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Abstract

Head pose estimation from RGB images without depth in-
formation is a challenging task due to the loss of spatial in-
formation as well as large head pose variations in the wild.
The performance of existing landmark-free methods remains
unsatisfactory as the quality of estimated pose is inferior. In
this paper, we propose a novel three-branch network architec-
ture, termed as Feature Decoupling Network (FDN), a more
powerful architecture for landmark-free head pose estimation
from a single RGB image. In FDN, we first propose a fea-
ture decoupling (FD) module to explicitly learn the discrim-
inative features for each pose angle by adaptively recalibrat-
ing its channel-wise responses. Besides, we introduce a cross-
category center (CCC) loss to constrain the distribution of the
latent variable subspaces and thus we can obtain more com-
pact and distinct subspaces. Extensive experiments on both
in-the-wild and controlled environment datasets demonstrate
that the proposed method outperforms other state-of-the-art
methods based on a single RGB image and behaves on par
with approaches based on multimodal input resources.

Introduction

Facial analysis is one of the most studied topics in the past
decades and plentiful methods have been proposed for vari-
ous 2D facial problems, such as face detection, face recogni-
tion and face alignment. In recent years, 3D facial analysis
has received more and more attention. Being an important
basic of the nonverbal communication of humans, 3D head
pose estimation can be utilized for human-computer inter-
action, human attention modelling, group behavior analysis,
etc.

Since head pose estimation is a 3D problem, early meth-
ods (Martin, Van De Camp, and Stiefelhagen 2014; Meyer
et al. 2015) using depth images can achieve high estima-
tion performance. However, their applications are primarily
limited by device, i.e., RGB-D cameras. Recently, with the
breakthrough of deep convolutional neural networks (CNN),
accurate facial landmark detection methods (Zhu et al. 2016;
Bulat and Tzimiropoulos 2017) promote the performance of
landmark-based head pose estimation from RGB images to
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Figure 1: Overview of our FDN. The feature decoupling
(FD) module is proposed to achieve the decoupled features
of yaw, pitch, and roll, respectively, from the identical fea-
ture map input. GAP denotes global average pooling.

a large extent and get rid of the limitation of devices. Never-
theless, such two-stage methods incur extra error and com-
putation caused by landmark detection process which can
not be neglected.

To tackle these problems, landmark-free methods (Ran-
jan, Patel, and Chellappa 2017; Ranjan et al. 2017) choose
to regress three pose angles directly using features extracted
from CNN. However, all these landmark-free methods re-
gard head pose estimation as a straightforward regression
or regression with classification problem under the assump-
tion that the identical feature is applicable for the predictions
of all three angles. Though existing landmark-free methods
have achieved convincing performance in this manner, using
identical feature is inappropriate as it still suffers from three
main disadvantages. First, the feature subspaces of different
angles are hybrid and non-separable, which leads to degra-
dation of performance as features of yaw, pitch and roll have
complementary but not identical information. Second, the
exclusive features of each angle are not highlighted and are
underutilized, which restricts the model from learning dis-
criminative features for each angle. Third, it is inconsistent
with human behavior as we will not focus on the same areas
twice when asked to judge different pose angles (e.g., yaw
angle vs. pitch angle) respectively from the same image.



To the best of our knowledge, none of the previous meth-
ods tries to deal with each angle on its characteristics, but
to follow an image feature extraction and angle regression
pipeline. In contrast, we argue that the feature subspaces of
different angles are non-identical, and the customized fea-
tures for each angle is beneficial to make the final predic-
tions. Afterwards, we propose a novel three-branch network
architecture in this paper, termed as Feature Decoupling
Network (FDN), a more powerful architecture for landmark-
free head pose estimation from a single RGB image, as
shown in Figure 1. In our FDN, we add a feature decoupling
(FD) module for the identical feature extracted from back-
bone CNN to learn discriminative features for each pose an-
gle respectively. Furthermore, based on our proposed FDN,
we propose a cross-category center (CCC) loss to imple-
ment decoupling of latent variable subspaces. With the novel
three-branch architecture, our FDN has three main advan-
tages. First, benefited from FD module and CCC loss, it
realizes the decoupling of latent variable subspaces, which
makes the model focuses on the prediction of each pose an-
gle separately. Second, it learns to highlight exclusive fea-
tures of each angle meanwhile suppress less useful ones
which is beneficial for final predictions. Third, being con-
sistent with human behavior, it is comprehensible.

In summary, the main contributions of our work can be
summarized as follows:

e We propose a Feature Decoupling Network to achieve de-
coupling of latent variable subspaces to learn exclusive
features of different angles in head pose estimation prob-

lem for the first time.

We design a feature decoupling module to explicitly high-
light discriminative features meanwhile suppress less use-
ful ones by recalibrating channel-wise responses of each
pose angle.

We introduce a cross-category center loss to constrain the
distribution of latent variable subspaces so that we can
obtain more compact and distinct subspaces for different
angle categories.

Our proposed method outperforms other state-of-the-art
methods based on a single RGB image and behaves on
par with methods based on multimodal input resources.

Related Work

In this section, we provide a brief survey of head pose esti-
mation and softmax-based loss functions.

Head Pose Estimation

Human head pose estimation has been a widely studied task
in computer vision during the past few years with various
methods and different modal databases proposed. Tradition-
ally, RGB based methods (Murphy-Chutorian and Trivedi
2008; Huang, Shao, and Wechsler 1998) often use rotation-
specific facial features to estimate head pose which is fragile
due to various illumination conditions, expressions and oc-
clusions. Some approaches based on depth images improve
the robustness of estimation by registering a morphable face
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model to the depth images and combining several optimiza-
tion methods (Meyer et al. 2015) or the ensembling of dis-
criminative random regression forests (Fanelli et al. 2011).

In recent years, with the progress in RGB based facial
analysis using convolutional neural networks (CNN), there
are two main categories in existing methods for head pose
estimation.

One is landmark-based which benefits from accurate fa-
cial landmark detectors (Bulat and Tzimiropoulos 2017;
Zhu et al. 2016). Given 2D facial landmarks, we can ob-
tain the head pose using algorithms such as CASSC (Gao et
al. 2003). But such two-stage methods are indirect for head
pose estimation. Zhu et al. (Zhu et al. 2016) directly fit a 3D
face model using CNN and head pose is produced in the 3D
fitting process.

The other is landmark-free, as landmark-based methods
are affected by the accuracy of facial landmark detectors to
a large extent and suffer from severe performance degrada-
tion in landmark invisible conditions as well as incur un-
necessary computation. Closely related to other facial anal-
ysis tasks, head pose estimation is often performed in a
multi-task learning framework. KEPLER (Kumar, Alavi,
and Chellappa 2017) uses H-CNN to capture structured
global and local features for accurate keypoint detection
and provide head pose as a by-product. Hyperface (Ran-
jan, Patel, and Chellappa 2017) fuses the intermediate lay-
ers to perform face detection, landmarks localization, pose
estimation and gender recognition simultaneously under a
multi-task learning framework and demonstrates the syn-
ergy among these tasks. However, jointly learning with other
tasks lacks the targeted research on head pose estimation
problem. Methods such as (Ahn, Park, and Kweon 2014;
Chang et al. 2017) exploit CNN architecture for head pose
estimation in a regression manner. Drouard et al. (Drouard
et al. 2017) propose to mix linear regressions with partially-
latent output based on CNN. In (Ruiz, Chong, and Rehg
2018; Wang et al. 2019; Wang, Chen, and Zhou 2019),
head pose estimation networks are trained under the joint
supervision of classification loss and regression loss. Re-
cently, FSA-Net (Yang et al. 2019) which employs the soft
stagewise regression scheme and adopts a fine-grained struc-
ture aggregation outperforms the state-of-the-art methods on
head pose estimation. In addition to single RGB images, Gu
et al. (Gu et al. 2017) propose to use a recurrent neural net-
work (RNN) for dynamic facial analysis in videos which is
also landmark-free.

Softmax-based Loss Functions

In classification problems, a widely adopted pipeline which
accepts class labels as supervision is softmax function fol-
lowed by cross-entropy-loss to supervise the training pro-
cess of the network. Based on softmax, advanced loss
functions are proposed in face recognition. Schroff et al.
(Schroff, Kalenichenko, and Philbin 2015) demonstrate the
effectiveness of metric learning in face recognition by intro-
duce the triplet loss. Wen et al. (Wen et al. 2016) propose
the center loss which assigns embedding centers for each
class and pulls the deep features closer to corresponding
centers. Recently, some approaches take a deeper look into



the feature spaces distribution. Zhao et al. (Zhao, Xu, and
Cheng 2019) employs an exclusive regularization to enlarge
the angle between different classes. Duan ef al. (Duan, Lu,
and Zhou 2019) propose an equidistributed constraint in loss
function to uniform the distribution of deep face features in
feature space. Different from the above methods, our pro-
posed loss function is cross-category as features distribute in
different subspaces. Apart from face recognition, DEPICT
(Ghasedi Dizaji et al. 2017) introduces Kullback-Leibler
(KL) divergence to decrease the distance between predic-
tion and target distribution in clustering problems based on
softmax.

Method

In this section, we first formulate our problem. Then we
elaborate the proposed Feature Decoupling Network for
head pose estimation.

Problem Formulation

Given a set of training images X = {z(?) ¢ R3*HxWN

and labels Y = {y) € R3}Y,, where N is number of
training images, z(*) is a RGB face image with size H x W
and y(*) is a pose vector whose elements correspond to the
angles of yaw, pitch, and roll respectively. Our goal is to
model a mapping function ¢ by minimizing the mean abso-
lute error (MAE) between the predictions and labels,

ey

where () = ¢(x(
model.

i) is the output pose predictions by the

The Proposed Feature Decoupling Network

Overview of FDN Let z and a = [ayquw, 8pitch; aront] "
denote the latent variable subspace and the pose angles
respectively. Then, the pose prediction process can be
viewed from the perspective of conditional probability, i.e.,
p(ayauH Apitchs droll | Z). Given Z, dyaqws Apitchs and Aroll
are blocked from each other. Hence, previous works pre-
dict all three pose angles based on the identical feature
provided by z. In contrast, we propose to customize la-
tent variable subspace for each pose angle. Afterwards,
the prediction process turns into p(ayquw,apitchs aroll |
Zyawazpitch7zroll)s where Zyaw> Zpitchs and z,, are la-
tent variable subspaces for yaw, pitch, and roll respectively.
Given z;, j € {yaw,pitch,roll}, a is blocked from z,
which means a is dependent on z;, not z. Therefore, the
latent variable subspaces can be decoupled by appropriate
Zj.

As shown in Figure 1, the proposed FDN takes a single
RGB image as input and pass it to the backbone CNN. The
acquired feature map is then fed into the proposed FD mod-
ule which we will describe in the next subsection. The out-
put of branches are the final latent variables for predictions
of different angles. The whole network can be trained in an
end-to-end fashion.
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Figure 2: Our angle-dependent mix loss takes the decoupled
feature as input and consists of the classification term and
the regression term.

Feature Decoupling Module This module takes the ac-
quired feature map as input and performs the decoupling of
latent variable subspaces, as shown in Figure 1. Inspired by
Squeeze-and-Excitation blocks (Hu, Shen, and Sun 2018)
we implement our FD module with three channel attention
blocks. It is a basic of CNN that features of different lay-
ers aim to encode different-level information. Pose informa-
tion is encoded in high-layer features as low-layer features
contain more detail information such as edges and texture.
By adding FD module to the output feature map of back-
bone CNN, our FDN will not suffer from the problem of
background clutter and semantic ambiguity which appears
in low-level features. In FD module, we achieve the decou-
pling by adaptively recalibrating the channel-wise responses
of each angle branch using parametric channel attention
mechanism with a bottleneck layer consisting of two fully
connected (FC) layers around the nonlinear function. Since
channel dependencies are implicitly embedded in learned fil-
ters, our FD module explicitly captures discriminative fea-
tures for each angle by performing angle-dependent feature
re-weighting to select the more informative channel features
while suppressing less useful ones and updating module pa-
rameters with angle-dependent losses.

Head pose estimation can be seen as a regression prob-
lem naturally. Previous works (Ruiz, Chong, and Rehg 2018;
Wang, Chen, and Zhou 2019) show that the combined uti-
lization of classification and regression supervision can fur-
ther enhance the model performance. Thus we also follow
this way to construct a mixed loss with two losses. As shown
in Figure 2, the decoupled feature is then fed into an FC layer
followed with a softmax function to obtain bins probability
prediction, and the classification target is a 1D Gaussian with
the mean centered at the ground-truth class and a small vari-
ance as consecutive discrete targets have explicit semantics
in this case. We use Kullback-Leibler (KL) divergence be-
tween target and prediction distributions to compute classi-
fication loss. Then, the angle prediction is obtained by com-
puting expectation of the bins output, followed with a Mean
Squared Error (MSE) loss used as regression loss. The final
mix loss for each angle branch is the following,

Lz = Dxr (G(y;)||-log(q;)) + AMSE(y;j,9;) ()

where ¢; is the output classification probability, y; is the
angle ground-truth, G(-) denotes 1D Gaussian of the class



target, §; = q;-b1is the final angle prediction, b is the indexes
of bins, j € {yaw, pitch,roll} denotes each angle branch,
and ) is a hyper parameter to trade off the classification loss
term and the MSE loss term.

Cross-category Center Loss We further propose a cross-
category center (CCC) loss to achieve the intra-class com-
pactness and inter-category separability of latent variable
subspaces at the same time. Similar to (Wen et al. 2016), the
center loss part of CCC loss for each angle branch is defined

as,
.
c 2 -
() (‘yi)i

where z,” € R? is the ith embedding deep feature, ¢ ;s
the embedding center of the y;th class which is updated dur-
ing training phase, m is the size of mini-batch and j denotes
each angle branch.

The above part shortens the distance between latent vari-
ables of the same discrete angle ground-truth to ensure the
intra-class compactness according to different angle cate-
gories. It is a fact that latent variables of different angles
should distribute in decoupled subspaces. However, this is
omitted in the center loss. To alleviate this shortcoming, we
further define the decoupling loss part,

1
Lqg=—F— —
5(7,0") +8(5,3") +1
where j,j', 7" € {yaw,pitch,roll} and j # j # j",
5(4,7") = |I€; — €|, and s(4,5") = [[€; — €;~||, denote
the cross-category correlation distance, c; is the average of
latent variable centers from each angle category and adding
one in denominator is to prevent from results overflow.
The proposed cross-category center (CCC) loss consists
of the above two parts and can be formulated as,

Locec =Lq+al,.

) 2
©) (yi)
z;’ —c; ,

3

“

&)
where « is a hyper parameter to trade off the two parts.

Backbone Architecture and Optimization Taking fea-
ture extraction capability and model size into account, we
construct our backbone network based on inverted residual
blocks proposed in (Sandler et al. 2018). To be more spe-
cific, except for the initial convolution layer with 32 filters
and the last one with 640 filters, our backbone network con-
sists of 9 inverted residual blocks described in detail in Table
1 where we follow the notations in (Sandler et al. 2018).

Table 1: Detailed architecture of our backbone network.

Input t c n s
112x112x32 1 16 1 1
112 x112x16 6 24 2 2

56 xH6x24 6 32 2 2
28x28x32 6 9% 2 2
14x14x96 6 240 2 2

The total loss for each angle branch can be formulated as,
Lj = Lyiz +Lccc (6)
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where j € {yaw, pitch, roll} denotes each angle branch.
We update embedding centers with the following equation
(Wen et al. 2016),

S8y = k) - (i —2)
L+ 50 0y = k)

where jk denotes the kth center of the jth angle
branch, d(condition) 1 if the condition is true and
d(condition) = 0 otherwise. Algorithm 1 details the train-
ing process of proposed method.

(7

ACjk =

Algorithm 1 Feature Decoupling Network (FDN) Training

Require: Training data {z(")}, training labels {y(}. The
trade-off parameters \, v, the learning rate pq for up-
date network parameters, the learning rate yo for update
embedding centers and the number of iteration 7.

Ensure: The network parameters ¢ in backbone CNN,

Oyaws Opiten, and 8,4y in FD module.

Initialize 0., Oyqw, Opiten and O,y

Initialize the centers Cyquw, Cpitch and .oy randomly.

fort=1,...,T do

Sample a mini-batch from the training set.
for j = yaw, pitch, roll do
Compute the joint loss £; = L5 + Locc.
Update the 0; via back-propagation.
Update the centers c; with Eq.7.
end for
Update the 0. via back-propagation.
: end for
: return Oc, Oyqw, Opiten, and 0,

A A ol e

—_—— =
N

Experiments

In this section, our proposed FDN is systemically evaluated
against several state-of-the-art methods. Both quantitative
results and qualitative results are reported.

Implementation Details

All the images are cropped around the face to include the
whole head. After being randomly cropped to 224 x 224,
the images are normalized by ImageNet mean and standard
deviation. The trade-off parameters A, « are set to 2.5 and
0.01 respectively in all experiments. SGD optimizer is used
to update centers with the learning rate 5 x 10~ and Adam
optimizer is used to update the network parameters with the
learning rate 1 x 10~%. Batch size is set to 16, and the net-
work is trained for 100 epochs in total. All experiments are
carried out based on Pytorch. Our method bins angles range
from —99° to 99°, and we discard images with angles out-
side of this range following (Yang et al. 2019).

Datasets and Protocols

The 300W-LP dataset (Zhu et al. 2016) is a large synthetic
dataset which was derived from 300W dataset (Sagonas et
al. 2013). Zhu et al. re-annotated a collection of popular in-
the-wild facial 2D landmark datasets by fitting the 3D dense



Figure 3: Head pose estimation results on the challenging AFLW2000 dataset. The blue, green and red lines point forward,
downward and to the side respectively. The first row are the ground-truth. The second and the third row are the results of

FSA-Net and our FDN, respectively. Best viewed in color.

Table 2: Comparisons with other state-of-the-art methods on the AFLW?2000 and the BIWI dataset. All models are trained on

the 300W-LP dataset.
AFLW2000 BIWI

Method MB ' yiw Pitch Roll MAE Yaw Pitch Roll MAE
Dlib (68 points) (Kazemi and Sullivan 2014) - 23.1 136 105 158 168 138 6.19 122
FAN (12 points) (Bulat and Tzimiropoulos 2017) 183 636 123 871 9.12 853 748 7.63 7.89
Landmarks (Ruiz, Chong, and Rehg 2018) - 592 11.86 827 8.65 - - - -
3DDFA (Zhu et al. 2016) - 540 853 825 739 362 123 878 19.1
Hopenet (a=2) (Ruiz, Chong, and Rehg 2018) 959 647 656 544 616 517 698 339 5.18
Hybrid Classification (Wang, Chen, and Zhou 2019) 96.7 4.82 6.23 5.14 540 - - - -
FSA-Net (Yang et al. 2019) 51 450 608 464 507 427 496 276 4.00
Ours 58 378 561 388 442 452 470 256 393

face model to the image to construct the database which
contains 61,225 samples across large poses and further ex-
panded it to 122,450 samples with flipping. The AFLW2000
dataset (Zhu et al. 2016) contains the ground truth 3D faces
and the corresponding 68 landmarks for the first 2,000 sam-
ples of the AFLW dataset (Koestinger et al. 2011). The faces
in the dataset have large pose variations with various occlu-
sions, expressions as well as illumination conditions. The
BIWI dataset (Fanelli et al. 2013) provides pose annotations
for roughly 15,000 frames derived from 24 videos of 20 sub-
jects. Fanelli ef al. used a Kinect v2 device to record RGB-D
videos of different subjects in the controlled laboratory en-
vironment. Our experiments are conducted on these datasets
following two widely used protocols described below.

In protocol 1, the 300W-LP dataset is only used for train-
ing and the trained models are evaluated on both of the
AFLW2000 and the BIWI dataset. When testing on the
AFLW?2000 dataset, we retrieve the ground-truth landmarks
to loosely crop the faces and when testing on the BIWI
dataset, we employ dlib for face detection and do not using
tracking. In protocol 2, we split videos in the BIWI dataset in
a ratio of 7:3 for training and testing respectively following
(Yang et al. 2019). Face bounding boxes in the BIWI dataset
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are detected by MTCNN face detector (Zhang et al. 2016).

Comparison with the State of the Art

Results with protocol 1. Table 2 shows the comparison
with state-of-the-art methods, including landmark-based and
landmark-free methods on two benchmark datasets. Com-
pared with landmark-based methods (Kazemi and Sullivan
2014; Bulat and Tzimiropoulos 2017; Zhu et al. 2016), our
FDN is landmark-free, thus the prediction error is not af-
fected by landmark detection process and the model size
can be very compact. In addition, benefited from the pro-
posed feature decoupling strategy and the carefully de-
signed model structure, our FDN is more accurate and
lightweight than landmark-free methods (Ruiz, Chong, and
Rehg 2018; Wang, Chen, and Zhou 2019). On the chal-
lenging AFLW2000 dataset, our FDN outperforms previous
state-of-the-art methods such as FSA-Net (Yang et al. 2019)
by 12.8% on MAE, which further exhibits the superiority of
our FDN. It is the first time that a method proposes to learn
customized features for each angle branch respectively and
provides impressive performance improvements.



Table 3: Comparisons with other state-of-the-art methods on the BIWI dataset.

Input modality

Method RGB Depth Time MB Yaw Pitch Roll MAE
DeepHeadPose (Mukherjee and Robertson 2015) v - - - 5.67 5.18 - -
SSR-Net-MD (Yang et al. 2018) v - - 1.1 424 435 419 426
VGG16 (Gu et al. 2017) v - - 500 391 4.03 3.03 3.66
FSA-Net (Yang et al. 2019) v - - 5.1 289 429 360 3.60
Ours v - - 58 3.00 398 288 3.29
DeepHeadPose (Mukherjee and Robertson 2015) v v - - 532 4776 - -
Martin (Martin, Van De Camp, and Stiefelhagen 2014) v v - - 3.6 2.5 2.6 2.9
VGG16+RNN (Gu et al. 2017) v - v >500 3.14 348 2.60 3.07
B 1D Gaussian(3.11)
One-hot(5.35)
0.081 mmm Ground-truth(1.04)
0.06
Figure 4: CAM visualization with two subjects from the 004
AFLW2000 dataset. The first row are results of Hopenet and ’
the second row are results of our FDN. Yaw, pitch, and roll,
respectively in order from left to right. Best viewed in color. 0.02 |
Results with protocol 2. We also compare our approach 000 10 20 30 0 50 60

with other methods that input with different modalities such
as RGB, RGB-Depth, and RGB-Time while our FDN only
uses a single RGB image on the BIWI dataset in Table 3. Our
method outperforms the state-of-the-art RGB-based meth-
ods such as FSA-Net (Yang et al. 2019) by 8.6%. In addition,
our method is more compact than VGG16 (Gu et al. 2017)
and more concise than FSA-Net. DeepHeadPose (Mukher-
jee and Robertson 2015) estimates head pose in multi-modal
RGB-D videos by combining classification and regression
model. Martin (Martin, Van De Camp, and Stiefelhagen
2014) builds and registers a 3D head model to estimate head
pose from depth images. VGG16+RNN (Gu et al. 2017) uses
an end-to-end network containing a CNN and an RNN for
head pose estimation from consecutive video frames. Com-
pared to these multi-modal methods, our method only uses
pixel intensity information and narrows the performance gap
between RGB based and multi-modal inputs based methods.

Visualization

Figure 3 shows a few results of our FDN compared with
the previous state-of-the-art method, i.e., FSA-Net. It can be
seen that our FDN is more robust for various poses and light-
ing. In addition, Ruiz et al. also try to predict three angles
separately in Hopenet but using hybrid features for various
angles. We visualize the Class Activation Map (Zhou et al.
2016) of Hopenet and our proposed FDN, as shown in Fig-
ure 4. Compared with Hopenet, our FDN makes predictions
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Figure 5: Comparison of probability distributions using var-
ious classification targets. The red one denotes the classi-
fication ground-truth. The numbers in parentheses indicate
poses. Best viewed in color.
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Figure 6: Visualization of the learned feature distributions
on the AFLW?2000 dataset. Left: comparison of features be-
longing to 5 different bins from Hopenet and our FDN re-
spectively. Right: distribution of features belonging to vari-
ous angle categories, i.e., yaw, pitch, and roll in hypersphere
from our FDN. Best viewed in color.

based on more discriminative local regions meanwhile most
global features are fully utilized for all three angles and the
boundary between local and global regions output by our
FDN is more stable. It proves that our FDN learns more dis-
tinct subspace for each angle. In Figure 5, we show that by
using 1D Gaussian, our FDN can not only reduce evident



Table 4: Ablation study for FDN on the AFLW2000 and the BIWI datasets.

ED module L AFLW2000 BIWI

€CC  Yaw Pitch Roll MAE Yaw Pitch Roll MAE

- - 418 573 405 465 298 453 338 3.63

v - 397 571 400 456 3.13 394 328 345

v v 378 561 388 442 300 398 288 329
Conclusion

Table 5: Evaluation of different backbone structures on the
BIWI dataset.

Model Structure MB  Yaw Pitch Roll MAE
ResNet18 6277 371 463 371 4.02
FDN 58 300 398 288 329

misclassification but also provide more accurate pose pre-
diction. In Figure 6, we visualize feature distributions using
the t-SNE (Maaten and Hinton 2008), which shows that our
FDN achieves the decoupling of feature subspaces across
angle categories meanwhile maintains the intra-class com-
pactness for each bin.

Ablation Study

In this subsection, we conduct extensive ablation studies to
further demonstrate the effectiveness of our Feature Decou-
pling Network (FDN).

Table 4 shows the experimental results on the AFLW2000
dataset and the BIWI dataset. In order to fairly compare, We
adopt the same backbone network architecture as described
in Table 1 across all three sets of experiments. The baseline
model is in the 1st row which uses 3 FC layers to estimate
three angles separately from the hybrid feature. Compared
to the baseline model, adding our FD module to the hy-
brid feature and training the network with £,,;, loss (2nd
row) improves the performance by 1.9% and 4.9% on the
AFLW?2000 and the BIWI dataset respectively, which indi-
cates that our FD module learns to customize discriminative
features for each angle branch and is beneficial to estimate
the angles. As shown in the 3rd row, adding our Lo o loss
to the model with FD module further enhance the perfor-
mance by 3.0% on the AFLW2000 dataset and 4.6% on the
BIWI dataset as the proposed Lo loss promotes the de-
coupling of latent variable subspaces with different angles
on the basis of FD module. Overall, our FDN outperforms
the baseline model by a large margin, i.e., 5.0% and 9.4%
on the AFLW2000 and the BIWI dataset, respectively.

Furthermore, we evaluate the influence of different back-
bone structures in Table 5. We use ResNet18 with residual
blocks for comparison. It shows that using inverted resid-
ual blocks is beneficial to the performance as well as the
model size. However, the performance margin brought by
our proposed method is still considerable. As shown in Ta-
ble 4, our proposed FDN outperforms the baseline model by
9.4% on the BIWI dataset, which proves the effectiveness of
our method.
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In this paper, a novel three-branch network architecture,
called Feature Decoupling Network (FDN), is proposed for
landmark-free head pose estimation from a single RGB im-
age. Different from previous works, We propose to decou-
ple hybrid features and customize exclusive latent variable
subspace of each angle by our proposed feature decoupling
(FD) module and cross-category center (CCC) loss. In the
FD module, we explicitly select discriminative features and
suppress less useful ones of each angle by adaptively re-
calibrating its channel-wise responses. The CCC loss fur-
ther improves the performance by encouraging more com-
pact and distinct latent variable subspaces of different an-
gle categories. Extensive experiments on the 300W-LP, the
AFLW?2000 and the BIWI datasets show the superiority of
our FDN which results in the state-of-the-art performance
on these datasets.
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