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Abstract

Feature Normalization (FN) is an important technique to help
neural network training, which typically normalizes features
across spatial dimensions. Most previous image inpainting
methods apply FN in their networks without considering the
impact of the corrupted regions of the input image on normal-
ization, e.g. mean and variance shifts. In this work, we show
that the mean and variance shifts caused by full-spatial FN
limit the image inpainting network training and we propose
a spatial region-wise normalization named Region Normal-
ization (RN) to overcome the limitation. RN divides spatial
pixels into different regions according to the input mask, and
computes the mean and variance in each region for normal-
ization. We develop two kinds of RN for our image inpainting
network: (1) Basic RN (RN-B), which normalizes pixels from
the corrupted and uncorrupted regions separately based on the
original inpainting mask to solve the mean and variance shift
problem; (2) Learnable RN (RN-L), which automatically de-
tects potentially corrupted and uncorrupted regions for sepa-
rate normalization, and performs global affine transformation
to enhance their fusion. We apply RN-B in the early layers
and RN-L in the latter layers of the network respectively. Ex-
periments show that our method outperforms current state-of-
the-art methods quantitatively and qualitatively. We further
generalize RN to other inpainting networks and achieve con-
sistent performance improvements.

1 Introduction

Image inpainting aims to reconstruct the corrupted (or miss-
ing) regions of the input image. It has many applications in
image editing such as object removal, face editing and image
disocclusion. A key issue in image inpainting is to generate
visually plausible content in the corrupted regions.

Existing image inpainting methods can be divided into
two groups: traditional and learning-based methods. The
traditional methods fill the corrupted regions by diffusion-
based methods (Bertalmio et al. 2000; Ballester et al. 2001;
Esedoglu and Shen 2002; Bertalmio et al. 2003) that prop-
agate neighboring information into them, or patch-based
methods (Drori, Cohen-Or, and Yeshurun 2003; Barnes et al.
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Figure 1: Illustration of our Region Normalization (RN)
with region number K = 2. Pixels in the same color (green
or pink) are normalized by the same mean and variance. The
corrupted and uncorrupted regions of the input image are
normalized by different means and variances.

2009; Xu and Sun 2010; Darabi et al. 2012) that copy similar
patches into them. The learning-based methods commonly
train neural networks to synthesize content in the corrupted
regions, which yield promising results and have significantly
surpassed the traditional methods in recent years. Recent im-
age inpainting works, such as (Yu et al. 2018; Liu et al. 2018;
Yu et al. 2019; Nazeri et al. 2019), focus on the learning-
based methods. Most of them design an advanced network
to improve the performance, but ignore the inherent nature
of image inpainting problem: unlike the input image of gen-
eral vision task, the image inpainting input image has cor-
rupted regions that are typically independent of the uncor-
rupted regions. Inputing a corrupted image as a general spa-
tially consistent image into a neural network has potential
problems, such as convolution of invalid (corrupted) pix-
els and mean and variance shifts of normalization. Partial
convolution (Liu et al. 2018) is proposed to solve the in-
valid convolution problem by operating on only valid pixels,
and achieves a performance boost. However, none of exist-
ing methods solve the mean and variance shift problem of
normalization in inpainting networks. In particular, most ex-
isting methods apply feature normalization (FN) in their net-
works to help training, and existing FN methods typically
normalize features across spatial dimensions, ignoring the
corrupted regions and resulting in mean and variance shifts
of normalization.



In this work, we show in theory and experiment that the
mean and variance shifts caused by existing full-spatial nor-
malization limit the image inpainting network training. To
overcome the limitation, we propose Region Normalization
(RN), a spatially region-wise normalization method that di-
vides spatial pixels into different regions according to the
input mask and computes the mean and variance in each re-
gion for normalization. RN can effectively solve the mean
and variance shift problem and improve the inpainting net-
work training.

We further design two kinds of RN for our image inpaint-
ing network: Basic RN (RN-B) and Learnable RN (RN-L).
In the early layers of the network, the input image has large
corrupted regions, which results in severe mean and variance
shifts. Thus we apply RN-B to solve the problem by nor-
malizing corrupted and uncorrupted regions separately. The
input mask of RN-B is obtained from the original inpainting
mask. After passing through several convolutional layers,
the corrupted regions are fused gradually, making it difficult
to obtain a region mask from the original mask. Therefore,
we apply RN-L in the latter layers of the network, which
learns to detect potentially corrupted regions by utilizing the
spatial relationship of the input feature and generates a re-
gion mask for RN. Additionally, RN-L can also enhance the
fusion of corrupted and uncorrupted regions by global affine
transformation. RN-L not only solves the mean and variance
shift problem, but also boosts the reconstruction of corrupted
regions.

We conduct experiments on Places2 (Zhou et al. 2017)
and CelebA (Liu et al. 2015) datasets. The experimental re-
sults show that, with the help of RN, a simple backbone can
surpass current state-of-the-art image inpainting methods. In
addition, we generalize our RN to other inpainting networks
and yield consistent performance improvements.

Our contributions in this work include:

e Both theoretically and experimentally, we show that
existing full-spatial normalization methods are sub-
optimal for image inpainting.

To the best our knowledge, we are the first to
propose spatially region-wise normalization i.e.
Region Normalization (RN).

We propose two kinds of RN for image inpainting
and the use of them for achieving state-of-the-art on
image inpainting.

2 Related Work
2.1 Image Inpainting

Previous works in image inpainting can be divided into two
categories: traditional and learning-based methods.

Traditional methods use diffusion-based (Bertalmio et
al. 2000; Ballester et al. 2001; Esedoglu and Shen 2002;
Bertalmio et al. 2003) or patch-based (Drori, Cohen-Or,
and Yeshurun 2003; Barnes et al. 2009; Xu and Sun 2010;
Darabi et al. 2012) methods to fill the holes. The former
propagate neighboring information into holes. The latter
typically copy similar patches into the holes. The perfor-
mance of these traditional methods is limited since they can-
not use semantic information.
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Learning-based methods can learn to extract semantic in-
formation by massive data training, and thus significantly
improve the inpainting results. These methods map a cor-
rupted image directly to the completed image. ContextEn-
coder (Pathak et al. 2016), one of pioneer learning-based
methods, trains a convolutional neural network to complete
image. With the introduction of generative adversarial net-
works (GANs) (Goodfellow et al. 2014), GAN-based meth-
ods (Yeh et al. 2017; lizuka, Simo-Serra, and Ishikawa 2017,
Yu et al. 2018; Xiong et al. 2019; Nazeri et al. 2019) are
widely used in image inpainting. Contextual Attention (Yu
et al. 2018) is a popular model with coarse-to-fine archi-
tecture. Considering that there are valid/uncorrupted and in-
valid/corrupted regions in a corrupted image, partial convo-
Iution (Liu et al. 2018) operates on only valid pixels and
achieves promising results. Gated convolution (Yu et al.
2019) generalizes PConv by a soft distinction of valid and
invalid regions. EdgeConnect (Nazeri et al. 2019) first pre-
dicts the edges of the corrupted regions, then generates the
completed image with the help of the predicted edges.

However, most existing inpainting methods ignore the im-
pact of corrupted regions of the input image on normaliza-
tion which is a crucial technique for network training.

2.2 Normalization

Feature normalization layer has been widely applied in deep
neural networks to help network training.

Batch Normalization (BN) (Ioffe and Szegedy 2015), nor-
malizing activations across batch and spatial dimensions,
has been widely used in discriminative networks for speed-
ing up convergence and improve model robustness, and
found also effective in generative networks. Instance Nor-
malization (IN) (Ulyanov, Vedaldi, and Lempitsky 2016),
distinguished from BN by normalizing activations across
only spatial dimensions, achieves a significant improvement
in many generative tasks such as style transformation. Layer
Normalization (LN) (Ba, Kiros, and Hinton 2016) normal-
izes activations across channel and spatial dimensions (i.e.
normalizes all features of an instance), which helps recurrent
neural network training. Group Normalization (GN) (Wu
and He 2018) normalizes features of grouped channels of
an instance and improves the performance of some vision
tasks such as object detection.

Different from a single set of affine parameters in the
above normalization methods, conditional normalization
methods typically use external data to reason multiple sets of
affine parameters. Conditional instance normalization (CIN)
(Dumoulin, Shlens, and Kudlur 2016), adaptive instance
normalization (AdaIN) (Huang and Belongie 2017), con-
ditional batch normalization (CBN) (De Vries et al. 2017)
and spatially adaptive denormalization (SPADE) (Park et al.
2019) have been proposed in some image synthesis tasks.

None of existing normalization methods considers spatial
distribution’s impact on normalization.

3 Approach
In this secetion, we show that existing full-spatial normal-
ization methods are sub-optimal for image inpianting prob-
lem as motivation for Region Normalization (RN). We then
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Figure 2: (a) F; is the original feature map. Fo with mask
performs full-spatial normalization in all the regions. F3 per-
forms separate normalization in the masked and unmasked
regions. (b) The distribution of Fo’s unmasked area has a
shift to the nonlinear region, which easily causes the vanish-
ing gradient problem. But F3 does not have this problem.

introduce two kinds of RN for image inpainting, Basic RN
(RN-B) and Learnable RN (RN-L). We finally introduce our
image inpainting network using RN.

3.1 Motivation for Region Normalization

Problem in Normalization. F;, Fy and F3 are three fea-
ture maps of the same size, each with n pixels, as shown in
Figure 2. F; is the original uncorrupted feature map. Fy and
Fj3 are the different normalization results of feature map with
masked and unmasked areas. n,,, and n,, are the pixel num-
bers of the masked and unmasked areas, respectively. Then
n = Ny, + Ny, Specifically, Fo is normalized in all the areas.
F3 is normalized separately in the masked and unmasked ar-
eas. Assuming the masked region pixels have the max value
255, the mean and standard deviation of three feature maps
are listed as ft1, (2, M3ms 13us 01, 02, O3y and os,,. The
subscripts 1 and 2 represent the entire areas of F; and Fo,
and 3m and 3u represent the masked and unmasked areas of
F3, respectively. The relationships are listed below:

M3y = H1,08y = 01 (1
[i3m = 255,03, =0 )
Ty Nm,
M2 = —— * [z + — * 255 (3)
n n
Ny, Toym, * Ty
0% = —03u” + ——5— (3 — 255) 4)
n n

After normalizing the masked and unmasked areas to-
gether, Fo unmasked area’s mean has a shift toward —255
and its variance increases compared with F; and F3. Accord-
ing to (Ioffe and Szegedy 2015), the normalization shifts and
scales the distribution of features into a small region where
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the mean is zero and the variance is one. We take batch nor-
malization (BN) as an example here. For each point x;

’ LTi — M

T Hr 5
e (5)
yi = ya; + = BN, g(x;) (6)

Compared with the F3’s unmasked area, distribution of Fy’s
unmasked area narrows down and shifts from 0 toward
—255. Then, for both fully-connected and convolutional
layer, the affine transformation is followed by an element-
wise nonlinearity (Ioffe and Szegedy 2015):

z=g(BN(Wu)) (7

Here g(-) is the nonlinear activation function such as
ReLU or sigmoid. The BN transform is added immediately
before the function, by normalizing x = Wwu + b. The W
and b are learned parameters of the model.

As shown in Figure 2, in the ReLU and sigmoid activa-
tions, the distribution region of Fy is narrowed down and
shifted by the masked area, which adds the internal covari-
ate shift and easily get stuck in the saturated regimes of non-
linearities (causing the vanishing gradient problem), wasting
lots of time for ~y, 5 and W to fix the problem. However, Fs,
normalized the masked and unmasked regions separately, re-
duces the internal covariate shift, which preserves the net-
work capacity and improves training efficiency.

Motivated by this, we design a spatial region-wise nor-
malization named Region Normalization (RN).

Formulation of Region Normalization. Let X €
RNXCEXHXW he the input feature. N, C, H and W are batch
size, number of channels, height and width, respectively. Let
ZTp,e,h,w Deapixel of X and X, . € RH*W pe a channel of
X where (n, ¢, h, w) is an index along (N, C, H, W) axis.
Given a region label map (mask) M, X, . is divided into K
regions as follows:

Xpe=R, UR2 U..URE, ®)

The mean and standard deviation of each region of a chan-
nel Rﬁyc computed by:

Hn,e = |RE | Z Tnsehw ©)
n,c xn,c,h,,weRﬁ,,c
ko _ 1 k 2
Jn,c = RT Z (In,c,h,w - ,u’n,c) +e (10)
| n’6| T e, h,w ERE

n,c

Here k is a region index, |RY | is the number of pixels in

region Rﬁ}c and € is a small constant. The normalization of
each region performs the following computation:

1
= O_T(RITCL,C - N]fl,c)

n,c

Hk
Rn,c

(1D

RN merges all normalized regions and obtains the region
normalized feature as follows:

Xpe=RL UR2 U..URK, (12)

n,c
After normalization, each region is transformed sepa-
rately with a set of learnable affine parameters (v¥, 3%).



Analysis of Region Normalization. RN is an alternative
to Instance Normalization (IN). RN degenerates into IN
when region number K equals to one. RN normalizes spatial
regions on each channel separately as the spatial regions are
not entirely dependent. We set ' = 2 for image inpainting
in this work, as there are two obviously independent spa-
tial regions in the input image: corrupted and uncorrupted
regions. RN with K = 2 is illustrated in Figure 1.

3.2 Basic Region Normalization

Basic RN (RN-B) normalizes and transforms corrupted and
uncorrupted regions separately. This can solve the mean and
variance shift problem of normalization and also avoid in-
formation mixing in affine transformation. RN-B is designed
for using in early layers of the inpainting network, as the in-
put feature has large corrupted regions, which causes severe
mean and variance shifts.

Given an input feature F € RE*#*W and a binary re-
gion mask M € R H>W indicating corrupted region, RN-
B layer first separates each channel F, € R #*W of input
feature F' into two regions R! (e.g. uncorrupted region) and
R? (e.g. corrupted region) according to region mask M. Let
Ze,hw Tepresent a pixel of Fr where (c, b, w) is an index of
(C, H,W) axis. The separation rule is as follow:

Rl
Le,h,w S { S

R?
RN-B then normalizes each region following Formula (9),
(10) and (11) with region number K = 2. Then we merge
the two normalized regions Ri and Rz to obtain normalized
channel F... RN-B is a basic implement of RN and the region
mask is obtained from the original inpainting mask.

For each channel, there are two sets of learnable parame-
ters (v}, BL) and (y2, 3?) for affine transformation of each
region. For ease of denotation, we denote [y!,~2] as 7,
(3L, %] as 3. RN-B layer is showed in Figure 3(a).

if M (h,w) =1

13
otherwise (13)

3.3 Learnable Region Normalization

After passing through several convolutional layers, the cor-
rupted regions are fused gradually and obtaining an accu-
rate region mask from the original mask is hard. RN-L ad-
dresses the issue by automatically detecting corrupted re-
gions and obtaining a region mask. To further improve the
reconstruction, RN-L enhances the fusion of corrupted and
uncorrupted regions by global affine transformation. RN-L
boosts the corrupted region reconstruction in a soft way,
which solves the mean and variance shift problem and also
enhances the fusion. Therefore, RN-L is suitable for latter
layers of the network. Note that, RN-L does not need a re-
gion mask and the affine parameters of RN-L are pixel-wise.
RN-L is illustrated in Figure 3(b).

RN-L generates a spatial response map by taking advan-
tage of the spatial relationship of the features themselves.
Specifically, RN-L first performs max-pooling and average-
pooling along the channel axis. The two pooling operations
are able to obtain an efficient feature descriptor (Zagoruyko
and Komodakis 2016; Woo et al. 2018). RN-L then concate-
nates the two pooling results. RN-L is convolved on the two
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Figure 3: Two kinds of RN: RN-B (a) and RN-L (b)

maps with sigmoid activation to get a spatial response map.
The spatial response map is computed as:

Mg, = o(Conv([Fmaz, Favg)))) (14)

Here F,pqr € RUXHXW gpd Foug € RYXHXW are the
max-pooling and average-pooling results of the input fea-
ture F' € RE*HXW Conw is the convolution operation and
o is the sigmoid function. M, € R*>H>W ig the spatial
response map. To get a region mask M € R1*H*W for RN,
we set a threshold ¢ to the spatial response map:

1 if Map(h,w) > t
]\1‘ =
(h, w) {O otherwise

We set threshold ¢ = 0.8 in this work. Note that the thresh-
olding operation is only performed in the inference stage and
the gradients do not pass through it during backpropagation.
Based on the mask M, RN normalizes the input feature
F’ and then performs a pixel-wise affine transformation. The
affine parameters v € R>H*XW and B8 € RY>XHXW are
obtained by convolution on the spatial response map M,

~ = Conv(Ms,), 3 = Conv(Ms,) (16)

Note that the values of v and 3 are expanded along the
channel dimension in the affine transformation. The spatial
response map M, has global spatial information. Convolu-
tion on it can learn a global representation, which boosts the
fusion of corrupted and uncorrupted regions.

15)

3.4 Network Architecture

EdgeConnect(EC) (Nazeri et al. 2019) consists of an edge
generator and an image generator. The image generator is
a simple yet effective network originally proposed by John-
son et al. (Johnson, Alahi, and Fei-Fei 2016). We use only
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Figure 4: Illustration of our inpainting model.

the image generator as our backbone generator. We replace
the original instance normalization (IN) of backbone gener-
ator to our two kinds of RN, RN-B and RN-L. Our gener-
ator architecture is shown in Figure 4. Based the instruc-
tion of Section 3.2 and 3.3, we apply RN-B in the early
layers (encoder) of our generator and RN-L in the inter-
mediate and later layers (the residual blocks and decoder).
Note that the input mask of RN-B is sampled from the orig-
inal inpainting mask while RN-L does not need an exter-
nal input as it generates region masks internally. We ap-
ply the same discriminators (PatchGAN (Isola et al. 2017,
Zhu et al. 2017)) and loss functions (reconstruction loss, ad-
versarial loss, perceptual loss and style loss) of the original
backbone model to our model'.

4 Experiments

We first compare our method with current state-of-the-art
methods. We then conduct ablation study to explore the
properties of RN and visualize our methods. Finally, we gen-
eralize RN to some other state-of-the-art methods.

4.1 Experiment Setup

We evaluate our methods on Places2 (Zhou et al. 2017) and
CelebA (Liu et al. 2015) datasets. We use two kinds of image
masks: regular masks which are fixed square masks (occupy-
ing a quarter of the image) and irregular masks from (Liu et
al. 2018). The irregular mask dataset contains 12000 irreg-
ular masks and the masked area in each mask occupies 0-
60% of the total image size. Besides, the irregular dataset is
grouped into six intervals according to the mask area, i.e.0-
10%, 10-20%, 20-30%, 30-40%, 40-50% and 50-60%. Each
interval has 2000 masks.

4.2 Comparison

We compare our method to four current state-of-the-art
methods and the baseline.

- CA: Contextual Attention (Yu et al. 2018).

- PC: Partial Convolution (Liu et al. 2018).

- GC: Gated Convolution (Yu et al. 2019).

- EC: EdgeConnect (Nazeri et al. 2019).

- Baseline: the backbone network we used. The baseline
model use instance normalization instead of RN.

"The codes are available at https://github.com/geekyutao/RN
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Mask CA PC* GC EC baseline  Ours
10-20% | 24.45 28.02 26.65 2746 | 2728  28.16
PSNR' 20-30% | 21.14 2490 2479 2453 | 2435  25.06
30-40% | 19.16 2245 23.09 2252 | 2233 2294
40-50% | 17.81 20.86 21.72 2090 | 2096  21.21
All 21.60 24.82 2453 2439 | 2437 2510
10-20% | 0.891 0.869 0.882 0.920 | 0.914  0.926
SsIvt 20-30% | 0.811 0.777 0.836 0.859 | 0.851 0.868
30-40% | 0.729 0.685 0.782 0.794 | 0.784  0.804
40-50% | 0.651 0.589 0.721 0.723 | 0.711  0.734
All 0.767 0.724 0.807 0.814 | 0.806  0.823
10-20% | 1.81 .14 3.01 1.58 1.24 1.10
14(%)* 20-30% | 3.24 198 354 271 2.17 1.96
h(% 30-40% | 4.81 3.02 425 393 3.19 2.90
40-50% | 630  4.11 499 532 4.36 4.00
All 421 280 379 283 2.95 2.70

Table 1: Quantitative results on Places2 with models: CA
(Yu et al. 2018), PC (Liu et al. 2018), GC (Yu et al. 2019),
EC (Nazeri et al. 2019), the baseline, and ours(RN). All
masks 7.e. masks with 0-60% area. T higher is better. + lower
is better. * the statistics are obtained from their paper.

Quantitative Comparisons We test all models on total
validation data (36500 images) of Places2. We compare our
model with CA, PC, GC, EC and the baseline. Three com-
monly used metrics are used: PSNR, SSIM (Wang et al.
2004) with window size 11, and /; loss. We give the results
of quantitative comparisons in Table 1. The second column
is the area of irregular masks at testing time. Note that the
All in Table 1 represents using all irregular masks (0-60%)
when testing. Our model surpasses all the comparing mod-
els on all three metrics. Compared to the baseline, our model
improve PSNR by 0.73 dB and SSIM by 0.017, and reduce
l1 loss (%) by 0.25 in the All case.

Qualitative Comparisons Figure 5 compares images gen-
erated by CA, PC, GC, EC, the baseline and ours. The first
two rows of input images are taken from Places2 validation
dataset and the last two rows are taken from CelebA valida-
tion dataset. In addition, the first three rows show the results
in irregular mask case and the last row shows regular mask
(fixed square mask in center) case. Our method achieves bet-
ter subjective results, which benefits from RN-B’s eliminat-
ing the impact of the mean and variance shifts on training,
and RN-L’s further boosting the reconstruction of corrupted
regions.
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Figure 5: Qualitative results with CA (Yu et al. 2018), PC (Liu et al. 2018), GC (Yu et al. 2019), EC (Nazeri et al. 2019), the
baseline, and our RN. The first two rows are the testing results on Places2 and the last two are on CelebA.

Arch. Encoder Res-blocks Decoder | PSNR  SSIM  [1(%)
baseline IN IN IN 2437 0.806 2.95

1 RN-B IN IN 24.88 0.814 2.77
2 RN-B RN-B IN 2441 0810 290
3 RN-B RN-B RN-B 2459 0812 285
4 RN-B RN-L IN 25.02 0823 271
5 RN-B RN-L RN-L 25.10 0.823 2.70
6 RN-L RN-L RN-L 2453 0812 2.86

Table 2: The influence of plugging location of RN-B and
RN-L. The baseline uses inistance normalization (IN) in all
three stages. The results are based on Places?2.

None IN BN RN
PSNR | 24.47 2437 2424 2510
SSIM | 0.811 0.806 0.806 0.823
11(%) | 291 295 298 270

Table 3: The final convergence results of different normal-
ization methods on Places2. None means no normalization.

4.3 Ablation Study

RN and Architecture We first explore the source of gain
for our methods and the best strategy to apply two kinds
of RN: RN-B and RN-L. We conduct ablation experiments
on the backbone generator, which has three stages: an en-
coder, followed by eight residual blocks and a decoder. We
plug RN-B and RN-L in different stages and obtain six ar-
chitectures (Arch.1-6) as shown in Table 2. The results in
Table 2 show the effectiveness of our use of RN: apply RN-
B in the early layers (encoder) to solve the mean and vari-
ance shifts caused by large-area uncorrupted regions; apply
RN-L in the later layers to solve the the mean and variance
shifts and boost the fusion of two kinds of regions. Arch.1
only applies RN-B in the encoder and achieves a significant
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Figure 6: The PSNR results of different normalization meth-
ods in the first 10000 iterations on Places2. None means no
normalization.

performance boost, which directly shows the RN-B’s effec-
tiveness. Arch.2 and 3 reduce the performance as RN-B can
hardly obtain an accurate region mask in the latter layers
of the network after passing through several convolutional
layers. Arch.4 is beyond Arch.1 by adding RN-L in the mid-
dle residual blocks. Arch.5 (Our method) further improves
the performance of Arch.4 by applying RN-L in both the
residual blocks and the decoder. Note that Arch.6 uses RN-
L to the encoder and its performance is reduced compared
to Arch.5 ,since RN-L, a module of soft fusion, unavoidably
mixing up information from corrupted and uncorrupted re-
gions and washing away information from the uncorrupted
regions. The above results verify the effectiveness of our use
of RN-B and RN-L that we explain in Section 3.2 and 3.3.

Comparisons with Other Normalization Methods To
verify our RN is more effective in training of the inpaint-



Original Mask

Figure 7: The generated mask with different threshold ¢ of
the first RN-L layer in the sixth residual block.

t 0.5
Places2
CelebA

0.6 0.7 0.8 0.9
2385 2490 2496 2510 2493
2736 2792 2845 2851 23.73

Table 4: The PSNR results with different threshold ¢ on
Places?2 and CelebA datasets.

ing model, we compare our RN with a none-normalization
method and two full-spatial normalization methods, batch
normalization (BN) and instance normalization (IN), based
on the same backbone. We show the PSNR curves in the first
10000 iterations in Figure 6 and the final convergence re-
sults (about 225,000 iterations) in Table 3. The experiments
are on Places2. Note that no normalization (None) is better
than full-spatial normalization (IN and BN), and RN is better
than no normalization by eliminating the mean and variance
shifts and taking advantage of normalization technique at the
same time.

Threshold of Learnable RN Threshold ¢ is set in Learn-
able RN to generate a region mask from the spatial response
map. The threshold affects the accuracy of the region mask
and further affects the power of RN. We conduct a set of ex-
periments to explore the best threshold. The PSNR results
on Places2 and CelebA show that RN-L achieves the best
results when threshold ¢ equals to 0.8, as shown in Table
4. We show the generated mask of the first RN-L layer in
the sixth residual block (R6RN1) as an example in Figure
7. The generated mask of ¢ = 0.8 is likely to be the most
accurate mask in this layer.

RN and Masked Area We explore the mask area’s influ-
ence to RN. Based the theoretical analysis in Section 3.1, the
mean and variance shifts become more severe as mask area
increases. Our experiments on CelebA show that the advan-
tage of our RN becomes more significant as the mask area
increases, as shown in Table 5. We use [; loss to evaluate the
results.

4.4 Visualization

We visualize some features of the inpainting network to ver-
ify our method. We show the changes of the spatial response
and generated mask of RN-L as the network deepens in the
top two rows of Figure 8. The mask changes in different
layers as the fusion effect of passing through convolutional
layers. RN-L can detect potentially corrupted regions con-
sistently. From the last two rows of Figure 8 we can see: (1)
the uncorrupted regions in the encoded feature are well pre-
served by using RN-B; (2) RN-L can distinguish between
potentially different regions and generate a region mask; (3)
gamma and beta maps in RN-L perform a pixel-level trans-
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Mask | 0-10% 10-20% 20-30% 30-40% 40-50% 50-60%
baseline | 0.26 0.69 1.28 2.02 2.92 4.83
RN 0.23 0.62 1.18 1.85 2.68 4.52
Change | -0.03 -0.07 -0.10 -0.17 -0.24 -0.31

Table 5: The testing [1(%) loss with different mask area on
CelebA. RN’s advantage becomes more significant as the
mask area increases.

CA  RN-CA | PC___RNPC | GC__ RNGC
PSNR | 21.60 2412 | 2482 2532 | 2453 2455
SSIM | 0767 0.842 | 0.724 0.829 | 0.807 0.807
L(%) | 421 317 280 261 | 379 375

Table 6: The results of applying RN to different backbone
networks: CA (Yu et al. 2018), PC (Liu et al. 2018) and GC
(Yu et al. 2019). The results is based on Places2.

Figure 8: Visualization of our method. The top two rows are
illustrated the changes of the spatial response and generated
mask in different locations of the network: the first RN-L
in the sixth residual block, the second RN-L in the seventh
residual block and the second RN-L in the eighth residual
block. In the last two rows, from left to right: input, encoder
result, spatial response map, generated mask, gamma map
and beta map of the first RN-L in the seventh residual block.

form on potentially corrupted and uncorrupted regions dis-
tinctively to help the fusion of them.

4.5 Generalization Experiments

RN-B and RN-L are plug-and-play modules in image in-
painting networks. We generalize our RN (RN-B and RN-
L) to some other backbone networks: CA, PC and GC. We
apply RN-B to their early layers (encoder) and RN-L to the
later layers. CA and GC are two-stage (coarse-to-fine) in-
painting networks and the coarse result is the input of the
refinement network. The corrupted and uncorrupted regions
of the coarse result is typically not particularly obvious, thus
we only apply RN to the coarse inpainting networks of CA
and GC. The results on Places2 are shown in Table 6. The



RN-applied CA and PC achieve a significant performance
boost by 2.52 and 0.5 dB PSNR respectively. The gain on
GC is not very impressive. A possible reason is that gated
convolution of GC greatly smoothes features which make
RN-L hard to track potentially corrupted regions. Besides,
GC’s results are typically blurry as shown in Figure 5.

5 Conclusion

In this work, we investigate the impact of normalization
on inpainting network and show that Region Normalization
(RN) is more effective for image inpainting network, com-
pared with existing full-spatial normalization. The proposed
two kinds of RN are plug-and-play modules, which can be
applied to other image inpainting networks conveniently. In
the future, we will explore RN for other supervised vision
tasks such as classification, detection and so on.
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