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Abstract

Data-driven rain streak removal methods, which most of rely
on synthesized paired data, usually come across the gener-
alization problem when being applied in real cases. In this
paper, we propose a novel deep-learning based rain streak re-
moval method injected with self-supervision to improve the
ability to remove rain streaks in various scales. To realize
this goal, we made efforts in two aspects. First, consider-
ing that rain streak removal is highly correlated with texture
characteristics, we create a fractal band learning (FBL) net-
work based on frequency band recovery. It integrates com-
monly seen band feature operations with neural modules and
effectively improves the capacity to capture discriminative
features for deraining. Second, to further improve the gen-
eralization ability of FBL for rain streaks in various scales,
we add cross-scale self-supervision to regularize the network
training. The constraint forces the extracted features of inputs
in different scales to be equivalent after rescaling. Therefore,
FBL can offer similar responses based on solely image con-
tent without the interleave of scale and is capable to remove
rain streaks in various scales. Extensive experiments in quan-
titative and qualitative evaluations demonstrate the superior-
ity of our FBL for rain streak removal, especially for the real
cases where very large rain streaks exist, and prove the effec-
tiveness of its each component. Our code will be public avail-
able at: https://github.com/flyywh/AAAI-2020-FBL-SS.

Introduction

Bad weather conditions bring about a series of visibility
degradations, e.g. occluding background scenes, altering the
object content and changing contrast and color of images,
etc. Due to detail loss and signal distortion, these degra-
dations cause visual unpleasure and result in the failure of
many outdoor computer vision applications, which built on
taking high quality clean video frames as their input. As
one of the most common degradations in rain frames, rain
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(c) JORDER (Yang et al. 2017)

(d) Our FBL

Figure 1: Visual comparison of our fractal band learning
(FBL) with state-of-the-art approaches. In addition to re-
moving small rain streaks as other methods, our FBL also
removes most of the larger rain streaks.

streaks cause severe intensity changes and light fluctuations,
and hence obstruct and blur the background scene. An ex-
ample of a rain streak image can be observed in Fig. 1(a).

As many degradation factors cause information loss, it
is highly ill-posed to address single image rain removal
problem. Previous methods (Kang, Lin, and Fu 2012;
Huang et al. 2014; Sun, Fan, and Wang 2014; Luo, Xu, and
Ji 2015) address the single image rain removal problem by
separating rain streaks and background images, namely the
corresponding rain-free versions, from their mixed versions.
Various models are developed to extract rain streaks and
background images based on their texture appearance pat-
terns, such as frequency domain representation (Kang, Lin,
and Fu 2012), sparse representation (Luo, Xu, and Ji 2015),
and Gaussian mixture model (Li et al. 2016).

Recently, the rising of deep learning gives rise to deep-
network based approaches. In (Fu et al. 2017), the image
detail layer without background interference is regarded as
the input, which directly reduces the mapping range from in-
put to output and makes the learning process easier. In (Yang



et al. 2017b), a deep network is designed to jointly detects
and removes rain streaks for heavy rain removal. Successive
works (Zhang and Patel 2018; Li et al. 2018b) make great
efforts to make networks more effective and efficient.
These methods achieve good performance in some cases.
However, they still neglect some important issues:

e The degradations of rain scenes in real-world are very
complex. Existing rain models often neglect the diversity
of rain scales. A model trained with streaks of a scale is
hardly to be generalized to handle streaks of a different
one. Some previous works (Li, Cheong, and Tan 2017;
Yang et al. 2019) make preliminary attempts. However,
they either use a few times parameters of a single-scale
model (Li, Cheong, and Tan 2017) or are restricted to pro-
cess the images of a certain scale whose magnitude is the
order of 2 compared to that in the training phase (Yang et
al. 2019). However, a more economic and flexible frame-
work that is easily to be generalized to provide an im-
proved scale-robust rain streak removal is still absent.

Recent deep-learning based methods take pure feed-
forward CNN, ResNet or DenseNet efc. as backbone
methods. However, there is no theoretic or conceptual
connection between these neural models and traditional
theories. This blank makes us away from injecting task-
driven image priors into a model and developing novel
competitive backbones.

Models in previous data-driven methods are seldom de-
signed to capture frequency band dependency of images
explicitly. Intuitively, rain removal is a signal separation
problem, where the features in the texture or frequency
band domain play an important part. Thus, the properties
of traditional band theory provides meaningful guidance
to design a deraining network and facilitate a more effec-
tive automatic feature learning.

Considering these limitations of existing works, we aim
to design a deep learning architecture inspired by frequency
band recovery theory and is capable of effectively restoring
clean images from inputs which contain rain streaks in dif-
ferent scales that may not appear in the training set. To re-
alize that, we first briefly illustrate the connections between
frequency band recovery and deep learning. Then, a band
learning network is constructed to integrate most of com-
mon frequency band feature operations, i.e. band refinement,
expansion, and fusion for rain streak removal. Wiring them
together in a unified network facilitates the band-constrained
automatic feature learning, leading to superior modeling ca-
pacity. Our network can be further augmented into a fractal
band learning (FBL) network by being stacked in a fractal
form. That is, the low-order constructed modules are used
as the basic unit of a high-order one, which is beneficial
to capturing potential hierarchical dependency among band
features. To further improve the generalization ability of
FBL to remove rain streaks in different scales, a cross-scale
self-supervision is utilized to regularize network training.
FBL forces consistency of the extracted features of inputs
in different scales after zooming. Therefore, FBL can ac-
quire cross-scale feature representation given input images
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in different scales. With the learned band feature representa-
tions and the power of cross-scale self-supervision, our FBL
is superior to previous deraining networks and is capable to
remove rain streaks in different scales. Our contributions are
summarized as follows,

e A cross-scale self-supervision constraint is proposed to
regularize the training of a deraining network. The con-
straint guides the network to extract more scale-robust
features and deal with rain images containing rain streaks
in different scales. It can significantly benefit the rain re-
moval on real rain images.

We provide a novel understanding of the link between fre-
quency band recovery and deep learning. The conceptual
links between common band operations and learned neu-
ral modules are revealed.

Based on the above understanding, we develop an FBL
network based on frequency band structures, and the joint
consideration in spatial and frequency domains. It per-
forms band operations progressively and is further aug-
mented by being stacked in a fractal form. Extensive ex-
periments demonstrate the superiority of FBL for rain
streak removal objectively and subjectively.

Related Works
Single Image Rain Removal

Single image deraining is highly ill-posed and is usually ad-
dressed via a signal separation or texture classification route.
A series of non-deep learning-based methods (Kang, Lin,
and Fu 2012; Chen and Hsu 2013; Kim et al. 2013; Luo, Xu,
and Ji 2015; Li et al. 2016) are built based on statistical mod-
els. In (Fu et al. 2017), a deep network is taken to map the
extracted texture images to the negative residues. In (Yang et
al. 2017b), a deep joint rain detection and removal method
was proposed to recurrently remove rain streaks and accu-
mulation. In (Li, Cheong, and Tan 2017), to treat the rain
streaks differently, several parallel sub-networks are trained
with rain streaks in different scales. Zhang et al. (Zhang and
Patel 2018) integrated rain-level estimation and rain streak
extraction in a multi-path dense network. Later works fo-
cus on proposing advanced deep networks (Li et al. 2018a;
Wang et al. 2019), exploiting more effective priors (Hu et al.
2019; Chang, Yan, and Zhong 2017; Zhu et al. 2017), or col-
lecting more comprehensive and real datasets (Li et al. 2019;
Wang et al. 2019) to facilitate rain removal. Following these
works, our work also focuses on deep-learning based single
image rain streak removal. Differently, we construct a deep
network motivated by band recovery theory. The domain
shift in streak scales between training and testing phases is
addressed by network training with self-supervision.

Deep Learning-Based Image Processing

The rise of the ResNet and DenseNet advances the devel-
opment of low-level image processing tasks. It has been ob-
served that refining features progressively like ResNet (He
et al. 2016) or concatenating and fusing features from differ-
ent levels like DenseNet (Huang et al. 2017) leads to better
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Figure 2: The framework of our proposed fractal band learning (FBL) for rain removal. It progressively performs learned
band feature operations progressively and augmented by being stacked in a fractal form. It is trained with both image-level
reconstruction constraint and feature-level cross-scale self-supervision loss.

representations of pixels and their contexts for low-level vi-
sions. In (Yang et al. 2017a), the connection between ResNet
and traditional band filter recovery is presented. In (Ledig
et al. 2017), ResNet is used as the generator of the gen-
erative adversarial network. Afterwards, several improved
models are built, e.g. multi-path ResNet (Yang et al. 2017b),
multi-stream densely connected de-raining network (Zhang
and Patel 2018), edge-preserving densely connected net-
work for dehazing (Zhang et al. 2018a), MemNet captur-
ing the human persistent memory for restoration (Tai et al.
2017a). combination of ResNet and DenseNet for super-
resolution (Zhang et al. 2018b), etc. In our work, we summa-
rize previous works from the view of band recovery theory.
Based on our new understanding, we develop a new effective
backbone for rain streak removal.

Fractal Band Learning
From Band Recovery to Deep Learning

In (Yang et al. 2017a), a systematic paradigm is provided to
connect ResNet (He et al. 2016) and band recovery. The sig-
nal is reconstructed progressively with two steps: 1) residual
block Fgrp first generates a new band signal f; based on a
previous band estimator f;_;. A summation is used to com-
bine the new band signal (residue) Frp(f;—1) and the input
(previous band estimators) f;:

ft = Fre(fi—1) + f—1, (D

where Frp(-) denotes the process of residual block. This
analysis only covers parts of band recovery characteristics.
When we review the classical band filter representations,
e.g. wavelet (Edwards 1992), steerable filter (Freeman and
Adelson 1991), ringlet (Do and Vetterli 2005), and the re-
lated processing methods based on them (Song et al. 2016;
Singh and Ahuja 2015), four critical properties are revealed:

o Band refinement. The given band features extracted from
the source domain, e.g. a rain image, are transformed into
the target domain, e.g. a rain-free image. As the analysis
above, ResNet works this way.
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Band expansion. One band feature is split into several
band features, and the total band feature number is in-
creased. The popular DenseNet (Huang et al. 2017) pro-
vides this capacity. However, it will rapidly increase the
number of used parameters. Thus, in our work, we choose
a more parameter-economic way — directly forwarding
parts of features to a certain layer, where all forwarded
features are concatenated as a broader one.

Band fusion. Several band features are combined into a
more compact one. This can be achieved effectively by
1 x 1 convolutions.

Hierarchical dependency among different bands. Many of
hand-crafted frequency band features are organized into a
hierarchical structure. High-order bands usually have in-
trinsically potential connections to some low-order bands.
We use fractal architectures, i.e. (Larsson, Maire, and
Shakhnarovich 2017), to follow this rule.

In our work, we fully consider these properties and build our
FBL based on their corresponding deep modules.

Overview of Fractal Band Learning

The framework of our proposed FBL for rain streak removal
is illustrated in Fig. 2:

e Fractal Band Learning (FBL). We hope to build a deep
network based on band recovery theory to capture the
hierarchical band dependency using end-to-end trainable
components. Motivated by the basic elements of band op-
erations, FBLs conduct band feature refinement, expan-
sion and fusion operations in a band recovery paradigm,
as shown in Fig. 2. To model the hierarchical band depen-
dency, FBL is designed to have a fractal structure. The
constructed refine unit (RU;) is used as the basic unit of
a higher-order one (RU;;;). In RU,, a band feature is
refined progressively in a residual learning manner. The
residue bands are generated by refine units (RU). Then,
parts of each residue band are forwarded into the last
layer, where they are concatenated with the output band
feature of the penultimate layer and fused into a narrow
band by a fusion unit (FU). On the top of Fig. 2, changes
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Figure 3: The framework of our band learning. The left side
presents network structures. The bottom side illustrates band
feature dimension changes during the learning process.

of the band feature dimension in the learning process are
provided. The summation operations in dash boxes sig-
nify residual additions. From left to right, the band fea-
tures are refined. Band features are expanded and fused in
turn at the penultimate layer.

Cross-Scale Self-Supervision. To handle scale variance
of rain streaks, we impose additional constraints on the
network such that extracted features tend to be scale-
invariant for different scales. The basic idea is that the net-
work should have similar responses when the input rainy
images are with the same content but in different scales.
In other words, the network should process rainy images
in the same way no matter what scale the images are at.
Therefore, for a given input image 7, we may up-sample
it into I, or down-sample it into Iy ,., and then enforce
the extracted feature F, to be similar to Fj after down-
sampling, or F; to be similar to F| ,, after down-sampling
as shown in Fig. 2. After training with this constraint, the
extracted features are more scale-invariant and the model
is better at removing rain streaks in different scales.

Fractal Band Learning

Rain streak removal is intrinsically a texture-related signal
separation problem. Thus, we seek to utilize the properties
of traditional band recovery to guide the network design and
facilitate a more effective automatic feature learning with
band constraints. Four properties are of great importance:
band refinement, expansion, fusion and hierarchical depen-
dency. In this section, we build our FBL with these rules step
by step.

Feed-Forward CNN The network structure used in SR-
CNN (Dong et al. 2015), as shown in Fig. 3 (a). The feature
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ft is transformed through a chain of convolutions:

e =Wy * fro1 4+ be), 2

where * and o denote the convolution operation and ReLU
activation function, respectively. W; and b, are the weights
and biases of the ¢-th convolution layer, respectively. Even
in this simplest way, stacking more layers usually lead to an
improved network capacity.

However, increasing the layer number may face the prob-
lem of vanishing gradient in the learning. In other words,
it is hard to pass tiny errors from very deep layers back to
shallow layers, which causes the trained models to have dif-
ficulties in high frequency detail reconstruction.

ResNet To characterize tiny structures in signals, residual
network is employed in VDSR (Kim, Lee, and Lee 2016)
and DEGREE (Yang et al. 2017a). As shown in Fig. 3 (b),
each residual block extracts a residue and adds it with the
original signal:

fr = Fre(fi—1) + fi—1, 3)

where Frp(-) denotes the feature transform of residual
block. It can be set as stacked convolutions or more com-
plicated modules. As discussed in (Yang et al. 2017a), this
operation equals to progressive band refinement, which fa-
cilitates high frequency detail reconstruction.

Band Learning In ResNet, extracting a wide band fea-
ture, namely expanding the channel number of the whole
network, is expensive. Thus, we propose a band learning to
include the operations of band expansion and fusion. The
features are refined by RU:

fr = Fru(fi—1) + fi—1, (€]

where Fry(-) denotes the feature transform of RU, which
usually consists of two or three stacked convolutions. Then,
we perform band expansion. f; is split into two band fea-
tures f; = [at, by]. a; is forwarded to the penultimate layer
by a skip connection. At the penultimate layer n — 1, all
{a¢|t =1,2,...,n — 2} are concatenated with the last out-
put feature f,,_1:

(&)

After that, we conduct band fusion to transform fexpansion
into a narrow one:

fn = FFU (fexpansion) 5 (6)

where Fry(-) denotes the feature transform of FU, which
usually is set to a 1 x 1 convolution. At last, f, is added
with the input feature fi, of the whole module to generate
the output feature fo,:

fout = fin + fn

As observed from the bottom side of Fig. 3 (c), the infor-
mation is updated regularly, expanded and fused at the end.

fexpansion = [a17a27a37 sy A —2, fn—l] .

)



Fractal Band Learning So far, our module meets the fol-
lowing band properties — refinement, expansion and fusion.
The potential hierarchical structure and dependency among
band features are also important for signal modelling. Thus,
we expand our band learning to fractal band learning. The
architecture is presented in Fig. 2. The constructed mod-
ule RU; is used as RU of a high-order one RU; ;. Our
FBL performs band feature operations at different levels,
and the learned band features are extracted along the tree
structure of FBL. Thus, it is capable of not only keeping
global structures but also reconstructing the high-frequency
details. From the view of band feature dimension changes
(on the bottom of Fig. 3 (c)), the information is processed
and flowed to the end. In Fig. 3 (a), the information is di-
rectly to the end. In Fig. 3 (c), the information is updated
regularly, expanded and fused at different levels many times,
thus a meaningful band feature is obtained.

Cross-Scale Self-Supervision

For the input image I; (the subscript denoting the rela-
tive scale of this image to the original one), besides con-
straining the generated result, which at the end is combined
with I; to approach B, we also enforce the rescaling ver-
sion of the extracted features, e.g. P,, P, P; /2> 1O be sim-
ilar. We first define three operations Fypp(-), Fup(+), and
Fyown(+) to denote the processes of transforming features by
FBL, up-sampling and down-sampling operations, respec-
tively. Then, we rescale the input image I; randomly with a
scaling factor (z = 2, 3, 4) for both down-sampling and up-
sampling into a zooming-out image I, or zooming-in one
I, as follows,

I = Fy (I, 2), (®)
I/, = Faown (11, 2) -

Then, these input images 1, I /2> and I, are feed-forwarded
into FBL to obtain the corresponding features Py, P; /2> and
P, as follows,

Py = Fep (1),

P/, = Fepe (11)2) )
P, = FrpL (1) .
Subsequently, their consistency is ensured as follows,
Lreat (P1, P2) = [|[P1 — Faown (P2, 2) |, (10)
Lt (P, Pry2) = || Faown (P1,2) = Prjs||. (A1)

It is worth mentioning that, to avoid the resolution loss in the
rescaling process, we always down-sample a feature map to
a smaller one in the consistency measurement.

Training Loss

Suppose we have a collection of paired rain and rain-
free images {yz,mz}izl -+ Where N is the total num-
ber of training samples. Then, we rescale each sample

using Bilinear interpolation to get {yi,z%}, | and

i i
{xl/z,z’ x }izl

N

with random scaling factor z

geeny
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{2, 3, 4}. For convenience of representations, we at first only
focus on the cases where z > 1. We use O, &%, P! to de-
note all the parameters in Fggp, the output by FBL and its
generated feature. We use Fiyeux () to represent the pro-
cess of extracting negative streaks from the input images,
namely Freei (FrpL (+)). We adopt the following loss func-
tion to train Frpy, () and Free (¢):

N
L(@) = % Z Z (/\Z (wlLf{ecl,z(@) + w2L]i-‘eal,z(6))) ’

=1 z
Lf{ecl,z(®) = ||FDown (FSlreak(yi; @)» Z) + yi - JBZH >
L;eal,z(e) = ||FDown (FFBL(yi; 9)7 Z) ) _FFBL(yi§ 9) || )

where A, w1, wo, and w3 are weighting parameters consid-
ering both relative area of images/features and importances
of different terms. When z < 1, i.e. z = {1/2,1/3,1/4},
the two loss terms become:

Llilect,z(e) = HFStreak(yi; @) + Fbown (y” — l‘i, 1/2’) || ,
Lieat.-(©) = || Foown (FreL(y2:©),1/2) , —FreL(y'; O) || -

In this case, up-sampling operations are not involved.

Connections to FractalNet and MemNet

Compared to FractalNet (Larsson, Maire, and
Shakhnarovich 2017) and MemNet (Tai et al. 2017b),
our RFBL further provides a comprehensive understanding
of the link between frequency band recovery and deep
learning, our is closer to frequency band operations and
different in the following aspects. 1) In each RU of RFBL,
only parts of output features are fed into the last layer,
which shrinks the dimension of the last layer and enables an
increasing layer depth to model more complex mappings.
The extracted features have larger variances and therefore be
more informative to capture high-frequency information. 2)
In MemNet, layers of different recursive units are connected
by gate units. Comparatively, the output of our refine unit
(RU) has a direct path to all layers of the next RU, thus the
features in two adjacent RUs are tied closer. 3) FractalNet
is designed for classification while ours is for low-level
visions. 4) In FractalNet, the fractal unrolling doubles the
channel dimension while the channel dimensions of RFBL
are cyclically changed at different steps of fractal unrolling.
It is closer to some frequency transforms, e.g. wavelet
transform. At each scale, a band can be decomposed into a
fixed number of sub-bands and vice versa.

Experiments
Dataset

We compare our method with state-of-the-art methods on a
few benchmark datasets: (1) RainlO0OL and Rainl00H (Yang
et al. 2017b), which are synthesized datasets with only one
type of rain streaks and with three to five layers of rain
streaks, respectively; (2) Rainl00H-S2 and Rainl00-S3 pro-
posed in (Yang et al. 2019), synthesized with s rain streaks
(s € {2,3,4,5}) with different shapes and directions. The
streak sizes are twice and three times as large as those in
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Figure 4: Visual comparison of different rain removal algorithms on real rain images. It is observed that, our FBL-SS success-
fully removes most rain streaks and better preserves texture details. Full-resolution results are provided in the supplementary

material.

Table 1: PSNR results among different methods.

Baseline RainlO0L  RainlO0OH  Rain800
1D 23.13 13.78 20.54
DSC 24.16 15.66 25.57
LP 29.11 14.26 27.09
CNN 23.70 13.21 23.95
SRCNN 32.63 18.29 25.10
DetailNet 33.50 23.93 25.22
UGSM 28.83 14.06 23.12
JCAS 29.91 14.26 22.25
DID-MDN 28.27 13.85 22.55
ID-CGAN 23.39 16.86 23.81
JORDER 36.11 24.10 26.73
RESCAN 38.58 26.06 28.04
RWL 36.75 26.89 27.79
FBL 40.32 30.47 28.68

Rainl00H, used for evaluating the performance when train-
ing and testing streaks have different sizes. (3) Rain800, a
collection of diversified synthesized rain images from ran-
domly selected outdoor images, which is split into testing
set of 100 image and training set of 700 images.

Baseline Methods

We compare our method with state-of-the-art methods:
ID (Kang, Lin, and Fu 2012), DSC (Luo, Xu, and Ji 2015),
LP (Li et al. 2016), CNN-based rain drop removal (Eigen,
Krishnan, and Fergus 2013), DetailNet (Fu et al. 2017),
DGSM (Deng et al. 2018), JCAS (Gu et al. 2017), DID-
MDN (Zhang and Patel 2018), JORDER (Yang et al. 2017b),
RESCAN (Li et al. 2018b), and RWL (Yang et al. 2019).
DetailNet, RESCAN, and JORDER are retrained with the
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Table 2: SSIM results among different methods.

Baseline Rainl00L  RainlO0OH  Rain800
ID 0.7022 0.3968 0.6739
DSC 0.8728 0.5444 0.6521
LP 0.8786 0.4225 0.7801
CNN 0.8076 0.3712 0.6589
SRCNN 0.9357 0.6124 0.8232
DetailNet 0.9444 0.7251 0.8228
UGSM 0.8876 0.4454 0.7675
JCAS 0.9053 0.4837 0.7682
DID-MDN 0.8625 0.3748 0.7639
ID-CGAN 0.8275 0.4921 0.8072
JORDER 0.9705 0.7490 0.8683
RESCAN 0.9805 0.8128 0.8748
RWL 0.9754 0.8406 0.8795
FBL 0.9863 0.8973 0.8875

online available codes. Other methods are directly evalu-
ated with the online available codes. RWL is implemented
by ourselves.

Quantitative Evaluation

Tables 1 and 2 show the results of different methods on
Rainl2, Rainl00L and Rainl00H. As observed, our method
considerably outperforms other methods in terms of both
PSNR and SSIM. The PSNR of our FBL gains over RES-
CAN more than 3dB on RainlOOH and almost 1dB on
Rain800. Such a large gain demonstrates the effectiveness
of proposed FBL on synthesized heavy rain images.



Table 3: The ablation analysis for our FBL. R denotes re-
finement. E&F denotes band expansion and fusion. F de-
notes fractal structure. The evaluations are performed on
Rainl00H.

Methods R E&F F MS PSNR SSIM
Forward CNN | x X X X 27.63 0.8518
ResNet v X X X 28.35 0.8709
F-ResNet v X N X 28.83  0.8807
SBL Ve v X X 28.46 0.8734
FBL v v Ve X 29.02 0.8921

Table 4: PSNR and SSIM results when training and testing
streak sizes are different. FBL-SS: with self-supervision.

Baseline Rainl00H-S2 Rainl00H-S3
Metric PSNR SSIM | PSNR  SSIM
DetailNet | 1598 0.6328 | 15.03 0.6410
JORDER | 16.11 0.6464 | 15.21 0.6483
DID-MDN | 1436 0.5383 | 14.70 0.6142
RESCAN | 17.13 0.6965 | 1631 0.6787
JCAS 14.27 0.6350 | 14.07 0.5779
UGSM 14.03  0.6260 | 13.82  0.5569
FBL 18.51 0.7355 | 1632  0.6860
R-CNN 19.45 0.7668 | 17.32 0.7481
RWL 20.83  0.8050 | 18.28 0.7824
FBL-SS 22.25 0.8063 | 20.85 0.8177

Qualitative Evaluation

Fig. 4 shows the results of synthesized and real images.
As observed, our method significantly outperforms previ-
ous state-of-the-art methods. Our FBL is better at removing
large rain streaks (the first and second panels) and is superior
in detail preservation (the third and fourth panels).

Evaluation on Streak Size Mismatch

To prove the effectiveness of our FBL with self-supervision
to handle the streak size mismatch problem between training
and testing phases, we construct two testing sets, Rainl00H-
S2 and Rainl00H-S3. The streak sizes of these two sets are
twice and three times of those in Rainl00H, respectively.
The testing results are provided in Table 4. It is observed
that, FBL achieves superior performance than RWL, another
state-of-the-art method that also aims to handle arbitrary-
size rain streaks removal. The gain is more than 1.3 dB on
Rainl00H-S2 and 2.5 dB on Rainl00H-S3. Some visual re-
sults are provided in Fig. 5.

Ablation Study for Network Structures

We compare six versions of our network: forward CNN,
residual network (ResNet), fractal residual network (F-
ResNet), sequential band learning (SBL), and fractal band
learning (FBL). Their compositions and results are pre-
sented in Table 3. For a fair comparison, we make sure the
parameters of these methods are almost the same. It is ob-
served that, each component contributes to the final perfor-
mance.
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Figure 5: Evaluation results when training and testing streak
scales are different.
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Figure 6: Ablation study for self-supervision. FBL: without

self-supervision. FBL-SS: with self-supervision.
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Figure 7: Comparison of extracted features in statistical dis-
tribution of DenseNet (left panel) and our FBL (right panel).

Ablation Study for Self-Supervision

The cross-scale self-supervision provides the capacity of
more “scale-robust” rain removal. We perform an ablation
analysis on real images in Fig. 6. It is observed that, the re-
sults generated by FBL with self-supervision (c) obviously
outperforms the one without it (b).

Effectiveness in Frequency Information Extraction

We compare the penultimate features of RFBL and
DenseNet with almost the same parameter number (193,283



VS. 195,283) in Fig. 7. We calculate the variances of nor-
malized features. The feature variances of RFBL mainly dis-
tribute in [0.005, 0.01] and those of DenseNet distribute in
[0, 0.005]. It is shown that, features of our RFBL are more
informative.

Conclusion and Discussions

In this paper, we design a fractal band learning network
trained with self-supervision for scale-robust rain streak re-
moval. A fractal band learning network is built to perform
frequency band feature operations, offering more superior
deraining performance. The learned features extracted by
our FBL are constrained to be consistent after rescaling op-
erations, which improves the robustness of the method in
handling streaks in different scales. It is observed from the
second row of Fig. 6 that, the edges and textures are a little
burred. In the future, there might be two directions to address
the problem: 1) applying adversarial constraint on the result
background; 2) developing more effective feature-level con-
straints to additionally measure the background blurriness
and texture authenticity.
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