANet, consisting of Attention Transfer Network (ATN), Recurrent Local Self-
attention module (RLS), and Global Pixel Self-attention module (GPA). Details of RLS and GPA are shown in the right side,

and the structure of ATN is shown in figure.3.
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Figure 3: The architecture of attention transfer network.

learning process of the “student” net w;(.). Since the higher
features extracted from w;(.) are semantic/task-related, it is
reasonable to expect that the feature distribution of w;(.) pre-
trained on clean images should be similar to the feature dis-
tribution of w,(.) fine-tuned using degraded images (Guo et
al. 2019).

Specifically, let {(zq4, z,); y} represents a pair of training
samples, we use {x,; y} to train w(.), and then, we use
{zq; y} to train w(.), in this phase, we freeze w;(.) and use
the encode features of w;(z,) as the guidance information
to pilot the detail perception and semantical feature learn-
ing of wy(.). Especially, we respectively calculate the spatial
attention map M of w; and wg, and minimize the attention
transfer loss (L£a7). M decodes the attention of the current
feature map, which is defined as M* = ¢(max;—1,c¢ B/ ), B;
is the feature of i-layer, ¢ is softmax normalization. The L7
can be represented as:

L wzq, o) = | M, — M. |I3

ey
@

where M,,, and M, is the spatial attention map of ws, w;
respectively. Z = {2,3,4,5}.

In order to minimize the objective function L47, we con-
stantly update the parameters of w, and find a relatively bet-
ter solution w; to achieve the purpose of attention migration.

3

During training, the parameters of wg is frozen and not be

Loar(wi; Ta, To) = Sier L (wi; Ta, To)

wy <« argming, Lar(we; Td, To))
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updated; during testing, we close w, and only used the re-
sults of wy.

Multi-type Self-Attention (MSA)

We calculate the multi-type self-attention score to redeter-
mine the pixel weights. Specifically, we respectively im-
plement recurrent local self-attention (RLS) estimation and
global pixel self-attention (GPA) inference.

For the four encoding blocks By_5, we perform RLS
on Bs_5 and GPA on Bs. The main reasons are: i. De-
ploying RLS on lower-level features reduces computational
speed and has little improvement in accuracy; ii. GPA calcu-
lates pixel-level relationship, while such correlation remains
more complete in shallow layers.

Recurrent Local Self-Attention (RLS). In order to fully
explore local context associations, we design an attention-
based convolutional gated recurrent units, i,e. ACG. Similar
to ConvLSTM, the proposed ACG also employ gates for in-
formation selection and integration (figure.2). Specifically,
ACG consists of two convolutional gates (reset, update) and
one hidden state (). Unlike ConvLSTM, we weight the input
information on each iteration by an attention layer, which
enables more accurate local optimization of features while
reducing the number of parameters.

As shown in figure.4, RLS consists of three layers: a con-
volution layer and two ACG layers. Convolution for channel
scaling (128) and ACG for feature optimization.

Figure 4: Details of RLS structure.

More specifically, ACG requires 4-D input data @4.,(t, w,
h, c). Let the scaled feature is .., Zacg 15 a set of copies
of Zog, and the number of copies is determined by ¢, that
means, at each time step t, ACG accepts two sets of inputs,
the old hidden state data h;_1, and the new input data x;.



Here, x; is constant, that is, it is always x,,, and the hidden
state h; is continuously updated, which selectively fuses in-
formation from xz; and h;_; through the gating structure,
thus to locally optimize x,,. After a ¢ times optimization,
the final h; is output as the optimized feature xg;s.

Given the input feature z; (x,,) at time step ¢, the status
update process is driven by the following formula:

7y =z (I + egap(wt)/gegap(wé)) 4)
7t = 0(War * Ty + Wy * hy—1 + b;) (5
he = tanh(re. x wyj, * he_1 +wyp, * T + b)) (6)
2 = 0(Wyz * Ty + Whz * hy—1 + D) @)
he = (1 —2) % hy + 2 x hy_1 8)

where I is a matrix with all values of 1, % is the convolution
operation, .x is pixel-wise multiplication, X, represents the
weighted input. We discuss the setting of ¢ in table.1.

1=2 =3 =4 t=5 =6
Fg 0.8925 | 0.9008 | 0.9005 | 0.9015 | 0.9010
MAE | 0.0711 | 0.0497 | 0.0517 | 0.0561 | 0.0578

Table 1: Performance evaluation results of ACG on ECSSD
under different step settings. Considering the computational
cost, we finally choose =3 to achieve the best balance.

We define RLS as a local mode because there is no ex-
plicit global information-based attention calculating process
in the feature optimization process. The maintaining or sup-
pressing of each feature point is implicitly completed. The
visualized features in figure.5 show that the deployment of
the RLS effectively captures the boundary information and
keeps the attention on the foreground area.

Before RLS After RLS
rINEL ) |
mE!i"‘ oy '35? ) j \
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Figure 5: Visualization of B3-5 features of some channels
before and after RLS implementation.

Global Pixel Self-Attention (GPA). GPA explicitly mod-
els channel attention (CA) and spatial attention (SA), the
score for each position is obtained by comparison with all
other positions, so GPA a global mode.

For feature BY*"*¢  we firstly perform CA. Since each
channel focus on different feature, it is necessary to high-
light those channels that focus on the foreground objects.
We calculate max and mean values simultaneously to obtain
soft attention:

o(B;) = 0" (AP.(By)) 4 6% (MP.(B;)) )
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0 is a softmax normalization. When dealing with shallow
features, each response can be thought as a detector for
boundaries. Considering that 62 returns only a single re-
sponse, which focus on one discriminative part and ignore
others, while §' encourages the detector to treat all locations
on average, inevitably introducing noise. To this end, we cal-
culate ¢(B;) to do a soft selection.

Then we calculate SA, which includes two items. The
first item is similar to CA, which computes the spatial mean
matrix and employs softmax for normalization. The second
item LPPool solves the local patch similarity. We scale the
channels to 1 by dot-convolution and use average pooling
(2*%2) to get the representative value of each patch, thus to
ensure that the attention score of each pixel is calculated
both locally and globally.

s(B:) = 5(AP,(

Where ¢ is a sigmoid function. It should be noted that we use
softmax in spatial average pooling and use sigmoid in local-
patch attention calculation, because the response of single
position should be independent (sum to 1) while patch-wise
response is related with others. -

Finally, the global weighted feature B; is calculated by:

where ¢(B;) and s(B;) is the channel and spatial attention
score respectively. [ is a matrix with all values of 1. We first
employ CA and then employ SA.

Joint Loss

Our MSANet calculates multiple losses. Let .S; represents
the prediction, G; is the ground-truth. The total 10ss Lo¢q;
includes: i. Binary Cross-entropy loss L. ii. Structural
Similarity loss L, Which helps to learn the structural in-
formation of G;. iii. Attention Transfer loss L4r, which pro-
motes the model to obtain more powerful feature represen-
tations. Lyotq; 1S €xpressed as:

Liotal = M Lpce + A2 Lsim + A3Lar (12)

where Ly = —%;G;logS; + (1 — G;)log(1 — S;), Lysim =
1/N(1—-S8SIM(G;, S;)) and SSIM() (Wang, Simoncelli, and
Bovik 2003) is the standard structural similarity function.
A1, Ao and A3 is set to 5, 10 and 2 respectively.

Experiment
Implementation Details

The whole architecture is built on the keras deep learning
framework. We employ DUTS-TR (Wang et al. 2017) to
train, which contains 10,553 images, and we perform image
enhancement, i.e., reverse, mirroring to increase to 65k. All
the experiments are run on NVIDIA Geforce GTX 1080Ti
(11 GB memory) and i7-8700k cpu. The first five conv-
blocks of MSANet are all initialized from VGGNet16, and
the other parameters are all randomly assigned. All train-
ing and testing images are resized to 224 x224. We use the
Adam optimizer to train and the learning rate is initialized
to le-5.



Datasets

Seven large benchmarks are used for evaluation, including
DUT-OMRON (Yang et al. 2013), ECSSD (Shi et al. 2016),
HKU-IS (Li and Yu 2016), PASCAL-S (Li et al. 2014),
SOD (Movahedi and Elder 2010), MSRA-B (Jiang et al.
2013), and DUTS-TE (Wang et al. 2017).

For realistic degraded simulation, we perform multi-type
and multi-scale degradation on clear images in table.2. Dur-
ing training, the synthesis process guarantees two random-
nesses: random type and random scale, and for test, we rep-
resentatively reported the experimental results in one fixed
degraded condition under each effect.

LR | GB | MB | GN | HZ

Scale factor | 7 h l v €
3 5 5 10.01 | 0.05
Scale range | 4 7 7 0.03 | 0.10
5 9 9 10.05|0.15

Table 2: Details of the synthetic dataset. LR: low resolu-
tion, r represents the resize scale; GB: gaussian blur, A is the
fuzzy kernel size; MB: motion blur, [ is the motion length;
GN: Gaussian white noise with a mean of m=0 and a vari-
ance of v; HZ: haze and e is the degree of haze.

Evaluation Metrics

Five evaluation criteria, including P-R curves, F-measure,
mean absolute error (Borji et al. 2015), S-measure (Fan et
al. 2017), and E-measure (Fan et al. 2018) are used to reflect
the model performance.

Analysis

We compare our model with other 13 state-of-the-art CNN-
based models, including AFNet (Feng, Lu, and Ding 2019),
BASNet (Qin et al. 2019), CPDNet (Wu, Su, and Huang
2019), MWSNet (Zeng et al. 2019), C2SNet (Li et al. 2018),
PiCANet (Liu, Han, and Yang 2018), DGRL (Wang et al.
2018b), LFRNet (Zhang et al. 2018), RFCN (Wang et al.
2018a), Amulet (Zhang et al. 2017a), UCF (Zhang et al.
2017b), WSS (Wang et al. 2017), and MSRNet (Li et al.
2017). To be fair, we use their released code with default
settings to calculate the degraded saliency maps.

To fully illustrate the effect of proposed ATN in deal-
ing with degraded images, we choose Amulet (Zhang et al.
2017a) for adversarial training, that is, based on the already
trained model, we further use the hybrid dataset (mixed
by degraded and clear images) for finetuning, and get adv-
Amulet. The training process is in full compliance with the
description in their paper to ensure fairness.

Quantitative Evaluation. The evaluated results are illus-
trated in tables.3-7, the best result is highlighted in bold.
Since LFRNet, RFCN, UCF and Amulet were trained on
MSRA10K and MSRA-B is a subset of MSRA10K, so we
did not report their results on MSRA-B. The SE scores and
PR curves are illustrated in figures.6 and 8.
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Methods Original Motion Blur Gaussian Noise
Fs  MAE Fs MAE Fs  MAE

Ours 0.9134 0.0414 | 0.9021 0.0472 | 0.8947 0.0501
AFNet | 0.8936 0.0427 | 0.8718 0.0526 | 0.8782 0.0517
BASNet | 0.8993 0.0356 | 0.8829 0.0418 | 0.8693 0.0519
C2SNet | 0.8663 0.0528 | 0.8664 0.0537 | 0.8660 0.0551
CPDNet | 0.8956 0.0404 | 0.8671 0.0525 | 0.8232 0.0790
MWSNet | 0.8666 0.0712 | 0.8655 0.0753 | 0.8597 0.0836
PiCANet | 0.8670 0.0564 | 0.8406 0.0734 | 0.8290 0.0802
DGRL | 0.8852 0.0434 | 0.8712 0.0470 | 0.8235 0.0635
MSRNet | 0.8873 0.0422 | 0.8675 0.0505 | 0.8639 0.0527
WSS 0.8535 0.0761 | 0.8401 0.0846 | 0.8399 0.0813

Table 3: Comparison on MSRA-B. MB:/=7, GN:v=0.10.

SOD

Original Motion Blur Gaussain Noise

Methods | —~ AR F; MAE | F; MAE
Ours 0.8043 0.1132 | 0.7738 0.1264 | 0.7368 0.1450
adv-Amulet | 0.7384 0.1517 | 0.7182 0.1618 | 0.6878 0.1732
Amulet 0.7518 0.1408 | 0.7166 0.1607 | 0.6916 0.1710
AFNet 0.7951 0.1082 | 0.7226 0.1415 | 0.7354 0.1454
BASNet 0.7474 0.1124 | 0.6927 0.1388 | 0.6468 0.1645
C2SNet 0.7596 0.1258 | 0.7330 0.1392 | 0.7165 0.1550
CPDNet 0.8018 0.1125 | 0.7130 0.1488 | 0.6260 0.1923
MWSNet | 0.7339 0.1661 | 0.7146 0.1802 | 0.6892 0.1935
PiCANet | 0.7265 0.1299 | 0.6641 0.1633 | 0.6660 0.1844
DGRL 0.7972 0.1128 | 0.7334 0.1255 | 0.6102 0.1659
LFRNet 0.7771 0.1243 | 0.7236 0.1524 | 0.7095 0.1658
MSRNet | 0.7716 0.1118 | 0.7289 0.1252 | 0.7212 0.1548
RFCN 0.7664 0.1441 | 0.7183 0.1638 | 0.6726 0.1831
UCF 0.7500 0.1520 | 0.7184 0.1697 | 0.6799 0.1828
WSS 0.7271 0.1688 | 0.7011 0.1782 | 0.6807 0.1872

Table 4: Comparison on SOD. MB:/=7, GN:v=0.10

According to the results shown in tables.3-7, the perfor-
mance of most existing algorithms drops dramatically when
dealing with degraded images. In particular, CPDNet (Wu,
Su, and Huang 2019) and LFRNet (Zhang et al. 2018),
which performed well on clear images, show a significant
decrease in performance on degraded images. Especially in
low-resolution scenes, whose performance has dropped by
37.5%, 25.0%, respectively. What’s more, the overall best
performing MSRNet (Li et al. 2017) and C2SNet (Li et al.
2018) can basically maintain a stable level when process-
ing low-resolution images, but the performance decreases
drastically when handling blurred and noisy images. This
is because both two models leverage contour information.
Noisy and motion blur struck the integrity of the contour,
the failure of edge detection further leads to the failure of
saliency detection. On the contrary, our MSANet perform
stable in various degraded scenarios, whose overall perfor-
mance ranks first. This proves that our model is more adapt-
able and can effectively deal with various complex scenar-
ios. A clearer performance trend graph is shown in figure.6.
The red five-pointed star represents our model. Whether it is
dealing with low resolution, blur or noise scenes, MSANet
has a smaller slope and less interference from negative in-
formation, while other models have experienced a drastic
decline in performance.

In addition, adv-Amulet performs better in degraded sce-
narios than other models, indicating that adversarial train-
ing can improve model performance in degraded scenarios
to a certain extent. However, such adversarial training has a



DUT-OMRON ECSSD
Methods Pub. FPS Original Low Resolution Gaussain Blur Original Low Resolution Gaussain Blur
Fg MAE Fg MAE Fg MAE Fg MAE Fg MAE Fs MAE
Ours - 40 | 0.7470 0.0562 | 0.6314 0.0896 | 0.7051 0.0685 | 0.9074 0.0482 | 0.8283 0.0808 | 0.8816 0.0599
adv-Amulet - 21 [ 0.7119 0.0762 | 0.5722 0.1151 | 0.6514 0.0933 | 0.8897 0.0639 | 0.7817 0.1044 | 0.8572 0.0793
Amulet ICCV2017 | 21 | 0.6990 0.0719 | 0.4835 0.1837 | 0.5103 0.1665 | 0.8690 0.8591 | 0.7209 0.1283 | 0.8021 0.0907
AFNet CVPR2019 | 25 | 0.7342 0.0575 | 0.4807 0.1034 | 0.5264 0.0931 | 0.9017 0.0417 | 0.7138 0.1238 | 0.8103 0.0912
BASNet CVPR2019 5 0.7568 0.0567 | 0.3201 0.1165 | 0.5988 0.0772 | 0.8796 0.0370 | 0.5096 0.1592 | 0.7758 0.0864
C2SNet ECCV2018 | 19 | 0.6644 0.0787 | 0.5907 0.1062 | 0.6459 0.0831 | 0.8572 0.0574 | 0.8068 0.0821 | 0.8541 0.0692
CPDNet CVPR2019 | 66 | 0.7400 0.0571 | 0.4241 0.1274 | 0.5431 0.1017 | 0.9145 0.0402 | 0.5964 0.1742 | 0.7950 0.1022
MWSNet | CVPR2019 3 0.6061 0.1097 | 0.5694 0.1215 | 0.6128 0.1027 | 0.8398 0.0965 | 0.7855 0.1193 | 0.8190 0.1120
PiCANet CVPR2018 7 0.6887 0.0674 | 0.3228 0.1335 | 0.4448 0.1226 | 0.8481 0.0585 | 0.5624 0.1767 | 0.7347 0.1275
DGRL CVPR2018 6 0.7289 0.0615 | 0.4577 0.1012 | 0.5967 0.0771 | 0.9059 0.0407 | 0.6969 0.1087 | 0.8449 0.0584
LFRNet IICAI2018 | 15 | 0.6388 0.1160 | 0.4574 0.2544 | 0.5045 0.2234 | 0.8766 0.0545 | 0.6906 0.1568 | 0.7935 0.0940
MSRNet CVPR2017 | 13 | 0.6878 0.0700 | 0.4937 0.1431 | 0.6518 0.0791 | 0.8610 0.0564 | 0.6874 0.1352 | 0.8367 0.0701
RFCN PAMI2019 7 0.6726 0.0781 | 0.5217 0.1141 | 0.5762 0.1004 | 0.8708 0.0672 | 0.7025 0.1389 | 0.7747 0.1145
UCF ICCV2017 | 23 | 0.6767 0.0924 | 0.5465 0.1414 | 0.5837 0.1290 | 0.8936 0.0591 | 0.7676 0.1113 | 0.8296 0.0851
WSS CVPR2017 | 29 | 0.5978 0.1118 | 0.5026 0.1365 | 0.5541 0.1262 | 0.8233 0.1035 | 0.7211 0.1591 | 0.7858 0.1289

Table 5: Comparison on DUT-OMRON and ECCSD. LR: r=4, GB: h=7.

HKU-IS PASCAL-S

Methods Size(MB) BackBone Original Low Resolution | Gaussain Blur Original Motion Blur Gaussain Noise
F3  MAE Fs  MAE F3  MAE Fs  MAE F3  MAE F; MAE
Ours 84.7 VGGNet;s | 0.8962 0.0427 | 0.7993 0.0727 | 0.8686 0.0523 | 0.8208 0.0736 | 0.8006 0.0829 | 0.7716 0.0982
adv-Amulet 132.6 VGGNet,s | 0.8756 0.0547 | 0.7636  0.0900 | 0.8464 0.0651 | 0.7954 0.0956 | 0.7512 0.1033 | 0.7372 0.1137
Amulet 132.6 VGGNet;s | 0.8690 0.0591 | 0.6880 0.1171 | 0.7800 0.0775 | 0.7574 0.0997 | 0.7307 0.1129 | 0.7075 0.1321
AFNet 143.9 VGGNet;s | 0.8886 0.0358 | 0.6764 0.1027 | 0.7948 0.0709 | 0.8149 0.0720 | 0.7817 0.0865 | 0.7709 0.0986
BASNet 348.5 ResNetsy 0.8955 0.0322 | 0.4970 0.1346 | 0.7845 0.0700 | 0.7733 0.0765 | 0.7401 0.0924 | 0.6971 0.1234
C2SNet 635.4 VGGNets | 0.8427 0.0496 | 0.7784 0.0750 | 0.8302 0.0595 | 0.7575 0.0850 | 0.7649 0.0877 | 0.7422 0.1112
CPDNet 192 VGGNet;s [ 0.9003 0.0320 [ 0.5850 0.1393 | 0.7888 0.0757 | 0.8199 0.0721 | 0.7771 0.0940 [ 0.7131 0.1326
MWSNet 602.4 DenseNetigs | 0.8141 0.0843 | 0.7523 0.1072 | 0.7932 0.0985 | 0.7125 0.1330 | 0.7081 0.1387 | 0.6940 0.1534
PiCANet 188.9 VGGNet;s | 0.8502 0.0511 | 0.5459 0.1505 | 0.7251 0.1078 | 0.7509 0.0850 | 0.7312 0.1072 | 0.6995 0.1310
DGRL 648 ResNetsg 0.8905 0.0355 | 0.6590 0.0964 | 0.8158 0.0578 | 0.8144 0.0723 | 0.7927 0.0831 | 0.7052 0.1182
LFRNet 173.6 VGGNet;s | 0.9113 0.0263 | 0.6720 0.1433 | 0.7982 0.0735 | 0.7553 0.1079 | 0.7234 0.1252 | 0.7003 0.1406
MSRNet 331.8 VGGNets | 0.8662 0.0393 | 0.6535 0.1277 | 0.8359 0.0529 | 0.7673 0.0830 | 0.7511 0.0912 | 0.7367 0.1024
RFCN 1126.4 VGGNet;s | 0.8557 0.0549 | 0.6800 0.1167 | 0.7567 0.0920 | 0.7684 0.1035 | 0.7375 0.1188 | 0.6870 0.1443
UCF 1179 VGGNet;s | 0.8651 0.0513 | 0.7291 0.1036 | 0.7993 0.0764 | 0.7824 0.0961 | 0.7514 0.1101 | 0.7210 0.1327
WSS 58.9 VGGNet;s | 0.8237 0.0787 | 0.7138 0.1320 | 0.7842 0.1026 | 0.7151 0.1392 | 0.6996 0.1462 | 0.6883 0.1495

Table 6: Comparison on HKU-IS and PASCAL-S. LR: r=4, GB: h=7. MB: [=7, GN: v=0.10.

fixed format depending on the type of training data. Exces-
sive degraded data affects the performance of the model on
clear images, and deficient degraded data limits the ability in
dealing with various degraded scenes, coupled with the lack
of explicit modeling of implicit features, so there is still an
obvious gap between adv-Amulet and our MSANet, which
proves the effectiveness of our ATN.

DUTS-TE

Original Haze ¢=0.10 Haze e=0.15

Methods  —p ENAE F; MAE | F; MAE
Ours | 07762 0.0517 | 0.7474 0.0643 | 0.7084 0.0776

adv-Amulet | 0.7497 0.0701 | 0.6928 0.0847 | 0.6403 0.0986
Amulet | 07080 0.0853 | 0.5490 0.1840 | 0.4918 0.2263
AFNet | 07924 0.0458 | 0.7487 0.0616 | 0.6510 0.0838

BASNet | 07911 0.0476 | 0.7319 0.0630 | 0.6588 0.0784
C2SNet | 07120 0.0656 | 0.7060 0.0713 | 0.6692 0.0830
CPDNet | 0.8132 0.0429 | 0.7589 0.0619 | 0.6705 0.0854
MWSNet | 0.6478 0.1020 | 0.5915 0.1184 | 0.5029 0.1376
PiICANet | 0.7350 0.0532 | 0.6544 0.0865 | 0.5223 0.1144
DGRL | 0.7938 0.0497 | 0.7285 0.0658 | 0.6277 0.0849

LFRNet | 0.6950 0.0845 | 0.6097 0.1193 | 05293 0.1513
MSRNet | 0.7120 0.0656 | 0.6668 0.0780 | 0.6692 0.0829
RFCN | 0.7087 0.0745 | 0.6612 0.0903 | 0.5003 0.1078

UCF | 0.7212_0.0800 | 0.6608 0.1030 | 0.6130 0.1201

WSS | 0.6531 0.1001 | 0.5880 0.1154 | 0.4968 0.1316

Table 7: Comparison on DUTS-TE

. € is the degree of haze.
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Figure 6: Performance trends of 15 models in different situ-
ations. Our model has the best stability.
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Figure 7: Visualization of our MSANet and 12 competitors in some representative scenarios. LR(r): reduct resolution (x1/7),
MB(h): motion blur (length k), GN(v): Gaussian white noise (covariance ), FG(e): haze (degree €).

Qualitative Evaluation. Figure.7 provides some visual-
ization of MSANet and other 12 methods in some chal-
lenging scenarios, where our MSANet is superior to other
methods. For example, in low-resolution scenes, most of the
models lose the position of salient objects (2nd). In blur-
ring, foggy, and noisy scenes, many methods cannot accu-
rately detect salient objects due to the side effects of inter-
ference information, or incorrectly regard the background as
a salient object (3rd-6th), yet our proposed model is able to
capture complete salient regions in a variety of complex sce-
narios.

04 05 06 0. 05 06 0
Recall Recall
DUT-OMRON (LR4) ECSSD (LRY)

0.4 05 06 0.
Recall
DUTS-TE (FGO.10)

Figure 8: The precision-recall curves of 15 methods. The
red curve represents our proposed MSANet. The number in
parentheses represents the degradation scale, as detailed in
Table.2.

Ablation Study. The results in rows 6-7 of table.8 show
that the effect of introducing ATN is better than that of ad-
versarial training, which indicates that ATN can effectively
promote the understanding of the content of degraded im-
ages and help to obtain more abundant features. Meanwhile,
the results of lines 5-6 also show that our proposed MSA
structure is better than Amulet under the same adversar-
ial training mode. It is worth noting how to calculate and
where to teach has a great impact on performance. Accord-
ing to the results in lines 1-4, after the introduction of RLS,
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the performance has increased by 2.4%-4.3%, which indi-
cates the superiority of RLS in suppressing the interference
of non-target regions. And the introduction of GPA further
improves performance slightly, which indicates that GPA is
helpful for optimizing the details of salient objects.

Sx  E.n Fz MAE

tbaseline En-De-V | .869 901 .826 .078
tEn-De-V+RLS | .893 929 869 .044
tEn-De-V+GPA | .882 .920 .845 .049
TEn-De-V+RLS+GPA | .894 942 .896 .043
adv-Amulet | 746 851 764 090
fadv-En-De-V+RLS+GPA | .826 .880 .778 .081
{En-De-V+RLS+GPA+ATN | .833 .891 .795 .074

Table 8: Ablation study on HKU-IS under different architec-
tures. {: clear image, : degraded image with LR scale r=4.

Conclusion

In this paper, we systematically studied the degraded SOD
and proposed a multi-type self-attention network, MSANet.
Through attention transfer learning, feature extractor can
learn more abundant semantic details of degraded im-
ages and perceive their hidden feature patterns. Meanwhile,
MSANet performs global and local attention inference on
multi-scale features for information filtering. Extensive ex-
periments were conducted to verify the effectiveness of our
model. In the future work, we plan to further extend this
work to detect video saliency under motion blurs, as well as
SOD for small objects.
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