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Abstract

We propose a simple yet effective method to reduce the re-
dundancy of DenseNet by substantially decreasing the num-
ber of stacked modules by replacing the original bottleneck
by our SMG module, which is augmented by local residual.
Furthermore, SMG module is equipped with an efficient two-
stage pipeline, which aims to DenseNet-like architectures that
need to integrate all previous outputs, i.e., squeezing the in-
coming informative but redundant features gradually by hier-
archical convolutions as a hourglass shape and then exciting it
by multi-kernel depthwise convolutions, the output of which
would be compact and hold more informative multi-scale fea-
tures. We further develop a forget and an update gate by intro-
ducing the popular attention modules to implement the effec-
tive fusion instead of a simple addition between reused and
new features. Due to the Hybrid Connectivity (nested combi-
nation of global dense and local residual) and Gated mecha-
nisms, we called our network as the HCGNet. Experimental
results on CIFAR and ImageNet datasets show that HCGNet
is more prominently efficient than DenseNet, and can also
significantly outperform state-of-the-art networks with less
complexity. Moreover, HCGNet also shows the remarkable
interpretability and robustness by network dissection and ad-
versarial defense, respectively. On MS-COCO, HCGNet can
consistently learn better features than popular backbones.

Introduction

Deep convolutional neural networks (CNNs) are becoming
more and more efficient in parameter and computation with-
out sacrificing the performance owing to novel architectures
design. ResNet (He et al. 2016) introduces the residual con-
nectivity to implement the addition of the input and output
features for each micro-block. DenseNet (Huang et al. 2017)
holds the dense connectivity by changing skip connections
from addition to concatenation. Both of their feature aggre-
gation connectivities can not only encourage feature reuse,
but also ease the training problems. For a detailed compar-
ison, dense connectivity is more effect for feature exploita-
tion and exploration but exists a certain redundancy, while
residual connectivity contributes to efficient feature reuse by
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Figure 1: The diagram of a hybrid block including n = 2
modules, where n � 2. The symbol ”+” and ”‖” de-
note element-wise addition and channel-wise concatenation
among multiple feature maps, respectively.

parameter sharing mechanism and thus leads to low redun-
dancy, but lacks the capability of feature preservation and
exploration. To enjoy their advantages and avoid inherent
limitations, many networks combine them to build a more
effective aggregation topology, such as DPN (Chen et al.
2017), MixNet (Wang et al. 2018a) and AOGNet (Li, Song,
and Wu 2019). Different from them, we develop a hybrid
connectivity (Figure 1) with nested aggregation that facili-
tates feature flow by dense connectivity for global channel-
wise concatenation of outputs produced by all precedent
modules (blue links in Figure 1) and residual connectivity
for local element-wise addition within the module (red links
in Figure 1).

Our main motivation for this pattern design originates
from reducing the redundancy of dense connectivity. As the
depth of network linearly increases, the number of skip con-
nections and required parameters grow by a rate of O(n2),
where n denotes the number of stacked modules under dense
connectivity. Meanwhile, early superfluous features which
have few contributions are transferred quadratically to sub-
sequent modules. So one simple method to reduce redun-
dancy is to decrease the number of modules directly, but it
can attenuate the representational power of features and then
deteriorate the performance. Thus we develop a novel mod-
ule by embedding the residual connectivity to assist feature
learning within the local module. Experimentally, the num-
ber of our proposed modules under dense connectivity can
be quite fewer than that of classical modules in the dense
block but without sacrificing the performance.
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For further adaptation with hybrid connectivity, we in-
stantiate the basic module that includes a squeeze cell (cell 1
in Figure 1) for transforming the input to a compact feature
map, and a multi-scale excitation cell (cell 2 in Figure 1)
to further extract multi-scale features by multi-kernel con-
volutions. It is widely known that convolution builds pixel
relationship in a local neighborhood, which leads to ineffec-
tive modeling of long-range dependency. To fully address
this issue, we develop an update gate to model the global
context features from more informative multi-scale features.
Moreover, we locate a forget gate on the residual connection
to capture channel-wise dependency for decaying the reused
features produced by cell 1. Finally, global context features
are added to the reused feature map of each spatial position
to form the output, which can not only promote effective
feature exploration but also retain the capability of feature
re-exploitation to some extent. Moreover, both forget gate
and update gate are lightweight and general plug-ins, which
can be integrated into any CNNs with negligible overheads.

We perform extensive experiments across the three highly
competitive image classification datasets: CIFAR-10/100
(Krizhevsky and Hinton 2009), and ImageNet (ILSVRC
2012) (Deng et al. 2009). On CIFAR datasets, HCGNets
outperform state-of-the-art both human-designed and auto-
searched networks but only requiring extremely fewer pa-
rameters, e.g., HCGNet-A3 obtains the better result than
the most competitive NASNet-A (Zoph et al. 2018) with
4.5× fewer parameters. On ImageNet datasets, it also con-
sistently obtains the best accuracy, interpretability, robust-
ness based on classification and transferability to object de-
tection as well as segmentation among the widely used net-
works with least complexity, e.g., HCGNet-B outperforms
previous SOTA AOGNet across a broad range of tasks with
similar complexity.

Related Work
Improvements of ResNet and DenseNet. ResNeXt (Xie
et al. 2017) outperforms ResNet with less overheads since
it adopts 3×3 group convolutions in residual blocks. Af-
terwards, group convolutions become popular in efficient
CNNs design due to the properties of lower parameter and
computational cost, including our HCGNets. Wide ResNet
(Zagoruyko and Komodakis 2016) show that increasing
width while decreasing depth of residual networks can sur-
pass very deep counterparts, meanwhile tackling the prob-
lems of slow training and weakened feature reuse. By repre-
senting the multi-scale features and widening the receptive
fields (RF) within the residual block, Res2Net (Gao et al.
2019) outperforms the other backbones across a broad range
of tasks. Multi-scale information has been widely demon-
strated a effective way to improve the performance, our
HCGNet also constructs the multi-scale features by multi-
branch convolutions.

It is widely known that DenseNet has a certain re-
dundancy, thus a typical practice is sparsification. Log-
DenseNet (Hu et al. 2017) and SparseNet (Zhu et al. 2018)
regularly conduct a sparse rather than full aggregation of
all previous outputs, which change the number of connec-
tions from linear to be logarithmic in the overall topology.

Learned group convolutions are adopted in CondenseNet
(Huang et al. 2018) to automatically prune unimportant
channels for the incoming feature map based on channel-
wise L1-norm. However, excessive sparsification affects the
superiority of collective learning. Thus we only decrease the
number of modules under dense connectivity to reduce re-
dundancy, which is empirically more effective than sparsifi-
cation.

Combinations of ResNet and DenseNet. To enjoy the ad-
vantages and avoid drawbacks of both two connectivities,
many combinations have proposed. DPN adopts dual path
architectures, which can facilitate effective feature reuse by
residual path and feature exploration by dense path in par-
allel. MixNet blends two connectivities to implement fea-
ture aggregation with more flexible positions and sizes, fur-
ther ResNet, DenseNet and DPN can be treated as partic-
ular cases of MixNet. Recently proposed AOGNet utilizes
AND-OR Grammar to generate CNNs by parsing feature
map as a sentence, where AND-node denotes channel-wise
concatenation and OR-node denotes element-wise addition.
It demonstrates that the compositional and hierarchical ag-
gregation in AOGNet is more effective than cascade-based
way in DPN. Moreover, addition and concatenation as the
meta-operations are also widely applied in the field of neu-
ral architecture search, such as NASNet, PNASNet (Liu et
al. 2018) and AmoebaNet (Real et al. 2019). Extensive ex-
periments indicate that the nested way for feature aggrega-
tion in our HCGNets perform the best.

Attention Mechanisms Attention has been widely ap-
plied in computer vision, e.g., image classification (Wang
et al. 2017). SENet (Hu, Shen, and Sun 2018) introduces a
lightweight gate to capture channel-wise dependencies for
rescaling channel features. SKNet (Li et al. 2019) further
employs a dynamic kernel selection attention for weighted
multi-scale features fusion, which is inspired by Inception-
Nets (Szegedy et al. 2017). Beyond channel, CBAM (Woo
et al. 2018) also constructs a spatial attention map to recal-
ibrate spatial features. To capture long-range dependency,
GCNet (Cao et al. 2019) simplifies non-local block (Wang et
al. 2018b) to implement query-independent context model-
ing based on single branch information. Different from them
in roles or mechanisms, we build a forget gate to capture
channel-wise dependency for decaying the reused features,
while an update gate fully models the global context features
from multi-scale information.

Revisiting ResNet and DenseNet

We revisit the classical ResNet and DenseNet with their indi-
vidual residual connectivity and dense connectivity, and fur-
ther investigate their mechanisms of parameter sharing and
feature learning. Finally, we analyse the overall efficiency of
ResNet and DenseNet.

Parameter Sharing

Intuitively, residual connectivity implicitly accompanies a
parameter sharing mechanism between the reused and newly
extracted features by processing their mixed features. We
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now formally describe why the parameter sharing mecha-
nism can take place in residual connectivity but not in dense
connectivity. Concretely, we use F to denote the bottleneck
unit. Consider the input feature map xl−1 ∈ R

H×W×C to
the l-th residual block, corresponding formula is as follows:

xl = xl−1 + Fl(xl−1;Wl) = xl−1 + x̃l (1)

Where xl−1 can be considered as the reused feature map, Wl

and Fl(xl−1;Wl) refer to convolutional weights and newly
extracted feature map, respectively. x̃l ∈ R

H×W×C repre-
sents Fl(xl−1;Wl) for simplicity. Afterwards, xl becomes
a new input for the next residual block to proceed the trans-
formation:

xl+1 = xl + Fl+1(xl;Wl+1)

= xl + Fl+1(xl−1 + x̃l;Wl+1) (2)

In the l + 1-th residual block, xl−1 and x̃l are shared with
the same Wl+1 and operations. Similar analysis about dense
connectivity is exhibited as follows. Output of the l-th mod-
ule under dense connectivity can be regarded as the concate-
nation of input xl−1 ∈ R

H×W×C and newly extracted fea-
ture map x̃l ∈ R

H×W×C̃ along the channels:

xl = xl−1 ‖ Fl(xl−1;Wl) = xl−1 ‖ x̃l (3)

Then, the next module receives xl ∈ R
H×W×(C+C̃) and

conducts the following transformation:

xl+1 = xl ‖ Fl+1(xl;Wl+1)

= xl ‖ Fl+1(xl−1 ‖ x̃l;Wl+1) (4)

In the l+1-th dense block, xl−1 and x̃l are not shared with
the same Wl+1 because of the different locations of feature
space between reused and newly extracted feature maps.

Feature Learning

The final output of residual block is the element-wise addi-
tion of input and newly extracted feature maps. This addition
pattern facilitates efficient feature reuse without increasing
the size of feature map thus reducing parameter redundancy.
But one potential fact is that too many aggregations by addi-
tion may collapse the feature representation and thus impede
the information flow, hence some early informative features
may be lost inevitably. Moreover, parameter sharing mecha-
nism may damage the capability of exploring new features.

Subsequently proposed DenseNet develops a global dense
connectivity, where the output feature map of each preced-
ing module flows to the all subsequent modules directly. Dif-
ferent from the element-wise addition, input and newly ex-
tracted feature maps are combined by concatenation along
the channels. Thus dense connectivity can transfer the early
feature maps to later modules, which preserves the all pre-
ceding feature information and facilitate the full exploitation
of existing features. Moreover, various modules with differ-
ent weights conduct a collective learning for the same fea-
tures, which can promote effective feature exploration.

Overall Efficiency

It is widely known that DenseNet-100 with 0.8M parame-
ters slightly outperforms ResNet-1001 with 10.2M param-
eters on CIFAR10 dataset. The explicit parameter gap is
that DenseNet-100 is quite shallower than ResNet-1001 due
to the more effective feature exploitation and exploration
capabilities produced by collective learning, while ResNet
mainly depends on increasing depth to improve the represen-
tational power of features. Empirically, DenseNet can also
have extremely few number of filters in each convolutional
layer due to the collective learning mechanism that further
improve the efficiency. However, one potential weakness of
dense connectivity is the redundancy of repeated extraction
with the same features. In this case, early features flow to
all subsequent layers, even if they have few contributions.
By contrast, residual connectivity has a relatively low re-
dundancy due to the parameter sharing mechanism.

Networks Architecture

Hybrid Connectivity Pattern

We develop a hybrid connectivity pattern, which can enjoy
the effective feature learning and few filters of each module
from global dense connectivity as well as efficient feature
reuse by parameter sharing from local residual connectiv-
ity. Figure 1 illustrates this pattern within the hybrid block
schematically. Note that hybrid connectivity pattern exists
in the hybrid block which consists of n (n � 2) modules.
To match the definition of growth rate in DenseNet, each
module produces one feature map with k channels. The ba-
sic module consists of successive two cells, which we call
them as cell 1 and cell 2, respectively. Globally, input of
each module is a concatenation of all feature-maps produced
by preceding modules and transferred by dense connectivity.
Locally, residual connectivity provides a shortcut that allows
the output of cell 1 bypassing cell 2 and then being added to
the new features generated by cell 2 to form the output.

Instantiation of Basic Module

To orchestrate our hybrid connectivity, we design a basic
SMG module which includes a Squeeze cell (cell 1), a
Multi-scale excitation cell (cell 2) and Gate mechanisms.
Unless specified otherwise, each convolution is bound a pre-
activation, which refers to the three consecutive operations:
batch normalization (BN)-rectified linear unit (ReLU)-Conv.

Squeeze Cell. This cell which locates at the beginning
of SMG module is responsible for generating the compact
feature map from input to improve parameter and compu-
tational efficiency for subsequent processing. 1×1 convo-
lution is firstly adopted for changing the number of input
channels C̃ to �α · C�, where α > 0 can be reckoned as a
width multiplier which is mostly used to reduce the number
of channels, i.e. C̃ > �α · C�, and C denotes the number
of final output channels of squeeze cell. Then, 3×3 group
convolution (GConv) with g groups proceeds to squeeze the
features by reducing the number of channels from �α · C� to
C, where C needs to be divisible by g. Moreover, it can also
play a down-sampling by 3×3 kernel with stride S = 2.
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Figure 2: Illustrations of SMG module, update gate and forget gate. In all figures,
⊕

and
⊗

denote broadcast element-wise
addition and multiplication, respectively. We employ feature dimensions to describe the flow of feature maps for better under-
standing. Note that spatial size H̃ × W̃ = H ×W when default stride S = 1 of 3×3 GConv in Figure 2a.

Multi-scale Excitation Cell. Squeezed feature map enters
this cell for multi-scale excitation by multi-branch convolu-
tions with different kernel sizes. Note that the costs of pa-
rameter and computation are extremely cheap because of
the few input channels, and the size of feature map through-
out this cell is unchanged. To further improve efficiency, we
adopt 3×3 and 5×5 depthwise convolutions (DWConv) with
1 and 2 paddings, respectively. Moreover, dilation convolu-
tion (Yu and Koltun 2016) with a kernel size of 3×3 and a
dilation size of 2 is used to approximate 5×5 kernel for bet-
ter trade-off between efficiency and performance. The out-
put of this cell is two-branch feature maps produced by 3×3
and 5×5 DWConvs, respectively.

Update Gate. To capture long-range dependency , we uti-
lize update gate to model the global context features from
multi-scale information. Figure 2b shows the overall details
about the update gate, which can be sequentially summa-
rized for 3 stages: spatial attention, pooling and channel at-
tention.

spatial attention and pooling: We perform a global con-
text modeling for calculating spatial-wise weights of each
position. For the given feature map X3×3 ∈ R

H×W×C , a
1×1 convolutional filter shrinks it along channel dimensions
to a spatial attention map S̃3×3 ∈ R

H×W×1, an then a soft-
max function normalizes it to obtain the final spatial atten-
tion map S3×3 ∈ R

H×W×1, each element of which is as
follows:

S3×3
i,j,1 =

eS̃
3×3
i,j,1

∑H
x=1

∑W
y=1 e

S̃3×3
x,y,1

(5)

We employ global attention pooling via weighted averaging
with S3×3 to shrink the global spatial information and gen-
erate the global context feature map z3×3 ∈ R

1×1×C . The
c-th channel of z3×3 is as follows:

z3×3
c =

H∑

x=1

W∑

y=1

X3×3
x,y,c ∗ S3×3

x,y,c (6)

Here, ∗ denotes element multiplication. Based on the above
framework, z5×5 ∈ R

1×1×C can also be obtained by input
feature map X5×5 ∈ R

H×W×C .
channel attention: To maintain the integrity of informa-

tion, we concatenate z3×3 and z5×5 as the input. Then it is
transformed to a hidden representation h ∈ R

1×1×2∗C/ru ,
which is always a compact feature map by setting a reduc-
tion ratio ru for better efficiency. This is achieved by a fully
connected (FC) layer with non-linearity:

h = tanh(BN(W[z3×3 ‖ z5×5]) + b) (7)

Where BN is the batch normalization, W ∈ R
2∗C×2∗C/ru

and b ∈ R
2∗C/r denotes the weights and biases of FC layer.

It is noteworthy that we adopt tanh rather than ReLU as
our non-linearity function. For the one side, ReLU inevitably
destroys feature representational power especially in low-
dimensional space to a great extent, while tanh preserves
information by a smoother way. For the other side, although
it is widely known that tanh is more prone to cause gra-
dient vanish as the increasing depth of CNN, this problem
could not occur in our HCGNets because of the hybrid con-
nectivity that can significantly strength the gradient back-
propagation. Experimental evidence also proves that tanh is
more effective than ReLU in our HCGNets.

Two-branch FC layers act on fusion representation h to
generate two intermediate channel attention maps ũ3×3 ∈
R

1×1×C and ũ5×5 ∈ R
1×1×C :

ũ3×3 = W3×3h+ b3×3, ũ5×5 = W5×5h+ b3×3 (8)

Where W3×3,W5×5 ∈ R
2∗C/ru×C and b3×3,b5×5 ∈ R

C

denotes the weights and biases of two FC layers. Then a
simple softmax function conducts a normalization between
ũ3×3 and ũ5×5 to produce the two final channel attention
maps u3×3 ∈ R

1×1×C and u5×5 ∈ R
1×1×C :

u3×3 =
eũ

3×3

eũ3×3 + eũ5×5 ,u
5×5 =

eũ
5×5

eũ3×3 + eũ5×5 (9)
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Figure 3: A HCGNet with three hybrid blocks, where each
green box denotes SMG module.

u3×3 and u5×5 can be regarded as the proportions of aggre-
gating multi-scale global context features. Weighted fusion
of z3×3 and z5×5 is the output of update gate:

vc = u3×3
c · z3×3

c + u5×5
c · z5×5

c ,u3×3
c + u5×5

c = 1 (10)

Where vc is the c-th channel of the output v ∈ R
1×1×C .

Forget Gate. To decay the reused feature map by channel-
wise weights, we locate a forget gate (see Figure 2c) on the
residual connection before information fusion. It can also
be sequentially summarized for 3 stages: spatial attention,
pooling and channel attention.

spatial attention and pooling: For the given feature map
X

′ ∈ R
H×W×C , we perform the global attention pooling as

same as update gate, thus a channel descriptor zf ∈ R
1×1×C

can be obtained.
channel attention: To meet the requirement of weighted

decay for each channel, the final output of each channel
weight should be within (0, 1), thus we refer SE block,
which stacks two continuous FC layers as a bottleneck and is
ended by sigmoid function. Different from SE block, we in-
sert a batch normalization layer for easing optimization and
replace ReLU with tanh as our non-linearity. In short, the
sequent transformations are as follows for the input zf :

f = σ(Wf
2 (tanh(BN(Wf

1z
f + bf

1 ))) + bf
2 ) (11)

Where σ is the sigmoid function, Wf
1 ∈ R

C×C/rf , bf
1 ∈

R
C/rf , Wf

2 ∈ R
C/rf×C and bf

2 ∈ R
C . rf is the bottleneck

ratio and f ∈ R
1×1×C is the final channel attention map.

Information Fusion. For any given feature map entering
SMG module, squeeze cell firstly condenses it to a compact
feature map denoted by X

′
. Then X

′
enters multi-scale exci-

tation cell and generate two-branch outputs X3×3 and X5×5

by 3×3 and 5×5 DWConvs, respectively. Since then, X
′

can
be regarded as the reused features, while X3×3 and X5×5

are the newly extracted features. An update gate integrates
X3×3 and X5×5 to model a global context feature map v

and we aggregate it to the decayed X
′

of each spatial po-
sition by addition to build the final output O ∈ R

H×W×C .
It can be observed that we maintain the magnitude of new
features unchanged while decaying reused features, which
can facilitate the effective feature exploration and retain the
capability of feature re-exploitation to some extent.

Macro-architecture.

As shown in Figure 3, at the beginning of HCGNet is a stem,
which is a composite function to process the initial input im-
ages. Then multiple hybrid blocks are stacked with various
spatial stage. Between two adjacent hybrid blocks, we adopt

Table 1: HCGNet-B network architecture for ImageNet clas-
sification. Each row describes the stage, modules informa-
tion and input resolution (IR).

Stage Module IR

Stem [3×3 Conv-BN-ReLU]×3 224×224
3×3 max pool 112×112

Hybrid Block SMG×3 (k = 32) 56×56
Transition SMG×1 56×56

Hybrid Block SMG×6 (k = 48) 28×28
Transition SMG×1 28×28

Hybrid Block SMG×12 (k = 64) 14×14
Transition SMG×1 14×14

Hybrid Block SMG×8 (k = 96) 7×7

Classification global average pool 1×1
1000D FC, softmax -

a transition layer to perform down-sampling and connectiv-
ity truncation. After the final hybrid block, a global aver-
age pooling attached with a softmax classifier calculates the
probabilities of various categories.

Both hybrid block and transition layer adopt SMG mod-
ules but with different hyperparameter settings. We only
stack one SMG module to build each transition layer and
a compression factor θ = 0.5 is utilized to reduce the num-
ber of channels, i.e, C = θC̃. For each SMG module, we set
g = 4, α = 4 and ru = rf = 2 in hybrid blocks, as well
as set g = 1, α = 1.5, S = 2 and ru = rf = 4 in tran-
sition layers. Note that we apply the standard convolutions
in transition layers for best capability of feature extraction
and group convolutions in hybrid blocks for better trade-off
between efficiency and performance. Compared with the hy-
brid block, we set less multiplier α and larger reduction ra-
tios ru and rf for better efficiency due to the more channels
of feature maps in transition layers.

Specifically, we construct several networks to act on
the image classification across the CIFAR and Ima-
geNet datasets. For CIFAR, we adopt a 3×3 stan-
dard convolution with stride 1 as the stem that the
number of output channels is twice the growth rate
of the first hybrid block. And we build three net-
works with various model specifications: HCGNet-(8,8,8)-
(k=12,24,36)(A1), HCGNet-(8,8,8)-(k=24,36,64)(A2) and
HCGNet-(12,12,12)-(k=36,48,80)(A3). Formally, the first
m-tuple indicates that there are m hybrid blocks, where
each figure denotes the number of SMG modules in the
corresponding hybrid block. The second m-tuple denotes
m growth rates of m hybrid blocks, respectively. For Im-
ageNet, the stem consists of three contiguous 3×3 Conv-
BN-ReLU layers (stride 2 for the first layer) with 32, 32, 64
output channels, and attached by a 3×3 max pooling with
stride 2. We construct two networks: HCGNet-(3,6,12,8)-
(k=32,48,64,96)(B, as Table 1) and HCGNet-(6,12,18,14)-
(k=48,56,72,112)(C).
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Table 2: Comparisons of our HCGNets against state-of-
the-art networks about test error rates (%) across CIFAR-
10 and CIFAR-100 datasets. Note that the first and second
blocks contain human-designed and auto-searched architec-
tures, respectively.

Model Params FLOPs C-10 C-100

CondenseNet-182 4.2M 0.5G 3.76 18.47
SparseNet-BC 16.7M - 4.10 18.22
AOGNet 24.8M 3.7G 3.27 16.63
LogDenseNetV2 19.0M 11.1G 3.75 18.80
Wide ResNet-28 36.5M 5.2G 4.17 20.50
ResNeXt-29+SK 27.7M - 3.47 17.33
Res2NeXt-29 36.9M - - 16.56
DenseNet-BC-190 25.6M 9.4G 3.46 17.18
DPN-28-10 47.8M - 3.65 20.23
MixNet-190 48.5M 17.3G 3.13 16.96

PNASNet 3.2M - 3.41 19.53
NASNet-A 3.3M - 3.41 19.70
ENASNet 4.6M - 3.54 19.43
AmoebaNet-A 4.6M - 3.34 -
AmoebaNet-B 34.9M - 2.98 17.66
NASNet-A 50.9M - - 16.03
ENASNet 52.7M - - 16.44
PNASNet 53.0M - - 16.70

HCGNet-A1 1.1M 0.2G 3.15 18.13
HCGNet-A2 3.1M 0.5G 2.29 16.54
HCGNet-A3 11.4M 2.0G 2.14 15.96

Experiments

Experiments on CIFAR

Dataset and training details. Both CIFAR-10 and
CIFAR-100 datasets comprise 50k training images and 10k
test images corresponding to 10 and 100 classes, respec-
tively. We apply a standard data augmentation following
Huang et al. (2017). We employ a stochastic gradient de-
scent (SGD) optimizer with momentum 0.9 and batch size
128. Training is regularized by weight decay 1 × 10−4 and
mixup with α = 1 (Zhang et al. 2017). For HCGNet-A1,
we train it for 1270 epochs by SGDR (Loshchilov and Hut-
ter 2016) learning rate curve with initial learning rate 0.1,
T0 = 10, Tmul = 2. For HCGNet-A2 and A3, we train them
for 1260 epochs including two continuous 630 epochs, each
of them is a SGDR learning rate curve with initial learning
rate 0.1, T0 = 10, Tmul = 2.

Comparisons with Human-designed Networks. Quanti-
tatively in Table 2, DenseNet-190 has 31 modules in each
dense block, while HCGNet-A2 only has 8 modules in
each hybrid block thus reduces 93% redundancy but with
substantial accuracy gains. Moreover, HCGNet-A2 signif-
icantly outperforms other sparsification variants, such as
LogDenseNet, SparseNet and CondenseNet, which indicate
that our optimization of DenseNet is more effective than
sparsification method. HCGNet-A2 using 16× fewer param-
eters surpasses MixNet-190, which represents the most gen-

Table 3: Comparisons of our HCGNets against SOTA net-
works about Top-1 and Top-5 error rates (%) on ImageNet.

Model Params FLOPs T-1 T-5

MixNet-105 11.2M 5.0G 23.3 6.7
MixNet-121 21.9M 8.3G 21.9 5.9
MixNet-141 41.1M 13.1G 20.4 5.3

DPN-68 12.8M 2.5G 23.6 6.9
DPN-92 38.0M 6.5G 20.7 5.4
DPN-98 61.6M 11.7G 20.2 5.2

DenseNet-169 14.2M 3.5G 23.8 6.9
DenseNet-201 20.0M 4.4G 22.6 6.3
DenseNet-264 33.4M 6.0G 22.2 6.1

SparseNet-201 14.9M 9.2G 22.7 -

ResNet-50 25.6M 3.9G 24.6 7.5
ResNet-50+SE 28.1M 3.9G 23.1 6.7
ResNet-50+CBAM 28.1M 3.9G 22.7 6.3
ResNet-101 44.6M 7.6G 23.4 6.9
ResNet-101+SE 49.3M 7.6G 22.4 6.2
ResNet-101+CBAM 49.3M 7.6G 21.5 5.7

ResNeXt-50 25.0M 3.8G 22.9 6.5
ResNeXt-50+SE 27.6M 3.8G 21.9 6.0
ResNeXt-101 44.2M 7.5G 21.5 5.8
ResNeXt-101+SE 49.0M 7.5G 21.2 5.7
ResNeXt-101+SK 48.9M 8.5G 20.2 -

WideResNet-18 45.6M 6.7G 25.6 8.2
WideResNet-18+SE 46.0M 6.7G 24.9 7.7

AOGNet-12M 11.9M 2.4G 22.3 6.1
AOGNet-40M 40.3M 8.9G 19.8 4.9

HCGNet-B 12.9M 2.0G 21.5 5.9
HCGNet-C 42.2M 7.1G 19.5 4.8

eral form of ResNet and DenseNet. It also uses 8× fewer pa-
rameters but obtains better results than concurrent AOGNet,
which is the state-of-the-art human network by hierarchical
and compositional feature aggregation. Consequently, our
nested aggregation is the best method among other combi-
nations and variants of ResNet and DenseNet.

Comparisons with auto-searched Networks. Notably,
Our HCGNets are also more efficient than auto-searched
networks. Compared with other networks with small set-
ting, HCGNet-A2 achieves around 1% and 3% reductions on
CIFAR-10 and CIFAR-100 error rates, respectively. More-
over, it is noteworthy that HCGNet-A1 can also obtain su-
perior performance with unprecedent efficiency. For large
setting, HCGNet-A3 achieves the best results with least
complexity. Somewhat surprisingly, HCGNet-A3 can out-
perform the most competitive NASNet-A with only 22% pa-
rameters.

Experiments on ImageNet 2012

Dataset and Training Details. ImageNet 2012 dataset
comprises 1.2 million training images and 50k validation
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Table 4: Comparisons of HCGNet-B against other backbones on the Mask-RCNN system (He et al. 2017).

Backbone Params FLOPs APbb
50:95 APbb

50 APbb
75 APm

50:95 APm
50 APm

75

ResNet-50-FPN 44.2M 275.6G 37.3 59.9 40.2 34.2 55.9 36.2
AOGNet-12M-FPN 31.2M - 38.0 59.8 41.3 34.6 56.6 36.4

HCGNet-B-FPN 32.1M 230.4G 38.3 60.6 41.3 35.2 57.5 37.1
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Figure 4: Comparisons of interpretability by network dis-
section (Bau et al. 2017) among popular models based on
ImageNet pretrained models.

images corresponding to 1000 classes. We employ the data
augmentation following Huang et al. (2017). Final error
rates are reported by single-crop with size 224× 224 at test
time on the validation set. We employ synchronous SGD
with momentum 0.9 and batch size 256. Training is regular-
ized by weight decay 4×10−5, label smoothing with ε = 0.1
(Szegedy et al. 2016), mixup with α = 0.4 and dropout (Sri-
vastava et al. 2014) with rate 0.1 before the final FC layer.
All networks are trained for 630 epochs by SGDR learning
rate curve with initial learning rate 0.1, T0 = 10, Tmul = 2.

Comparisons with popular networks. As shown in Ta-
ble 3, our HCGNets perform the best among all other mod-
els with less or comparable complexity in terms of top-1 and
top-5 error rates. It is noteworthy that DenseNet-169 stacks
4 dense blocks with 6,12,32,32 modules, while HCGNet-
B utilizes shallower design with 3,6,12,8 modules for 4
hybrid blocks, thus reducing 88% redundancy but obtain-
ing above absolute 2.3% gain of performance. Furthermore,
HCGNets yield significantly better results than the fami-
lies of DenseNet, MixNet and DPN under comparable com-
plexity. Remarkably, using considerable 4.6× fewer FLOPs,
HCGNet-B can also surpass SparseNet-201, which is the
state-of-the-art variant of DenseNet. The family of HCGNet
can consistently obtain better performance than the families
of ResNet, ResNeXt, WideResNet and their attention-based
variants, which represent the widely applied models in prac-
tice. Predominately, HCGNets outperform previous SOTA
AOGNets across various model specifications, which show
the superiority of our design.

Model Interpretability We quantify the interpretability
by network dissection, which compares the number of
unique detectors in the final convolutional layer. Figure 4
shows that HCGNet-B obtains the overall highest score with
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Figure 5: Comparisons of adversarial robustness by FGSM
(Goodfellow, Shlens, and Szegedy 2015) attack.

least complexity, which shows that the designs of hybrid
connectivity and SMG module can not only achieve the best
accuracy, but also generate the best latent representations.

Adversarial Robustness We attack HCGNet-B by popu-
lar FGSM across various perturbation energies ε to test the
adversarial robustness against widely applied models, re-
sults of which are shown in Figure 5. HCGNet-B has a more
remarkable robustness than other models in adversarial de-
fense, especially the perturbation is relatively high.

Object Detection and Instance Segmentation

To show the transferability, we experiment HCGNet-B pre-
trained on ImageNet as a backbone on the Mask-RCNN
system to implement object detection and instance segmen-
tation tasks. We use COCO train2017 set to finetune the
HCGNet-B by the 1x training schedule, and evaluate the
performance on COCO val2017 set. We report the results
by standard COCO metrics of Average Precision (AP), i.e,
AP50:95, AP50, and AP75 for bounding box detection (APbb)
and instance segmentation (APm) in Table 4. The results
show that HCGNet-B can learn better features than SOTA
ResNet and AOGNet backbones.

Conclusion

This paper develops an efficient architecture with the in-
novative designs of hybrid connectivity, micro-module and
attention-based forget and update gates. On CIFAR and Im-
ageNet datasets, HCGNets outperform state-of-the-art net-
works with less or comparable complexity. Extensive experi-
ments based on the ImageNet pretrained model further show
the remarkable interpretability, robustness for recognition
and transferability for detection. We hope our HCGNets may
inspire the future study of architectural design and search.
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