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Abstract

Person re-identification (re-ID), is a challenging task due
to the high variance within identity samples and imaging
conditions. Although recent advances in deep learning have
achieved remarkable accuracy in settled scenes, i.e., source
domain, few works can generalize well on the unseen target
domain. One popular solution is assigning unlabeled target
images with pseudo labels by clustering, and then retrain-
ing the model. However, clustering methods tend to introduce
noisy labels and discard low confidence samples as outliers,
which may hinder the retraining process and thus limit the
generalization ability. In this study, we argue that by explic-
itly adding a sample filtering procedure after the clustering,
the mined examples can be much more efficiently used. To
this end, we design an asymmetric co-teaching framework,
which resists noisy labels by cooperating two models to se-
lect data with possibly clean labels for each other. Mean-
while, one of the models receives samples as pure as pos-
sible, while the other takes in samples as diverse as pos-
sible. This procedure encourages that the selected training
samples can be both clean and miscellaneous, and that the
two models can promote each other iteratively. Extensive
experiments show that the proposed framework can consis-
tently benefit most clustering based methods, and boost the
state-of-the-art adaptation accuracy. Our code is available at
https://github.com/FlyingRoastDuck/ACT AAAI20.

1 Introduction
Person re-identification (re-ID) (Sun et al. 2018; Zheng,
Yang, and Hauptmann 2016; Li, Zhu, and Gong 2018b) aims
to locate the target person in surveillance videos with a given
probe image. With the rapid evolution of deep learning mod-
els, the accuracy of person re-ID has been greatly boosted in
the public datasets. However, models trained on the source
domain often suffer from domain shifts, leading to a perfor-
mance decline on a different target domain.

To alleviate this issue, recent works (Zhong et al. 2019b;
2018b) make efforts on the unsupervised domain adapta-
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tion (UDA), which aims to transfer the knowledge from
the labeled source domain to the unlabeled target domain.
These works mainly lie in two aspects, distribution align-
ing (Wei et al. 2018; Deng et al. 2018; Chang et al. 2019;
Lin et al. 2018; Wang et al. 2018) and target pseudo label
discovering (Fan, Zheng, and Yang 2018; Song et al. 2018;
Li, Zhu, and Gong 2018a). The former aims to reduce
the distribution gap between domains in a common space,
such as image-level (Wei et al. 2018; Deng et al. 2018)
and attribute-level (Chang et al. 2019; Lin et al. 2018;
Wang et al. 2018) spaces. The latter attempts to leverage
the underlying relations among target samples and predict
pseudo labels for model retraining, e.g. assigning pseudo
labels based on clustering (Fan, Zheng, and Yang 2018;
Song et al. 2018; Li, Zhu, and Gong 2018a) and k-nearest
neighbors (Zhong et al. 2019a; Yang et al. 2018). Among
them, clustering based methods have reported very competi-
tive accuracy for UDA in person re-ID. These methods usu-
ally employ an iterative process of predicting pseudo iden-
tities for unlabeled target samples according to the clusters
and fine-tuning the model with those predicted samples. De-
spite their promising results, clustering based methods are
restricted by two main drawbacks. On the one hand, the clus-
tering accuracy can not be guaranteed even using the modern
approaches, so that pseudo labels assigned by clusters can be
noisy. Training the model with noisy labels that assigned to
wrong identities will undoubtedly damage the re-ID perfor-
mance. On the other hand, most clustering methods tend to
leave low confidence samples as outliers and do not assign
cluster labels to them, e.g., DBSCAN (Ester et al. 1996).
These outliers are usually hard samples that encounter high
image variations. Without considering such samples during
training, the model may have a problem in discriminating
high variation testing samples. However, directly assigning
them to the nearest cluster will bring more noisy labels, hin-
dering the retraining of the model.

Co-Teaching (CT) (Han et al. 2018) is a commonly used
algorithm for training model with noisy labels, which learns
two networks by feeding samples with small losses of one
network to another. However, most co-teaching frameworks
utilize symmetric inputs for both networks, which do not
effectively apply to the context of clustering based cross-
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Figure 1: The proposed asymmetric co-teaching framework (ACT). “M” and “C” denote the main model and the collaborator
model, respectively. We first train CNN on the source labeled data and fine-tune it on target data with pseudo labels predicted
by clustering to get initial weights for “M” and “C”. “M” receives samples as diverse as possible from inliers and outliers, while
“C” takes in samples as pure as possible from inliers during ACT. This process encourages the two models to mutually promote
the discriminative ability of each other. More details can be found at Sec. 3.4.

domain re-ID. This is because that the training samples with
low-confidence commonly have large losses during training.
Using symmetric inputs leads the model to always select
easy samples and ignore the low-confidence samples within
the training mini-batch. As a consequence, the second short-
coming mentioned above will still remain and will lead re-
ID model to a local minimum.

To this end, we choose the state-of-the-art clustering
based method proposed in (Song et al. 2018) as our baseline,
and propose an asymmetric co-teaching framework to elim-
inate the negative effects of the above two shortcomings.
Specifically, we first divide the target samples into inliers
and outliers, according to the clustering results (as shown in
Fig. 1). In this paper, we regard the low-confident samples
recognized by the clustering method as outliers while re-
maining as inliers. After that, our framework is trained with
two models. The first one is the main model which aims to
infer samples with small losses from the inliers, while the
second one is the collaborator model that estimates sam-
ples with small losses from the outliers. The samples in-
ferred/estimated by the certain model are selected for the
training of another model. This training process is similar
to the traditional co-teaching, except that the inputs of the
two models are asymmetric, i.e. the data for training the two
models comes from two different data flows. In this manner,
selecting samples with small losses ensure that the models
can be trained with possibly clean data. Moreover, these two
models are iteratively promoted by each other. On the one
hand, the main model attempts to mine as pure as possible
samples from the inliers for maintaining the basic represen-
tation of the collaborator model. On the other hand, the col-
laborator model tries to select as diverse as possible samples
from the outliers for further improving the discriminative
ability of the main model. Our contributions are summarized
in three-fold:

• We introduce to employ co-teaching technique for re-
sisting noisy labels generated by clustering in the cross-
domain person re-ID. Experiments show that learning
with filtered data can consistently improve adaptation ac-
curacy.

• We divide the unlabeled target data into inliers and out-
liers and design an asymmetric co-teaching (ACT) frame-
work to make re-ID model see hard samples at the early
stage of adaptation. Experiments demonstrate that the
asymmetric approach is more effective in handling hard
samples than the symmetric one.

• Experiments conducted on three large-scale datasets show
that our method can apply to various clustering based
methods and produces state-of-the-art adaptation accu-
racy in person re-ID.

2 Related Work

2.1 Cross-Domain Person Re-identification

Recent studies in cross-domain re-ID can mainly group into
distribution aligning (Wei et al. 2018; Deng et al. 2018;
Lin et al. 2018; Wang et al. 2018) and clustering-based adap-
tation (Fan, Zheng, and Yang 2018; Song et al. 2018). Distri-
bution aligning tries to reduce the distribution gap in a com-
mon space, which can be further summarized into image-
level and attribute-level. For image-level adaptation meth-
ods, PT-GAN (Wei et al. 2018) uses Cycle-GAN (Zhu et
al. 2017) or Star-GAN (Choi et al. 2018) to translate the
foreground of labeled source images to target camera style
for adaptation. Similarly, SPGAN (Deng et al. 2018) uti-
lizes Cycle-GAN and additional constraints named “self-
similarity ” and “domain-dissimilarity” for higher accu-
racy. However, the image-level adaptation algorithms cannot
guarantee the identity of generated images, since the gener-
ated images still have a large gap compared with real im-
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ages. For attribute-level adaptation methods, MMFA (Lin et
al. 2018) tries to align the distribution of mid-level seman-
tic attributes between different datasets by minimizing the
mean maximum discrepancy (MMD). TJ-AIDL (Wang et
al. 2018) leverages a multi-branch network to establish an
identity-discriminative and attribute-sensitive feature repre-
sentation space most optimal for the target domain. These
works require attribute annotations of source data, which are
hard to obtain in practice.

Clustering-based adaptation is another straight-forward
approach to adapt re-ID model. Fan et al. (Fan, Zheng, and
Yang 2018) use the k-means (Lloyd 1982) to predict pseudo
labels of unlabeled target data for model fine-tuning. How-
ever, it is hard to decide correct k value for clustering. Song
et al. (Song et al. 2018) present a DBSCAN-based adap-
tation method, which can discover the number of clusters
based on the density of features. Although clustering-based
methods can achieve high re-ID accuracy for domain adap-
tation, most of them neglect the wrongly labeled samples
in the clustering results and directly use them for training,
which cloud have a negative influence on model’s perfor-
mance.

2.2 Learning with Noisy Labels

Training deep model on noisy dataset have been widely
studied in recent years. Transition matrix (Sukhbaatar et al.
2014; Patrini et al. 2017), robust loss function (Natarajan et
al. 2013; Zhang and Sabuncu 2018) and CleanNet (Lee et al.
2018) are three main efforts for this problem.

Transition matrix tries to capture the transition probabil-
ities between noisy labels and true labels, based on an as-
sumption that the transition probability between different
classes are identical. Sukhbaatar et al. (Sukhbaatar et al.
2014) add an extra linear layer to capture the relationship
between true and corrupted labels. Patrini et al. (Patrini et
al. 2017) estimate the transition matrix by a corresponded
loss correction algorithm. However, these kinds of methods
do not generalize well on large scale dataset.

Another solution is to design robust loss for model train-
ing against noisy labels. Natarajan et al. (Natarajan et al.
2013) present an unbiased estimator to give loss correction
for model training. Zhang et al. (Zhang and Sabuncu 2018)
find the drawbacks of mean-absolute loss and cross-entropy
loss when applied in this task and further propose a general-
ized loss function that benefits both losses. However, robust
loss methods always have certain constraints, which limit
their applications.

Lee et al. (Lee et al. 2018) propose a CleanNet for tack-
ling this problem. It deploys an additional network to assign
a weight score for each sample in training set, and gives
lower weight for noise samples to eliminate their negative
effects. However, CleanNet needs clean samples for initial-
ization, which can not satisfied for many real-world appli-
cations. The co-teaching and co-training frameworks (Han
et al. 2018; Ma et al. 2017) adopt a learning to teach strat-
egy for dealing with noise and unlabeled data. It leverages
two networks for synergistic training, in which each network
chooses high confidence training samples for the other net-
work. By doing so, these two models can help each other

to resist noisy labels. We draw inspiration from these two
co-teaching/training methods and develop an asymmetric
framework for cross-domain person re-ID.

Algorithm 1 Procedure of the proposed method.
Inputs: Labeled source dataset S , unlabeled target dataset
T , ImageNet pre-trained model M . Training epochs e1, e2
and e3. Maximum round r2, r3.
Outputs: Adapted model Mada.

1: ****************** Stage 1 *******************
2: Train M on S through triplet loss and cross-entropy loss

with e1 epochs ⇒ source model Msrc;
3: ****************** Stage 2 *******************
4: Divide T into inliers Ti and outliers To according to DB-

SCAN results;
5: Fine-tune Msrc with Ti for e2 epochs and repeat line 4

to 5 for r2 rounds ⇒ adapted model Mada;
6: ****************** Stage 3 *******************
7: Main model Mmain ⇐ Mada, collaborator model Mco

⇐ Mada;
8: for i = 1 to r3 do
9: Deploy Mmain and DBSCAN to divide T into Ti and

To;
10: for j = 1 to e3 do
11: iter = 0;
12: repeat
13: Sample mini-batch ti and to from Ti and To;
14: if iter % 2 == 0 then
15: // Optimize Main Model.
16: Deploy Mco to choose samples with small

loss values from to and mix them with ti for
optimizing Mmain;

17: else
18: // Optimize Collaborator Model.
19: Deploy Mmain to choose samples with small

loss values from ti for optimizing Mco;
20: end if
21: iter ++;
22: until Ti has been enumerated
23: end for
24: end for
25: Mada ⇐ Mmain.

3 The Proposed Method

3.1 Overview

Let T be the unlabeled target training set and S be the la-
beled source training set. Unsupervised domain adaptation
tries to leverage both T and S to learn a re-ID model that
can generalize well on the target testing set.

Our proposed ACT is designed to solve this problem,
which contains three stages: (1) Source Model Training. (2)
Clustering-based Adaptation. (3) Asymmetric Co-Teaching
for Adaptation. The first two stages aim to obtain a model
with basic discriminability by initializing on labeled source
data and fine-tuning on target data with pseudo labels gen-
erated by the clustering. The third stage attempts to cope
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with the noisy labels through the cooperation of two mod-
els (main model Mmain and collaborator model Mco) ini-
tialized by the adapted model in the second stage. During
the third stage, we first split the target training set into in-
liers (Ti) and outliers (To) according to the clustering results
and then train the model Mmain/Mco with the small-loss
samples from To/Ti mined by Mco/Mmain. The overall pro-
cedure of our method is illustrated in Alg.1. Next, we will
describe the proposed method in detail.

3.2 Source Model Training

In the first stage of our method, we train the source model
Msrc with labeled source dataset S through the cross-
entropy loss and the triplet loss (Hermans, Beyer, and Leibe
2017). Model Msrc trained on the source data has the basic
discriminability for adaptation.

3.3 Clustering-based Adaptation

Due to the domain shift between source and target dataset,
the obtained source model Msrc usually can not generalize
well on a new dataset. To solve this problem, we follow a ro-
bust and reliable adaptation framework (Song et al. 2018). It
adopts Msrc (source model) to extract pooling-5 features of
target images and divide T into inliers Ti and outliers To ac-
cording to the clustering results of DBSCAN. Further train-
ing can proceed with the annotated inliers Ti. We present
the adaptation algorithm by introducing its distance metric
for clustering and loss function.

Distance metric for clustering. k-reciprocal encoding
and Jaccard distance are chosen to be the distance metric
for clustering. In detail, we first compute the pair-wise sim-
ilarity matrix M by:

Mi,j =

{
e−||xi−xj ||2 , j ∈ R∗(i, k)
0, otherwise

, (1)

where Mi,j is the similarity between sample i and j by using
the pooling-5 feature, R∗(i, k) is the refined k-reciprocal set
for sample i which are obtained by adding some specific
reliable constrains as mentioned in (Zhong et al. 2017).

After obtaining the similarity matrix M, the Jaccard dis-
tance dJ(i, j) can be computed by:

dJ(i, j) = 1−
∑Nt

k=1 min(Mik,Mjk)∑Nt

k=1 max(Mik,Mjk)
, (2)

where Nt is the total image number of the target training
dataset. To enhance the degree of similarity, each target fea-
ture should close to some source features as mentioned in
(Panareda Busto and Gall 2017), i.e., to minimize:

dW = 1− e||xi−Ns(xi)||2 , (3)

where Ns(xi) is the nearest neighbor in the source domain
for target image i. Taking the dJ and dW into consideration,
the final distance metric for clustering is computed by:

di,j = λ[dW (xi) + dW (xj)] + (1− λ)dJ(i, j), (4)

where λ ∈ [0, 1] is the balancing factor, and we set it to 0.1
in this study.

Loss function. Given the computed distance matrix M,
we perform DBSCAN on the unlabeled target dataset T and
divide it into inliers Ti and outliers To. Each sample in the
Ti is assigned to a cluster. Therefore, we can fine-tune Msrc

with pseudo labels of Ti and update the clustering results
based on the optimized Msrc iteratively. We only use triplet
loss for the fine-tuning of Msrc. The triplet loss is computed
for each batch data by using both pooling-5 and fc-2048 fea-
tures via:

Ltri =

Nb∑
i=1

[
||xp − xa||2 − ||xn − xa||2 +m

]
+
, (5)

where Nb is the training batch size, p and n are the most
dissimilar positive sample and most similar negative sample
for anchor image a. xp, xn and xa denote corresponding
features of positive, negative and anchor samples.

After adaptation, we obtain a much better re-ID model
Mada. However, as mentioned in Sec. 1, features extracted
by the model are not reliable enough for downstream clus-
tering task, due to the inconsistent distribution of source
and target domain. Therefore, clustering results may con-
tain many noisy labels. To further adapt the model against
the noisy dataset, we propose ACT in the third stage.

3.4 Asymmetric Co-Teaching for Adaptation

Original co-teaching (Han et al. 2018) deploys two networks
to find possibly clean labels, i.e., small loss samples in the
noisy dataset. By sending these samples mined by one net-
work to another for optimization, the influence of incorrect
labels can be largely reduced. However, co-teaching does
not effectively apply to the context of cross-domain re-ID.
On the one hand, selected small loss samples are easy for the
model to learn and have a limited positive effect for boosting
re-ID accuracy. On the other hand, hard samples with high
loss values are difficult to be taken into consideration dur-
ing the co-teaching process, which may limit the diversity
of training samples for adaptation. In short, the conventional
co-teaching is prone to make re-ID model converge to local
minimum, which is not beneficial to train a robust network.

To handle the issues mentioned above, we propose a novel
co-teaching-like framework for unsupervised cross-domain
re-ID in the third stage. In our framework, we initialize main
model Mmain and collaborator model Mco with previously
obtained Mada. Mmain and Mco are then trained in asym-
metric manners. Mco tries to infer pure data from the out-
liers for training of the Mmain, which encourages Mmain

to train with more reliable but diverse samples. Mmain fo-
cuses on mining as clean as possible samples from inliers
for the training of Mco, which ensures that Mco can main-
tain the basic representation with easily clustering samples.
The whole ACT process has been shown in Fig. 1. Specifi-
cally, it contains two steps:

Step 1: Inliers/Outliers Generation.We adopt Mada to
initialize Mmain and Mco and then extract pooling-5 fea-
tures for all unlabeled target images for DBSCAN-based
pseudo label assignment. DBSCAN is a density-based clus-
tering method, which assigns pseudo labels for samples in
high-density area and regards samples in low-density area
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Table 1: Comparison with state-of-the-art methods on Market-1501 (M), DukeMTMC-reID (D) and CUHK03 (C). Our pro-
posed algorithm outperforms image-level (SP-GAN, PT-GAN), attribute-level (TJ-AIDL, MMFA, CFSM), clustering-based
(Theory) and hybrid (HHL, ECN) methods by a large margin. “*”: reproduced by this paper.

Source → Target M → D M → C C → M C → D D → M D → C
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

Direct Transfer 14.7 28.1 10.4 12.5 19.1 40.5 7.1 16.4 19.1 46.8 11.0 12.2
PT-GAN (Wei et al. 2018) - 27.4 - - - 31.5 - 17.6 - 38.6 - -

SP-GAN (Deng et al. 2018) 22.3 41.1 - - 19.0 42.8 - - 22.8 51.5 - -
TJ-AIDL (Wang et al. 2018) 23.0 44.3 - - - - - - 26.5 58.2 - -

MMFA (Lin et al. 2018) 24.7 45.3 - - - - - - 27.4 56.7 - -
CFSM (Chang et al. 2019) 27.3 49.8 - - - - - - 28.3 61.2 - -
HHL (Zhong et al. 2018a) 27.2 46.9 - - 29.8 56.8 23.4 42.7 31.4 62.2 - -
ECN (Zhong et al. 2019a) 40.4 63.3 - - - - - - 43.0 75.1 - -
Theory* (Song et al. 2018) 48.4 67.0 46.4 47.0 51.2 71.4 32.2 49.4 52.0 74.1 28.8 28.5

ACT (Ours) 54.5 72.4 48.9 49.5 64.1 81.2 35.4 52.8 60.6 80.5 30.0 30.6

as outliers. By doing so, T can be naturally divided into Ti
and To. In (Song et al. 2018), the obtained To are directly
discarded. However, we argue that these images are crucial
to further boost re-ID accuracy and must be used in a rea-
sonable way. In view of that, we need to give pseudo labels
for To. In our experiments, we assign a pseudo label for each
To sample according to its nearest neighbor in Ti.

Step 2: Asymmetric Co-Teaching. In this step, we em-
ploy the main model Mmain and the collaborator model Mco

for mining useful clean samples from the noisy data and im-
prove the performance cooperatively. Next, we will intro-
duce the training process of Mmain and Mco, respectively.

(a) For the training of Mmain, we sample a mini-batch
to with Bs samples from To, and build corresponding Bs

triplets. Then, we adopt Mco to compute the triplet loss for
each triplet and choose K% anchors with the smallest loss
values as possibly clean samples. We combine the selected
anchors with another Bs samples (ti) obtained from Ti to
form a training mini-batch for the fine-tuning of Mmain. In
this part, Mco plays a significant role to encourage Mmain

to receive samples as diverse as possible and the re-trained
Mmain is more capable of discriminating hard samples.

(b) For the training of Mco, we first sample Bs images
from Ti to form ti, and then utilize Mmain in (a) to mine
small loss samples from ti for optimizing Mco. In this part,
Mmain mainly focus on ensuring the training samples for
Mco as pure as possible the re-trained Mco can keep basic
discriminability for selecting pure samples.

We repeat step 1 and step 2 of ACT for a certain num-
ber of rounds to adequately train both models. After train-
ing procedure finished, we regard the well-trained Mmain

as our final adapted model for evaluation. It should be noted
that we use a different strategy from the original CT to ob-
tain small-loss samples. In our setting, we choose training
samples from triplets. Anchors with the smallest K% triplet
losses are selected as the reliable samples for fine-tuning.
The mechanism behind our selecting strategy is that high-
confident anchors are more likely to achieve small losses.

4 Experiment

4.1 Experimental Settings

We conduct experiments on three large-scale benchmark
datasets: Market-1501 (Zheng et al. 2015), DukeMTMC-
reID (Ristani et al. 2016; Zheng, Zheng, and Yang 2017) and
CUHK03 (Li et al. 2014). The mAP and rank-1 accuracy are
adopted as evaluation metrics. We use the new-protocol pro-
posed in (Zhong et al. 2017) for evaluating CUHK03.

In the source model training stage, we adopt both cross-
entropy loss and triplet loss for the training of ImageNet-
pretrained ResNet-50 model. Adam solver is used to opti-
mize the re-ID model with an initial learning rate of 3 ×
10−4. We train re-ID model for 150 epochs and the learning
rate is linearly decreased to 0 for the last 50 epochs. Mar-
gin m in the triplet loss is set to 0.3. Training batch size
Bs = 64. Input images are resized to 128× 64. We also use
random flip and random erasing (Zhong et al. 2020) for data
argumentation.

In the clustering-based adaptation stage, we constrain the
minimum size of a cluster to 4 and set density radius p =
1.6 × 10−3. After a clustering step, we train the model for
30 epochs, and iterate this procedure for 30 rounds. Other
parameters are kept the same as in (Song et al. 2018).

In the last asymmetric co-teaching stage, we form triplet
samples in a batch to compute triplet loss for each anchor
image. Anchors with the smallest K% losses are selected for
further training. We set the small loss ratio K = 20% and
linearly increase it to 100% for the whole Rco epochs, Rco =
10. Adam is used to fine-tune the models for 10 epoch with
a fixed learning rate of 6× 10−5.

4.2 Comparison with state-of-the-arts

In Tab. 1, we compare our method with several state-
of-the-art jobs on three large scale benchmarks (Market-
1501, DukeMTMC-reID and CUHK03). Our method out-
performs other algorithms by a large margin on all tasks.
Take D→M and M→D tasks for example. For image-level
SP-GAN, it can only get slightly performance gain than the
direct transfer baseline. The attribute-level adaptation meth-
ods can achieve better performance than the image-level
ones. However, our ACT achieves around 32% and 27%
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Figure 2: Visualization of small loss samples. We choose
images with small loss values from Ti and merge them into
their corresponding clusters. Chosen images are not serious
affected by illumination and occlusion compared with most
images in Ti, which may be helpful for model refinement.

mAP improvement over the MMFA and the CFSM. The
hybrid method “ECN” investigates the exemplar-, camera-
, and neighborhood-invariance inside the target domain, and
can boost the mAP to 43% and 49% on both D→M and
M→D tasks. However, their method still achieves lower
re-ID accuracies than ours. Compared with the clustering-
based method “Theory”, our ACT can boost mAP scores by
6.9% and 5.5% on both adaptation tasks. Similar results can
be found in other adaptation tasks. Our method has better ac-
curacies on all experiments, which demonstrates the validity
of ACT.

4.3 Visualization of Small Loss Samples

In Fig. 2, we visualize the small loss samples mining of
the collaborator network during the ACT procedure on the
Market-1501 dataset. As can be seen, most outliers in To
are high variance samples caused by occlusion and illumi-
nation, which can be hardly assigned correct pseudo labels.
After computing the loss in Ti against the collaborator net-
work, we can obtain relative reliable training images in Ti
with high diversity, and these samples are helpful for train-
ing the main network.

4.4 Ablation Study

Our proposed framework achieves better performance by us-
ing asymmetric structure. To argue the effectiveness of our
proposed method, we conduct extensive experiments under
three different settings in Fig. 3 to show: (1) The neces-
sity of taking To into training process. (2) The necessity
of clean noisy labels. (3) The effectiveness of asymmetric
structure. All the experiments are conducted in D→M and
M→D tasks. We take “Theory” (Song et al. 2018) as our
baseline model and its re-ID accuracies are shown in the first
line of Tab. 2.

For (1), we directly merge To into the training process by
giving labels to To based on their nearest neighbour in Ti.
The new dataset is then sent to re-ID network for fine-tuning.

Ltri

Ltri

Ltri

Ltri

Ltri

To

Ltri

Figure 3: Three different learning strategies compared in
our ablation study. We compare Co-Teaching, Revised Co-
Teaching (CT with To) and Asymmetric Co-Teaching to see
which structure achieves the highest re-ID accuracies. Dash
lines are basic operations without back-propagation process.

As the second line of Tab. 2 shows, merging To into Ti can
improve mAP scores by 2.7% and 0.7% for both adapta-
tion tasks, which indicates the necessity of taking To into
training process. However, possible noisy labels in training
samples may hinder the further improvement on re-ID accu-
racies. To demonstrate (2), we conduct CT to filter out noisy
samples. As the third line of Tab. 2 shows, the original CT
has a slight improvement for adaptation in a certain degree.
The results may be caused by the aforementioned weakness,
so we conduct another experiment, which takes To into each
round of CT process to make re-ID model escape the local
minimum. The details of CT and revised CT (CT with To)
are shown in Fig. 3-(a) and Fig. 3-(b). From the fourth line of
Tab. 2 we may see that CT with outliers can achieve higher
but not significant mAP scores. For (3), we further evaluate
the effectiveness of our proposed asymmetric structure. De-
tailed workflow in ACT is shown in Fig. 3-(c). Our ACT can
achieve the highest accuracies on both adaptation tasks with
60.6% and 54.5% mAP scores.

4.5 Variant Evaluation

How much difference between the main model and the
collaborator model? To show the difference between these
two models, we report mAP and rank-1 scores of both mod-
els during the ACT stage. As can be seen from Fig. 4, Mco

is always inferior to Mmain. Since the collaborator model
only accepts samples with small loss values mined from the
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Table 2: Ablation study. We evaluate five settings. “Theory”, “Theory” with outliers, co-teaching (CT), CT with outliers and
our asymmetric co-teaching (ACT). Our method gives the best result among other competitors.“*”:reproduced by this paper.

Methods Duke → Market Market → Duke Attributes
mAP rank-1 mAP rank-1 Clean Label Hard Sample Asymmetric Structure

Theory* 52.0 74.1 48.4 67.0 × × ×
Theory*+To 54.7 76.1 49.1 68.6 × √ ×

CT 55.0 76.4 47.3 69.8
√ × ×

CT + To 55.3 76.8 49.6 68.9
√ √ ×

ACT 60.6 80.5 54.5 72.4
√ √ √

Table 3: Asymmetric co-teaching with different clustering
methods. ACT is compatible with different clustering meth-
ods like k-means and DBSCAN.

Methods Duke → Market Market → Duke
mAP rank-1 mAP rank-1

k-means 52.7 74.4 46.7 66.7
+ACT (20%) 56.0 76.8 49.8 69.6
+ACT (30%) 55.0 75.5 49.5 68.1

DBSCAN 52.0 74.1 48.4 67.0
+ACT 60.6 80.5 54.5 72.4

Figure 4: Evaluation of re-ID accuracies for two networks.
Main model is always better than collaborator model be-
cause of diversity and purity of training data.

inliers Ti by Mmain, its training data are more likely to have
more easy samples than hard ones.

Whether the clustering accuracy increase along with
the training iteration? We evaluate the clustering results
after each DBSCAN clustering step to see whether the accu-
racy improves. We adopt F-score to measure the quality of
clustering after merging To images. As shown in Fig. 5-(a),
F-score continues increasing for each iteration, which means
the discriminative of the adapted model is also increasing.
In Fig. 5-(b), we also record the size of outliers To. With the
decrease of To, we can get better clusters for adaptation.

Is the proposed pipeline compatible with other clus-
tering methods ? We replace the DBSCAN in our method
with k-means to see whether the proposed pipeline is com-
patible with other clustering methods. It should be noted
that k-means does not generate outliers directly, which is
different from DBSCAN. However, we can consider the
furthest u% samples far away from their centroids as out-
liers. In our experiment, we conduct u=20 and u=30 to see
whether ACT benefits k-means-based adaptation methods.
For convenience, we set k exactly the number of identities
for target dataset. As is shown in Tab. 3, when u=20, we

Figure 5: Evaluation of clustering quality during asymmetric
co-teaching. (a), F-scores during the adaptation. (b), number
of images in To (|To|) for the whole 10 epochs. We may say
that asymmetric co-teaching has positive effect for cross-
domain re-ID.

achieve 56.0% and 49.8% mAP scores for both transferring
tasks. For u=30, our method still outperforms the vanilla
k-means-based adaptation with 55.0% and 49.5% mAP
scores, respectively. Our ACT can achieve 3.3% and 3.1%
improvements on both transferring tasks. In the last two
lines of Tab. 3, we compare k-means-based algorithm with
DBSCAN-based version. The results demonstrate that ACT
can also benefit other clustering-based adaptation methods.

5 Conclusion

In this paper, we propose a novel asymmetric co-training
framework for unsupervised cross-domain re-ID. Our
framework is composed of two networks initialized with
the same weights named “Main Model” and “Collaborator
Model”. By selecting possibly clean samples from target for
each other, adapted main model can resist noisy labels. Fur-
thermore, we design different data flow for both networks
to make main model accepts training samples as diverse as
possible while collaborator model as pure as possible. The
proposed method works fine on three large-scale datasets.
We consider applying our work to more unsupervised do-
main adaptation tasks such as face recognition in the future.
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