The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

SM-NAS: Structural-to-Modular Neural Architecture Search for Object Detection

Lewei Yao,” Hang Xu,'” Wei Zhang,' Xiaodan Liang,?' Zhenguo Li'
"Huawei Noah’s Ark Lab
2Sun Yat-Sen University

Abstract

The state-of-the-art object detection method is complicated
with various modules such as backbone, RPN, feature fusion
neck and RCNN head, where each module may have differ-
ent designs and structures. How to leverage the computational
cost and accuracy trade-off for the structural combination as
well as the modular selection of multiple modules? Neural ar-
chitecture search (NAS) has shown great potential in finding
an optimal solution. Existing NAS works for object detec-
tion only focus on searching better design of a single module
such as backbone or feature fusion neck, while neglecting the
balance of the whole system. In this paper, we present a two-
stage coarse-to-fine searching strategy named Structural-to-
Modular NAS (SM-NAS) for searching a GPU-friendly de-
sign of both an efficient combination of modules and better
modular-level architecture for object detection. Specifically,
Structural-level searching stage first aims to find an efficient
combination of different modules; Modular-level searching
stage then evolves each specific module and pushes the Pareto
front forward to a faster task-specific network. We consider a
multi-objective search where the search space covers many
popular designs of detection methods. We directly search a
detection backbone without pre-trained models or any proxy
task by exploring a fast training from scratch strategy. The
resulting architectures dominate state-of-the-art object detec-
tion systems in both inference time and accuracy and demon-
strate the effectiveness on multiple detection datasets, e.g.
halving the inference time with additional 1% mAP improve-
ment compared to FPN and reaching 46% mAP with the sim-
ilar inference time of MaskRCNN.

Introduction

Real-time object detection is a core and challenging task to
localize and recognize objects in an image on a certain de-
vice. This task widely benefits autonomous driving, surveil-
lance video, facial recognition in mobile phone, to name a
few. A state-of-the-art detection system (Liu et al.; Ren et
al. 2016; 2015) usually consists of four modules: backbone,
feature fusion neck, region proposal network (in two-stage
detection), and RCNN head. Recent progress in this area

*Both authors contributed equally to this work.

fCorresponding Author: xdliang328 @gmail.com
Copyright (©) 2020, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

55
150 E4// NAS-FPN
*)
s 53/ CascadeRCNN TridentNet
. / * CenterNet
£3 FSAFe GA-FasterRCNN
40.0 * MaskRCNN
S | ®FasterRCNN
o ! ARetinaNet
L3 1 Model
) " @ FasterRCNN_r101_FPN
O 35.0 Y A RetinaNet_r101_FPN
8 F} @ CascadeRCNN_r101_FPN
H GA-FasterRCNN_r101_FPN
828 ® FSAF_r101_FPN
! MaskRCNN_r101_FPN
30.0 : NAS-FPN_r50
1 CenterNet_HG104
! TridentNet_r101
o -
a5 g * our SM-NAS
100 200 300 400 500 600
inf_time (ms)

Figure 1: Inference time (ms) and detection accuracy (mAP)
comparison on COCO dataset. SM-NAS yields state-of-the-
art speed/accuracy trade-off.

shows various designs of each modules: backbone (Li et al.
2018), region proposal network (Wang et al. 2019a), fea-
ture fusion neck (Liu et al. 2018) and RCNN head (Li et al.
2017).

However, how to select the best combination of modules
under hardware resource constrains remains unknown. This
problem draws much attention from the industry because in
practice adjusting each module manually based on a stan-
dard detection model is inefficient and sub-optimal. It is hard
to leverage and evaluate the inference time and accuracy
trade-off as well as the representation capacity of each mod-
ule in different datasets. For instance, empirically we found
that combination of Cascade-RCNN with ResNetl18 (not a
standard detection model) is even faster and more accurate
than FPN with ResNet50 in COCO (Lin et al. 2014) and
BDD (Yu et al. 2018) (autonomous driving dataset). How-
ever, this is not true in the case of VOC.

There has been a growing trend in automatically design-
ing a neural network architecture instead of relying heav-
ily on human efforts and experience. For the image classifi-

12661

cation, (Zoph et al.; Liu, Simonyan, and Yang 2018; 2018)
searched networks surpass the performance of hand-crafted
networks. For the detection task, existing NAS works fo-
cus on optimizing a single component of the detection sys-
tem instead of considering the whole system. For example,
DetNAS (Chen et al. 2019a) searches for better backbones
on a pre-trained super-net. NAS-FPN (Ghiasi, Lin, and Le
2019), Auto-FPN (Xu et al. 2019), and NAS-FCOS (Wang
et al. 2019b) use NAS to find a better feature fusion neck
and a more powerful RCNN head. However, those pipelines
only partially solve the problem by changing one compo-
nent while neglecting the balance and efficiency of the whole
system. On the contrary, our work aims to develop a multi-
objective NAS scheme specifically designed to find an opti-
mal and efficient whole architecture.

In this work, we make the first effort on searching the
whole structure for object detectors. By investigating the
state-of-the-art design, we found three factors are crucial for
the performance of a detection system: 1) size of the in-
put images; 2) combination of modules of the detector; 3)
architecture within each module. To find an optimal trade-
off between inference time and accuracy with these three
factors, we propose a coarse-to-fine searching strategy: 1)
Structural-level search stage (Stage-one) first aims to find
an efficient combination of different modules as well as the
model-matching input sizes; 2) Modular-level search stage
(Stage-two) then evolves each specific module and pushes
forward to an efficient task-specific network.

We consider a multi-objective search targeting directly
on GPU devices, which outputs a Pareto front showing
the optimal designs of the detector under different re-
source constraints. During Stage-one, the search space in-
cludes different choices of modules to cover many popu-
lar one-stage/two-stage designs of detectors. We also con-
sider putting the input image size into the search space since
it greatly impacts the latency and accuracy (Tan and Le
2019). During Stage-two, we further consider to optimize
and evolve the modules (e.g. backbone) following the op-
timal combination found in the previous stage. The previ-
ous works (Li et al. 2018) find that backbones originally de-
signed for classification task might be sub-optimal for ob-
ject detection. The resulting modular-level search thus leans
the width and depth of the overall architecture towards de-
tection task. With the improved training strategy, our search
can be conducted directly on the detection datasets without
ImageNet pre-training. For an efficient search, we combine
evolutionary algorithms (Real et al.; Real et al. 2017; 2018)
with Partial Order Pruning technique (Li et al. 2019a) for a
fast search and parallelize the whole searching algorithm in
a distributed training system to further speed up the whole
process.

Extensive experiments are conducted on the widely used
detection benchmarks, including Pascal VOC (Everingham
et al. 2010), COCO (Lin et al. 2014), and BDD (Yu et al.
2018). As shown in Figure 1, SM-NAS yields state-of-the-
art speed/accuracy trade-off and outperforms existing detec-
tion methods, including FPN , Cascade-RCNN and the most
recent work NAS-FPN (Ghiasi, Lin, and Le 2019). Our E2
reaches half of the inference time with additional 1% mAP

12662

improvement compared to FPN. E5 reaches 46% mAP with
similar inference time of MaskRCNN (mAP:39.4%).

To sum up, we make the following contributions to NAS
for detection:
e We are among the first to investigate the trade-off for
speed and accuracy of an object detection system with a
different combination of different modules.

We develop a coarse-to-fine searching strategy by decou-
pling the search into structural-level and modular-level
to efficiently lift the Pareto front. The searched models
reach the state-of-the-art speed/accuracy, dominating ex-
isting methods with a large margin.

We make the first attempt to directly search a detection
backbone without pre-trained models or any proxy task
by exploring fast training from scratch strategy.

Related Work

Object Detection. Object detection is a core problem in
computer vision. State-of-the-art anchor-based detection ap-
proaches usually consists of four modules: backbone, fea-
ture fusion neck, region proposal network (in two-stage de-
tectors), and RCNN head. Most of the previous progress
focus on developing better architectures for each module.
For example, (Li et al. 2018) tries to develop a backbone
for detection; FPN (Lin et al. 2017) and PANet (Liu et al.
2018) modify multi-level features fusion module; (Wang et
al. 2019a) tries to make RPN more powerful. R-FCN (Dai et
al. 2016) and Light-head RCNN (Li et al. 2017) design dif-
ferent structures of bbox head. However, community lacks
of literatures comparing the efficiency and performance of
different combination of different modules.

Neural Architecture Search. NAS aims at automatically
finding an efficient neural network architecture for a certain
task and dataset without labor of designing network. Most
works are based on searching CNN architectures for image
classification while only a few of them (Chen et al.; Liu et
al.; Chen et al. 2018b; 2019; 2019a) focus on more compli-
cated vision tasks such as semantic segmentation and detec-
tion. There are mainly three categories of searching strate-
gies in NAS area: 1) Reinforcement learning based methods
(Zoph et al.; Cai et al. 2018; 2018) train a RNN policy con-
troller to generate a sequence of actions to specify CNN ar-
chitecture; 2) Evolutionary Algorithms based methods and
Network Morphism (Liu et al.; Real et al. 2017; 2018) try
to “evolves” architectures by mutating the current best ar-
chitectures; 3) Gradient based methods (Liu, Simonyan, and
Yang 2018) define an architecture parameter for continuous
relaxation of the discrete search space, thus allowing differ-
entiable optimization of the architecture. Among those ap-
proaches, gradient based methods is fast but not so reliable
since weight-sharing makes a big gap between the searching
and final training. RL methods usually require massive sam-
ples to converge which is not practical for detection. Thus
we use EA based method in this paper.

Backbone Neck (fusion) RPN Head
------------------------------- Pareto front
(%) K
= ResNet d={18, 34...} None -
q
c
a 800x600 ResNeXt d={18, 34..} FPN134
<
®
E 1333x800 MobileNetV2 FPN2 45
©
""""""""""""""""" Inference time
stagel stage2 stage3 staged stageS

wn | | I Sample backbone: : Lift the Pareto front
N I I | Ba JPrire {

I I [! - .;"" *
3 1 1 i ! 3 Lok
8_ 1 1 Ba | .

I I | Bot i
1= H H | Basicblock_48_121-112-112-1111
L | | i Bottleneck_48_21-12-21-111111 |
I ' ' i
27 1 1 L 7777777777 |

1 1
2 1 1

1 1

arch code

channel

, 56(224) , 112(448) , 224(896)

I C-N-R: Conv-Norm-ReLU
I Block: Basicblock,

|

|

i FLOPs
448(1792) ! Bottleneck, etc. i

stride 2 4

16

2 TTTTT T

Figure 2: An overview of our SM-NAS for detection pipeline. We propose a two-stage coarse-to-fine searching strategy directly
on detection dataset: S1: Structural-level searching stage first aims to finding an efficient combination of different modules; S2:
Modular-level search stage then evolves each specific module and pushes forward to a faster task-specific network.

id Dataset Model Backbone Input Img Time(ms) mAP
1 COCO FPN ResNet50 800x600 43.6 36.3
2 COCO RetinaNet ResNet50 800x600 46.7 34.8
3 VvocC FPN ResNet50 800x600 384 80.4
4 VvOC RetinaNet ~ ResNet50 800x600 34.8 79.7
5 COCO FPN ResNet101 1333x800 72.0 39.1
6 COCO CascadeRCNN ResNet50 800x600 54.9 39.3

Table 1: Preliminary empirical experiments. Inference time
is tested on one V100 GPU. The performance of a detec-
tion model is highly related to the dataset (Expl-4). Better
combination of modules and input resolution can leads to an
efficient detection system (Exp 5&6).

The Proposed Approach
Motivation and Preliminary Experiments

With preliminary empirical experiments, we have found
some interesting facts:

1) One-stage detector is not always faster than two-stage
detector. Although RetinaNet (He et al. 2016) is faster than
FPN (Lin et al. 2017) on VOC (Exp 3&4), it is slower and
worse than FPN on COCO (Exp 1&2).

2) Reasonable combination of modules and input reso-
lution can lead to an efficient detection system. Generally,
Cascade-RCNN is slower than FPN with the same back-
bone since it has 2 more cascade heads. However, with a bet-
ter combination of modules and input resolution, Cascade-
RCNN with ResNet50 can be faster and more accurate than
FPN with ResNet101 (Exp 5&6)

It can be found that customizing different modules and
input-size is crucial for real-time object detection system
for task specific datasets. Thus we present the SM-NAS for
searching an efficient combination of modules and better
modular-level architecture for object detection.

12663

NAS Pipeline

As in Figure 2, we propose a coarse-to-fine searching
pipeline: 1) Structural-level searching stage first aims to find
an efficient combination of different modules; 2) Modular-
level search stage then evolves each specific module and
pushes forward to a faster task-specific network. Moreover,
we explore a strategy of fast training from scratch for the de-
tection task, which can directly search a detection backbone
without pre-trained models or any proxy task.

Stage-one: Structural-level Searching Modern object
detection systems can be decoupled into four components:
backbone, feature fusion neck, region proposal network
(RPN), and RCNN head. We consider putting different pop-
ular and latest choices of modules into the search space to
cover many popular designs.

Backbone. Commonly used backbones are included in
the search space: ResNet (He et al. 2016) (ResNetl8,
ResNet34, ResNet50 and ResNet101), ResNeXt (Xie et al.
2017a) (ResNeXt50, ResNeXt101) and MobileNet V2 (San-
dler et al. 2018). During Stage-one, we loaded the backbones
pre-trained from ImageNet (Russakovsky et al. 2015) for
fast convergence.

Feature Fusion Neck. Features from different layers are
commonly used to predict objects across various sizes. The
feature fusion neck aims at conducting feature fusion for bet-
ter prediction. Here, we use { Py, P», P3, P4} to denote fea-
ture levels generated by the backbone e.g. ResNet. From P;
to Py, the spatial size is gradually down-sampled with factor
2. We further add two smaller P5 and P feature maps down-
sampled from P, following RetinaNet (Lin et al. 2018). The
search space contains: no FPN (the original Faster RCNN
setting) and FPN with different choices of input and output
feature levels (ranging from P; to F).

Region Proposal Network (RPN). RPN generates multi-
ple foreground proposals within each feature map and only
exists in two-stage detectors. Our search space is chosen to
be: no RPN (one-stage detectors); with RPN; with Guided
anchoring RPN (Wang et al. 2019a).

RCNN Head. RCNN head refines the objects location
and predicts final classification results. Cai and Vasconcelos
proposed cascade RCNN heads to iterative refine the detec-
tion results, which has been proved to be useful yet requir-
ing more computational resources. Thus, we consider regu-
lar RCNN head (Ren et al.; Lin et al. 2015; 2017), RetinaNet
head (Lin et al. 2018), and cascade RCNN heads with differ-
ent number of heads (2 to 4) as our search space to exam the
accuracy/speed trade-off. Note that our search space covers
both one-stage and two-stage detection systems.

Input Resolution. Furthermore, the input resolution is
closely related to the accuracy and speed. Qin et al. also
suggested that input resolution should match the capability
of the backbone, which is not measurable in practice. In-
tuitively, we thus add input resolution in our search space
to find the best matching with different models: 512x512,
800x600, 1080x720 and 1333x800.

Inference time is then evaluated for each combination of
modules. Together with the accuracy on validation dataset, a
Pareto front is then generated showing the optimal structures
of the detector under different resource constraints.

Stage-two: Modular-level Search On the Pareto front
generated by Stage-one, we can pick up several efficient
detection structures with different combination of modules.
Then in Stage-two, we search the detailed architecture for
each module and lift the boundary of speed/accuracy trade-
off of the selected structures.

Qin et al. suggested that in detection backbone, early-
stage feature maps are larger with low-level features which
describe spatial details, while late-stage feature maps are
smaller with high-level features which are more discrimina-
tive. Localization subtask is sensitive to low-level features
while high-level features are crucial for classification. Thus,
a natural question is to ask how to leverage the computa-
tional cost over different stages to obtain an optimal design
for detection. Therefore, inside the backbone, we design a
flexible search space to find the optimal base channel size, as
well as the position of down-sampling and channel-raising.

As shown in Figure 2, the Stage-two backbone search
space consists of 5 stages, each of which refers to a bench of
convolutional blocks fed by the features with the same res-
olution. The spatial size of stage 1 to 5 is gradually down-
sampled with factor 2. As suggested in Li et al., we fix stage
1 and the first layer of stage 2 to be a 3x3 conv (stride=2).
We use the same block setting (basic / bottleneck residual
block, ResNeXt block or MBblock (Sandler et al. 2018))
as the structures selected from the result of Stage-one. For
example, if the candidate model selected from Stage-one’s
Pareto front is with ResNet101 as the backbone, we will
use the corresponding bottleneck residual block as its search
space.

Furthermore, the backbone architecture encoding string is
like “basicblock_54_1211-211-1111-12111" where the first

12664

placeholder encodes the block setting; 54 is the base chan-
nel size; “-” separates each stage with different resolution;
“1” means regular block with no change of channels and
“2” indicated the number of base channels is doubled in this
block. The base channel size is chosen from 48, 56, 64, 72.
Since there is no pre-trained model available for customized
backbones, we use a fast train-from-scratch technique in-
stead which will be elaborated in the next section.

Besides the flexible backbone, we also adjust the chan-
nel size of the FPN during the Stage-two search. The input
channel size is chosen from 128,256,512 and the channels
of the head is adjusted correspondingly. Thus, the objective
of Stage-two is to further refine the detailed modular struc-
ture of the selected efficient architectures.

Train from Scratch and Fast Evaluate the
Architecture

Most of the detection models require initialization of back-
bone from the ImageNet (Russakovsky et al. 2015) pre-
trained models during training. Any modification on the
structure of backbone requires training again on the Ima-
geNet, which makes it harder to evaluate the performance of
a customized backbone. This paradigm hinders the develop-
ment of efficient NAS for detection problem. Shen et al. first
explores the possibility of training a detector from scratch by
the deeply supervised networks and dense connections. He,
Girshick, and Dollar and ScratchDet (Zhu et al. 2018) find
that normalization play an significant role in training from
scratch and a longer training can then help to catch up pre-
trained counterparts. Inspired by those works, we conjecture
the difficulty from two factors and try to fix them:

1) Inaccurate Batch Normalization because of smaller
batch size: During the training, the batch-size is usually very
small because of high GPU consumption, which leads to in-
accurate estimation of the batch statistics and increasing the
model error dramatically (Wu and He 2018). To alleviate
this problem, we use Group Normalization (GN) instead of
standard BN since GN is not sensitive to the batch size.

2) Complexity of the loss landscape: Shen et al. suggested
that the multiple loss and ROI pooling layer in detection
hinder the gradient of region-level backward to the back-
bone. Significant loss jitter or gradient explosion are often
observed during training from scratch. BN has been proved
to be an effective solution of the problem through signifi-
cantly smoothing the optimization landscape. Instead of us-
ing BN, which is not suitable for small batch size training,
we adopt Weight Standardization (WS) (Qiao et al. 2019)
for the weights in the convolution layers to further smooth
the loss landscape.

Experiments in the later section show that with GN and
WS, a much larger learning rate can be adopted, thus en-
abling us to train a detection network from scratch even
faster than the pre-trained counterparts.

Multi-objective Search Algorithm

For each stage, we aims at generating a Pareto front showing
the optimal trade-off between accuracy and different compu-
tation constrains. To generate the Pareto front, we use non-

512x512
800x600
1080x720
1333x800

" “.s MobileNetv2
» ResNet1l8
ResNet34
ResNet50
ResNet101
ResNexts0
ResNeXxt101

Py

Searched model

@ FasterRCNN_r50_FPN

* @ FasterRCNN_r101_FPN
© FasterRCNN_x101_FPN
A CascadeRCNN_r50_FPN
A CascadeRCNN_r101_FPN
A CascadeRCNN_x50_FPN
A CascadeRCNN_x101_FPN
RetinaNet_r50_FPN

* RetinaNet_r101_FPN

others
Pareto fronts
* Selected candidates

15
60 80 100 120 140 160 180 20
inf_time (ms)

(1) Image size

40 60 80 100 120 140 160

inf_time (ms)

(2) Backbone

180

15
20

40 60 80 100 120 140 160 180
inf_time (ms)

(3) Benchmark

20 40 60 80 100 120 140 160

latency(ms)

(4) Candidates

Figure 3: Intermediate results for Stage-one: Structural-level Searching. Comparison of mAP and inference time of all the
architectures searched on COCO. Inference time is tested on one V100 GPU. It can be found our searching already found many
structures dominate state-of-the-art objectors. On the Pareto front, we pick 6 models (CO to C5) and further search for better

modular-level architectures in Stage-two.

Pareto_0 Pareto_1 Pareto_2

236
234
82 . -
& 230
H
E2s

o ° 34550 .
296 .

229 2 b
. %292 = % ..
200 . 3375 A
2267 s e CO

» Searched PFs.

e C1
o Searched PFs

o2
o o Searched PFs
22414 28610

9 20

35 35

78 25 30 5 30
FLOPs(G) FLOPs(G) FLOPS(G)

Pareto_3 Pareto_4 Pareto_5

. . . .
36.8 : H
o 40.4 "
. . o | .

. oc3
o Searched PFs

o ca
o Searched PFs

e C5

3967 o Searched PFs

.
120

50 70 50 160

60 60 70 140
FLOPS(G) FLOPS(G) FLOPS(G)

Figure 4: Intermediate results for Modular-level Search. The
architectures with blue dot are the selected model CO-C5
based on the previous Stage-one. The orange dots are ar-
chitectures forming the Pareto front found by our algorithm.

dominate sorting to determinate whether one model domi-
nates another in terms of both efficiency and accuracy. In
Stage-one, we use inference time on one V100 GPU as the
efficiency metric to roughly compare the actual performance
between different structures. In Stage-two, we use FLOPs
instead of actual time since FLOPs is more accurate than in-
ference time to compare different backbones with the same
kind of block (the inference time has some variation because
of the GPU condition). Moreover, FLOPs is able to keep the
consistency of rank when changing the BN to GN+WS dur-
ing searching in Stage-two.

The architecture search step is based on: 1) the evolution-
ary algorithm to mutate the best architecture on the Pareto
front; 2) Partial Order Pruning method (Li et al. 2019a) to
prune the architecture search space with the prior knowl-
edge that deeper models and wider models are better. Our
algorithm can be parallelized on multiple computation nodes
(each has 8 V100 GPUs) and lift the Pareto front simultane-
ously.

Experiments
Architecture Search Details

We conduct architecture search on the well-known COCO
(Lin et al. 2014) dataset, which contains 80 object classes

12665

with 118K images for training, 5K for evaluation. For Stage-
one, we consider a totally 1.1 X 104 combination of mod-
ules. For Stage-two, the search space is much larger, con-
taining about 5.0 x 10'2 unique paths. We conduct all experi-
ments using Pytorch (Paszke et al.; Chen et al. 2017; 2018a),
multiple computational nodes with 8 V100 cards on each
server. To measure the inference speed, we run all the test-
ing images on one V100 GPU and take the average inference
time for comparison. All experiments are performed under
CUDA 9.0 and CUDNN 7.0.

Implementation Details for Stage-one. During search-
ing, we first generate some initial models with a random
combination of modules. Then evolutionary algorithm is
used to mutate the best architecture on the Pareto front and
provides candidate models. During architectures evaluation,
we use SGD optimizer with cosine decay learning rate from
0.04 to 0.0001, momentum 0.9 and 10~* as weight decay.
Pre-trained models on ImageNet (Russakovsky et al. 2015)
are used as our backbone for fast convergence. Empirically,
we found that training with 5 epochs can separate good mod-
els from bad models. In this stage, we evaluate about 500 ar-
chitectures and it takes about 2000 GPU hours for the whole
searching process.

Intermediate Results for Stage-one. The first two fig-
ures in Figure 3 show the comparison of mAP and inference
time of the architectures searched on COCO. From Figure 3-
1, it can be found that different input resolution can variate
the speed and accuracy. We also found that MobileNet V2 is
dominated by other models although it has mush less FLOPs
in Figure 3-2. This is because it has higher memory access
cost thus is slower in practice (Li et al. 2019a). Therefore,
using the direct metric, i.e. inference time, rather than ap-
proximate metric such as FLOPs is necessary for achieving
the best speed/accuracy trade-off and our searching found
some structures dominate classic detectors. On the generated
Pareto front, we pick 6 models (CO to CS5) and further search
for the better modular-level architectures in Stage-two.

Implementation Details for Stage-two. During Stage-
two, we use the training strategy with GN and WS meth-
ods discussed in the previous section. We use cosine de-
cay learning rate ranging from 0.24 to 0.0001 with batch
size 8 on each GPU. The model is trained with 9 epochs
to fully explore the different modular-level structures. It is

Model|Input size Backbone Neck RPN | RCNN Head |Backbone FLOPs|Time (ms) mAP
EO |512x512 basicblock 64_1-21-21-12 FPN(P;-Ps5, c=128)] RPN 2FC 7.2G (0.75) 245 [27.1
El |800x600 basicblock 48_12-21-11111-211111 FPN(P;-Ps5, ¢c=256)| RPN 2FC 28.3G (0.79) 322|343
E2 | 800x600 basicblock 56_12-11111-211-1112 FPN(P;-Ps5, c=128)] RPN |Cascade(n=3)| 23.8G (0.67) 39.5 |40.1

E3 | 800x600 |bottleneck 56 211-111111111-2111111-11112111 [FPN(P;-Ps, c=128)| RPN |Cascade(n=3)| 59.2G (0.78) 50.7 427
E4 | 800x600 |Xbottleneck 56_21-21-111111111111111-2111111{FPN(P;-Ps, ¢=256)|GA-RPN|Cascade(n=3)| 73.5G (0.96) 80.2 [439
E5 |1333x800|Xbottleneck_56_21-21-11111111111111-21111111|FPN(P;-P5, ¢=256)|GA-RPN|Cascade(n=3)| 162.45G (0.94) 108.1 |46.1

Table 2: Detailed architecture of the final SM-NAS models from EO to E5. For the backbone, basicblock and bottleneck follow
the same as in ResNet (He et al. 2016) and Xbottleneck refers to the block setting of ResNeXt (Xie et al. 2017b);. For Neck,
P5-P5 and “c” denotes the choice and the channels of output feature levels in FPN. For RCNN head, “2FC” is the regular setting

u Lt}

of two shared fully connected layer;

id|Norm Method|ImageNet Pretrain|Epoch|Batchsize| Ir |[mAP
0 BN v 12 2x8]0.02]36.5
1 BN v 24 2x8]0.02|37.4
2 BN X 12 2x8 [0.02]24.8
3 BN X 12 8x8 [0.20]28.3
4 GN X 12 2x8]0.02|29.4
5| GN+WS X 12 2x8]0.02|30.7
6| GN+WS x 12 2x8]0.10|36.4
7| GN+WS X 16 4x8 10.16| 37.5

Table 3: FPN with ResNet-50 trained with different strate-
gies, evaluated on COCO val. “GN” is group normaliza-
tion by Wu and He. “WS” is the Weight Standardization
method by Qiao et al.. We found that with group normaliza-
tion, Weight Standardization, larger learning rate and batch-
size, we can train a detection network from scratch using
less epochs than standard training procedure.

worth mention that we directly search on the COCO with-
out pre-trained models. In Stage-two, we evaluate about 300
architectures for each group and use about 2500 GPU hours.

Intermediate Results for Stage-two. Figure 4 shows
mAP/speed improvement of the searched models compared
to the optimal model selected in Stage-one. It can be found
that SM-NAS can further push the Pareto front to a better
trade-off of speed/accuracy.

Object Detection Results

On the COCO dataset, the optimal architectures EO to ES are
identified with our two-stages search. We change the back-
bone back to BN and no Weight Standardization mode since
these practices will slow down the inference time. We first
pre-train those searched backbones on ImageNet following
common practice (He et al. 2016) for fair comparison with
other methods. Then stochastic gradient descent (SGD) is
performed to train the full model on 8 GPUs with 4 images
on each GPU. Following the setting of 2x schedule (He, Gir-
shick, and Dollar 2018), the initial learning rate is 0.04 (with
a linear warm-up), and reduces two times (x0.1) during fine-
tuning; 10~* as weight decay; 0.9 as momentum. The train-
ing and testing is conducted with the searched optimal input
resolutions. Image flip and scale jitter is adopted for aug-
mentation during training, and evaluation procedure follows
the COCO official setting (Lin et al. 2014).

Architectures of the Final Searched Models. Table
2 shows architecture details of the final searched EO
to ES. Comparing the searched backbones with classical

means the stages of the cascade head.

m-@ B o e s ascer [, o QS 568011 568 0 oo B FE R e
T o a9 Y A R 7 8 04 i oo v

oo oot oo EAREE IR 8 o0 01001020 [
018.035.038.063 oc.2 01] AR o2 05435

Jo1s EERERES BRI 050[02] 05 B 668 041027 020

7-0.30.0.18-023-0.23

i (008004 012 018 [XF|

len_4 [0108110160]-0.9 -0.35 -0.58 10108 0.39 0.57

00 031-043-027-023-0.15 [oos [EREER
1025-0.35-020-02-0.10 37 0ot [ERIEER

:::::::
§ 8855558 ¢

O B

Figure 5: Correlation between factors of the searched mod-
els on COCO dataset. The left figure shows the results of
Pareto front 4. The depth and width are the number of blocks
and base channel size of backbone. DC_x denotes the posi-
tions where the channel size is doubled; and len_x denotes
the proportion of the total blocks of the xth stage.

ResNet/ResNeXt, we find that early stages in our models
are very short which is more efficient since feature maps in
an early stage is very large with a high computational cost.
We also found that for high-performance detectors E3-ES,
raising channels usually happens in very early stage which
means that lower-level feature plays an important role for
localization.The classification performance of the backbone
of EO to ES on ImageNet can also be found in the supple-
mentary materials. We can find the searched backbones are
also efficient in the classification task.

In Table 4, we make a detailed comparison with exist-
ing detectors: YOLOvV3 (Redmon and Farhadi 2018), Reti-
nalNet (Lin et al. 2018), FSAF (Zhu, He, and Savvides 2019),
CornerNet (Law and Deng 2018), CenterNet (Zhou, Wang,
and Krihenbiihl 2019), AlignDet (Chen et al. 2019b), GA-
FasterRCNN (Wang et al. 2019a), Faster-RCNN (Ren et al.
2015), Mask-RCNN (He et al. 2017), Cascade-RCNN (Cai
and Vasconcelos 2018), TridentNet (Li et al. 2019b), and
NAS-FPN (Ghiasi, Lin, and Le 2019). Most reported results
are tested with single V100 GPU (some models marked with
other GPU devices following the original papers). For a fair
comparison, multi-scale testing is not adopted for all meth-
ods. From EO to E5, SM-NAS constructs a Pareto front that
dominates most SOTA models as shown in Figure 1.

Ablative Study for Training from Scratch. Since in
modular-level searching stage, we keep changing the back-
bone structure, we need to find an optimal setting of train-
ing strategies for efficiently training a detection network
from scratch. Table 3 shows an ablative study of FPN

12666

Method Backbone Input size Inf time (ms) AP | AP5y | AP75 | APg | APy, | APy
YOLO v3 DarkNet-53 608x608 51.0 (TitanX) | 33.0 | 579 | 344 | 183 | 354 | 419
RetinaNet ResNet101-FPN 1333x800 91.7 (V100) 39.1 | 59.1 | 423 | 21.7 | 42.7 | 50.2

FSAF ResNet101-FPN 1333x800 92.5 (V100) 409 | 61.5 | 440 | 240 | 442 | 51.3
CornerNet Hourglass-104 512x512 244.0 (TitanX) | 40.5 | 56.5 | 43.1 194 | 42.7 | 539
CenterNet Hourglass-104 512x512 126.0 (V100) | 42.1 | 61.1 | 459 | 24.1 | 455 | 52.8
AlignDet ResNet101-FPN 1333x800 110.0 (P100) | 42.0 | 624 | 46.5 | 24.6 | 44.8 | 53.3

GA-Faster RCNN ResNet50-FPN 1333x800 104.2 (V100) | 39.8 | 59.2 | 435 | 21.8 | 42.6 | 50.7
Faster-RCNN ResNet101-FPN 1333x800 84.0 (V100) 394 - - - - -
Mask-RCNN ResNet101-FPN 1333x800 105.0 (V100) | 40.2 - - - - -
Cascade-RCNN ResNet101-FPN 1333x800 97.9 (V100) 428 | 62.1 | 463 | 23.7 | 455 | 55.2
TridentNet ResNet101 1333x800 588 (V100) 427 | 63.6 | 465 | 239 | 464 | 55.6
TridentNet ResNet101-deformable-FPN | 1333x800 | 2498.3 (V100) | 48.4 | 69.7 | 53.5 | 31.8 | 51.3 | 60.3

DetNAS Searched Backbone 1333x800 - 420 | 639 | 458 | 249 | 45.1 | 56.8

NAS-FPN ResNet50-FPN(@384) 1280x1280 | 198.7 (V100) | 45.4 - - - - -
SM-NAS: E2 Searched Backbone 800x600 39.5(V100) 40.0 | 582 | 434 | 21.1 | 424 | 51.7
SM-NAS: E3 Searched Backbone 800x600 50.7(V100) 428 | 61.2 | 465 | 23.5 | 455 | 55.6
SM-NAS: E5 Searched Backbone 1333x800 108.1(V100) | 459 | 64.6 | 49.6 | 27.1 | 49.0 | 58.0

Table 4: Comparison of mAP and inference time of the state-of-the-art single-model on COCO test-dev. Our searched models
dominate most SOTA models in terms of speed/accuracy by a large margin.

Dataset | Input size model inf_time (ms)| mAP
FPN w R50 38.4 80.4

EO 21.5 81.4

VOC | 800x600 El 359 83.7
E3 47.0 84.4

FPN w R101 84.6 36.9

EO 27.8 30.2

BDD |1333x800 El 45.0 37.9
E3 67.2 39.6

Table 5: Transferability of our models on PASCAL VOC
(VOC) and Berkeley Deep Drive dataset(BDD).

with ResNet-50 trained with different strategies, evaluated
on COCO. Exp-0 and Exp-1 are the 1x and 2x standard
FPN training procedure following He, Girshick, and Dollar.
Comparing Exp-2&3, with Exp-4, it can be found smaller
batch size leads to inaccurate batch normalization statistics.
Using group normalization can alleviate this problem and
improve the mAP from 24.8 to 29.4. From Exp-5, adding
WS can further smooth the training and improve mAP by
1.3. Furthermore, enlarging the learning rate and batch size
can increase the mAP to 37.5 in 16-epoch-training (see
Exp 5&6&7). Thus, we can train a detection network from
scratch using fewer epochs than the pre-trained counterparts.

Architecture Transfer: VOC and BDD. To evaluate the
domain transferability of the searched models, we transfer
the searched architecture EO-E3 from COCO to Pascal VOC
and BDD. For PASCAL VOC dataset (Everingham et al.
2010) with 20 object classes, training is performed on the
union of VOC 2007 trainval and VOC 2012 trainval (10K
images) and evaluation is on VOC 2007 test (4.9K images).
We only report mAP using IoU at 0.5. Berkeley Deep Drive
(BDD) (Yu et al. 2018) is an autonomous driving dataset
with 10 object classes, containing about 70K images for
training and 10K for evaluation. We use the same training
and testing configurations for a fare comparison. As shown

in Table 5, on Pascal VOC, EO reduces half of the inference
time compared to FPN with a higher mAP. For BDD, E3
is 17.4ms faster than FPN. The searched architectures show
good transferability.

Correlation Analysis of Architecture and mAP. It is in-
teresting to analyze the correlation between the factors of ar-
chitecture and mAP. Figure 5 shows the correlation between
factors of all the searched models on COCO dataset. The
left figure shows the results of Pareto front 4 in Stage-two.
It can be found that under the constraints of FLOPs, better
architecture should decrease the depth and put the compu-
tation budget in the low-level stage. The right figure shows
correlation for all the searched models. Depth shows strong
positive relation with mAP, raising channels in early stage
is good for detection. It is better to have a longer high-level
stage and shorter low-level stage.

Conclusion

We propose a detection NAS framework for searching both
an efficient combination of modules and better modular-
level architectures for object detection on a target device.
The searched SM-NAS networks achieve state-of-the-art
speed/accuracy trade-off. The SM-NAS pipeline can keep
updating and adding new modules in the future.

References

Cai, Z., and Vasconcelos, N. 2018. Cascade r-cnn: Delving into
high quality object detection. In CVPR.

Cai, H.; Chen, T.; Zhang, W.; Yu, Y.; and Wang, J. 2018. Efficient
architecture search by network transformation. In AAAL

Chen, K.; Pang, J.; Wang, J.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.;
Liu, Z.; Shi, J.; Ouyang, W.; Loy, C. C.; and Lin, D. 2018a. mmde-
tection. https://github.com/open-mmlab/mmdetection.

Chen, L.-C.; Collins, M.; Zhu, Y.; Papandreou, G.; Zoph, B.;
Schroff, F.; Adam, H.; and Shlens, J. 2018b. Searching for efficient
multi-scale architectures for dense image prediction. In NIPS.

12667

Chen, Y.; Yang, T.; Zhang, X.; Meng, G.; Pan, C.; and Sun, J.
2019a. Detnas: Neural architecture search on object detection. In
NIPS.

Chen, Y.; Han, C.; Wang, N.; and Zhang, Z. 2019b. Revisiting
feature alignment for one-stage object detection. arXiv preprint
arXiv:1908.01570.

Dai, J.; Li, Y.; He, K.; and Sun, J. 2016. R-fcn: Object detection
via region-based fully convolutional networks. In NIPS.
Everingham, M.; Van Gool, L.; Williams, C. K. I.; Winn, J.; and
Zisserman, A. 2010. The pascal visual object classes (voc) chal-
lenge. 1JCV 88(2):303-338.

Ghiasi, G.; Lin, T.-Y.; and Le, Q. V. 2019. Nas-fpn: Learning scal-
able feature pyramid architecture for object detection. In CVPR.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In CVPR.

He, K.; Gkioxari, G.; Dollar, P.; and Girshick, R. 2017. Mask r-cnn.
InICCV.

He, K.; Girshick, R.; and Dollar, P. 2018. Rethinking imagenet
pre-training. arXiv preprint arXiv:1811.08883.

Law, H., and Deng, J. 2018. Cornernet: Detecting objects as paired
keypoints. In ECCV.

Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; and Sun, J. 2017.
Light-head r-cnn: In defense of two-stage object detector. In CVPR.
Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; and Sun, J. 2018.
Detnet: A backbone network for object detection. In ECCV.

Li, X.; Zhou, Y.; Pan, Z.; and Feng, J. 2019a. Partial order pruning:
for best speed/accuracy trade-off in neural architecture search. In
CVPR, 9145-9153.

Li, Y.; Chen, Y.; Wang, N.; and Zhang, Z.
aware trident networks for object detection.
arXiv:1901.01892.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan,
D.; Dollar, P.; and Zitnick, C. L. 2014. Microsoft coco: Common
objects in context. In ECCV.

Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; and Be-
longie, S. 2017. Feature pyramid networks for object detection. In
CVPR.

Lin, T.-Y.; Goyal, P.;; Girshick, R.; He, K.; and Dollar, P. 2018.
Focal loss for dense object detection. TPAMI.

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-
Y.; and Berg, A. C. 2016. Ssd: Single shot multibox detector. In
ECCV.

Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; and
Kavukcuoglu, K. 2017. Hierarchical representations for efficient
architecture search. arXiv preprint arXiv:1711.00436.

Liu, S.; Qi, L.; Qin, H.; Shi, J.; and Jia, J. 2018. Path aggregation
network for instance segmentation. In CVPR.

Liu, C.; Chen, L.-C.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A.;
and Fei-Fei, L. 2019. Auto-deeplab: Hierarchical neural archi-
tecture search for semantic image segmentation. arXiv preprint
arXiv:1901.02985.

Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differentiable
architecture search. In ICLR.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito,
Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Auto-
matic differentiation in pytorch. In NIPS Workshop.

Qiao, S.; Wang, H.; Liu, C.; Shen, W.; and Yuille, A. 2019. Weight
standardization. arXiv preprint arXiv:1903.10520.

2019b. Scale-
arXiv preprint

12668

Qin, Z.; Li, Z.; Zhang, Z.; Bao, Y.; Yu, G.; Peng, Y.; and Sun,
J. 2019. Thundernet: Towards real-time generic object detection.
arXiv preprint arXiv:1903.11752.

Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y. L.; Tan, J.;
Le, Q. V.; and Kurakin, A. 2017. Large-scale evolution of image
classifiers. In ICML.

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2018. Regularized
evolution for image classifier architecture search. arXiv preprint
arXiv:1802.01548.

Redmon, J., and Farhadi, A. 2018. Yolov3: An incremental im-
provement. arXiv preprint arXiv:1804.02767.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks.
In NIPS.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.;
Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. 2015. Im-
agenet large scale visual recognition challenge. IJCV 115(3):211-
252.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and Chen, L.-
C. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks.
In CVPR, 4510-4520.

Shen, Z.; Liu, Z.; Li, J.; Jiang, Y.-G.; Chen, Y.; and Xue, X. 2017.
Dsod: Learning deeply supervised object detectors from scratch. In
ICCV, 1919-1927.

Tan, M., and Le, Q. V. 2019. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946.

Wang, J.; Chen, K.; Yang, S.; Loy, C. C.; and Lin, D. 2019a. Region
proposal by guided anchoring. In CVPR, 2965-2974.

Wang, N.; Gao, Y.; Chen, H.; Wang, P.; Tian, Z.; and Shen, C.
2019b. Nas-fcos: Fast neural architecture search for object detec-
tion. arXiv preprint arXiv:1906.04423.

Wu, Y., and He, K. 2018. Group normalization. In ECCV, 3-19.
Xie, S.; Girshick, R.; Dolldr, P.; Tu, Z.; and He, K. 2017a. Aggre-
gated residual transformations for deep neural networks. In CVPR,
1492-1500.

Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; and He, K. 2017b. Aggre-
gated residual transformations for deep neural networks. In CVPR.
Xu, H.; Yao, L.; Zhang, W.; Liang, X.; and Li, Z. 2019. Auto-
fpn: Automatic network architecture adaptation for object detection
beyond classification. In /ICCV.

Yu, E.; Xian, W.; Chen, Y.; Liu, F.; Liao, M.; Madhavan, V.; and
Darrell, T. 2018. Bdd100k: A diverse driving video database with
scalable annotation tooling. arXiv preprint arXiv:1805.04687.
Zhou, X.; Wang, D.; and Kréihenbiihl, P. 2019. Objects as points.
arXiv preprint arXiv:1904.07850.

Zhu, R.; Zhang, S.; Wang, X.; Wen, L.; Shi, H.; Bo, L.; and Mei,
T. 2018. Scratchdet: Exploring to train single-shot object detectors
from scratch. arXiv preprint arXiv:1810.08425.

Zhu, C.; He, Y.; and Savvides, M. 2019. Feature selective

anchor-free module for single-shot object detection. arXiv preprint
arXiv:1903.00621.

Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V. 2018. Learning
transferable architectures for scalable image recognition. In CVPR.

